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Chapter 1

Statistical Mechanics

1.1 Introduction
(Lesson 1 of
9/3/20)
Compiled: January
28, 2021

Many interesting systems, such as the climate, cells and organisms, cities and
societies, are inherently very difficult to model, and fall under the denomination
of complex systems. One of their key feature is emergence, i.e. the presence
of “cooperative” behaviours that originate from interactions of the system’s
parts, and that cannot be explained by any single element of the system by
itself1.
It does not suffice to consider a large and complicated system to create a complex Complicated vs.

complexsystem. For example, a gas trapped in a piston is complicated - as it involves a
large number of molecules -, but not complex - as it always reacts to changes in
the same way: if the gas is compressed or expanded, the piston will just move
towards the previous equilibrium state at a predictable rate.

Examples of
complex systemsTrue complex systems react “globally” to small perturbations. Living organisms
1. Livingand packs of animals are one of the most evident case of complex system: for

example see how bird/fish flocks alter their movement when approached by a
predator. Most of them can’t even see the threat - yet they know, by observing
each other, where to go next in order to avoid it.
Non-living physical system at equilibrium can exhibit complex behaviours 2. Physical
while being much simpler to analyse. One such example is given by critical
opalescence, where a fluid is normally transparent to light, but if heated above
a certain critical temperature Tc it suddenly becomes opaque. As we will see,
this is due the fact that, close to Tc, density fluctuations in the fluid become
really high - producing internal boundaries that refract or reflect rays of light,
so that they cannot cross the fluid unaffected.
This behaviour depending on a critical temperature is a feature shared by Critical

temperaturemany complex system.
For example, consider the Ising model, consisting in a set of locally interacting
magnetic spins {Si}i=1,...,n. By simulation, we can show that, depending on the
temperature, it exhibits two phases:

1∧The definitions here are deliberately fuzzy, as we are dealing with a huge class of very
diverse systems. In fact, there is no single “clear-cut” definition for a “complex system”.
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• High temperature: the spins Si are randomly distributed, while the
magnetization m, defined as:

m =
1
n

n∑
i=1

Si

is null. If the system is slightly perturbed, it relaxes quickly to m = 0

• Low temperature: the spins are all directed in the same direction, and
a slight perturbation relaxes quickly to m = 1.

At the critical temperature Tc, exactly between the two phases, the system
relaxes very slowly after a perturbation - taking order of magnitudes more
time to return to the equilibrium magnetization state (m = 0). Spatially,
the perturbation generates wild fluctuations of the spin states that propagate
throughout the entire system, meaning that distant points become highly
correlated, as if they were directly interacting, even when there are no forces
between them. This is exactly what happens in the bird flock case, where the
entire group “changes shape” at once reacting to the predator movement. So,
in general, locally perturbing a complex system will produce changes over
all spatial and temporal scales.
Thus, certain physical systems at equilibrium behave, at the critical temperature, Living vs physical

systemssimilarly to complex living systems - and so become very interesting to study.

1.1.1 Ingredients for a complex physical system
First of all, we wish to understand the ingredients of physical complex systems, Ingredients of

emergent behaviourthe key aspects that are needed for emergent behaviours, and that distinguish
truly complex systems from merely complicated ones. From the previous ex-
amples we saw that we should focus on fluctuations, and especially in how
much the system changes (globally) after a perturbation. So, to have emergent
behaviour we need:

• Many degrees of freedom (not necessary elementary particles, but
“properties” that can be changed).

• Interactions among the degrees of freedom. The simplest kind is the pair-
wise symmetric interaction - but there are also more complex possibilities
(e.g. mediated or many-body interactions)

• Balance between Energy and Entropy. A physical system at equi-
librium exhibits long-range correlations, and thus complex behaviour,
only when cooled at a critical temperature Tc, such that energy E and
entropy S are “balanced”:

Energy(Tc) ≈ Tc ·Entropy(Tc) (1.1)

The energy is defined as E = U +K, where K is the kinetic energy Energy
of the system’s components, and U the potential term given by the
interactions. On the other hand, the entropy S is proportional to the Entropy
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number of configurations (realizations) of the system’s microstates that
share the same macrostate, i.e. that lead to the same values of macroscopic
observables (e.g. energy). In other words, S increases if there are “more
configurations” of the system’s components that lead to the same “overall
result”.

To give some intuition for (1.1), consider a closed system (i.e. one that can
exchange energy, but not particles) in a heat bath at constant temperature
T . By consequence of the second law of thermodynamics, processes inside
a closed system tend to maximise S if E is constant, or minimize E if S
is constant2. If E nor S are constant, a compromise must be done, and
another quantity (a thermodynamic potential) is minimized instead. For
example, in the case of a system of fixed volume V , it is the Helmholtz
free energy:

Helmholtz free
energyF = E − TS (1.2)

Physically, F quantifies the amount of the system’s energy that can be
used to perform useful work.

Now, note that if T is low, F is dominated by E , meaning that the system Intuition for
criticalityat equilibrium will be in one of the minima of E (ordered state). However,

if T is sufficiently high, S prevails, and the system will reorganize itself
so to occupy one of the states with maximum S - which are usually very
different from the low energy ones (disordered state).
The critical temperature Tc sits at the boundary between these two phases,
where little perturbations produce significant effects on the entire system’s
volume - which is exactly the kind of complex behaviour we are studying.
In fact, fluctuations towards high S produces disordered patches, while
ones in the opposite side lead to ordered patches - which then influence
the neighbouring regions through the local interactions between degrees
of freedom. These wild fluctuations allow the system to visit the regions
of phase space that are specific of both low and high temperature (which
are usually separated) at the same time.

In other words, a system at Tc is “tuned to respond to change”, and it
does so over all spatial and temporal scales.

Unfortunately, (1.1) and the free energy (1.2) are only defined at equilibrium, The
non-equilibrium
problem

leaving out all the interesting cases of non-equilibrium systems (e.g. living
organisms). Finding a generalization of F that works also in non-equilibrium
states is one of the current goals of research in statistical mechanics.

The desire to do so can only increase after observing that all physical systems Universality
at criticality exhibit very similar emergent/cooperative behaviours, depending
only on system’s dimensionality, and the symmetry and range (long/short) of
interactions. This is, in essence, the concept of universality, one of the key
ideas of theoretical physics.
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Universality allows to study many different systems with minimal models Minimal models
(or null models), where all the non-necessary details are left out, and only the
few parameters relevant for criticality are analysed. These are way simpler to
solve and model than the full cases, and so provide the opportunity of a deeper
theoretical understanding.

1.1.2 The non-equilibrium case
While physical systems at criticality and living organisms are both examples of Unanswered

questionscomplex systems, the latter show remarkable and yet unexplained differences,
leading to a list of deep questions in the field of Statistical Mechanics.

For examples, physical systems need to be fine-tuned to show an emergent
behaviour, because they need to be inside a very specific patch of the phase-
space sitting between different phases. Living systems, however, need not this
kind of tuning - they are, in a sense, “always critical”. For example, a bird flock
does not need a specific temperature nor a certain wind speed to react readily
to a predator: it just does.

So, it is fair to ask at which point the analogy between non-equilibrium living
organisms and equilibrium critical states must stop. Do bird flocks share the
same core mechanism of an Ising model, with just another layer of complexity on
top - or are they just superficially similar, but inherently completely different?
If the former is true, how can they “self-tune” to be “always critical”?

More importantly: does universality even hold for non-equilibrium complex
systems? If this where true, it would enable a generation of theorists to model
all of these magnificent behaviours with a single framework.

In any case, even after confirming the analogy with critical systems, we must
remember that we are not aiming for specific predictions, but seeking a general,
understandable, explanation for complex phenomena. For example, with the
critical system analogy we do not wish to predict tomorrow’s forecast, but rather
unveil the typical patterns of Earth’s climate over millennia. For a specific
application, such as weather forecasting or establishing the efficacy of a drug, it
is best to use numerical models with thousands of parameters, fitting reality to
the further decimal place. On the other hand, modelling with few parameters
a critical system can give insight on the behaviour of many non-equilibrium
system (as we noted before), such as: Examples of

systems with
critical-like
behaviours

• Bird and fish flocks

• Certain kinds of brain activity

• Ecosystems with high biodiversity (such as natural forests)

• Written communication (mails, text messages, social connections, memes...)

• River basins
2∧See “principle of minimum energy” and “principle of maximum entropy”.

9



1.1.3 Statistical Mechanics
Statistical mechanics is the branch of physics that deals with many-body systems,
borrowing concepts from statistics, probability theory and quantum mechanics.
It can be divided in:

• Equilibrium Statistical Mechanics, which extends classical thermody-
namics, linking macroscopic observables (e.g. pressure, temperature) and
thermodynamic quantities (e.g. heat capacity) to microscopic behaviour.

• Non-equilibrium Statistical Mechanics (or Statistical Dynamics),
which models irreversible processes driven by imbalances - such as chemical
reactions or flows of particles/heat.

In a more recent sense, Statistical Mechanics can be extended to generic (not
necessarily inanimate) systems with many degrees of freedom formed by interact-
ing parts. In this sense, Statistical Mechanics becomes the natural environment
in which to study complex systems and emergent behaviour.

1.2 Review of Mathematical Methods
(Lesson 2 of
11/3/20)
Compiled: January
28, 2021

1.2.1 Continuous Random Variables
Let X be a continuous random variable with probability distribution p(x).
Then:

• The probability of X assuming values in the interval [a, b) is given by:

P[a ≤ X < b] =
∫ b

a
p(x) dx

• The probability distribution p(x) represents the infinitesimal probability
of X assuming a value very close to x:

P(x ≤ X < x+ dx) = p(x) dx

• The expected value of a function of X (also called an observable) O(X)
is given by sampling many Xi ∼ p all independently and identically,
and then computing the limit:

〈O〉 = lim
n→∞

1
n

n∑
i=1

O(Xi) =

=
∫

R
p(x)O(x) dx ≡ E[O(X)]

Physically, this corresponds to repeating many time the same measurement
of O, and averaging the results.
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�� ��Exercise 1.2.1 (Some example distributions):

Consider the following distributions:

Uniform p1(x) =

1 0 ≤ x ≤ 1

0 otherwise
(1.3a)

Exponential p2(x) = 1
m

exp
(
− x
m

)
θ(x); θ(x) =

1 x > 0

0 x < 0
(1.3b)

Gaussian p3(x) = 1
σ
√

2π
exp
Å
−(x−m)2

2σ2

ã
(1.3c)

Evaluate 〈X〉, 〈X2〉 and Var(X) = 〈X2〉 − 〈X〉2 with the above three distri-
butions (1.3a-1.3c). Are the three distributions correctly normalized, that
is: ∫

R
pi(x) dx ?

= 1 ∀i = 1, 2, 3

Solution.

1. The distribution is already normalized:∫
R
p1(x) dx =

∫ 1

0
1 dx = 1

The first two moments are:

〈X〉 =
∫

R
x p1(x) =

∫ 1

0
x dx =

x2

2

∣∣∣1
0
=

1
2

〈X2〉 =
∫

R
x2p1(x) =

∫ 1

0
x2 dx =

x3

3

∣∣∣1
0
=

1
3

And so the variance can be computed as:

Var(X) = 〈X2〉 − 〈X〉2 =
1
3 −

1
4 =

1
12

2. We proceed exactly in the same way:∫
R
p2(x) dx =

∫ +∞

0

1
m

exp
(
− x
m

)
dx = − exp

(
− x
m

) ∣∣∣+∞
0

= 1

〈X〉 =
∫

R
x p2(x) dx =

∫ +∞

0

x

m
exp

(
− x
m

)
dx =

(a)

=
��

���
���

��

−x exp
(
− x
m

) ∣∣∣+∞
0

+
∫ +∞

0
exp

(
− x
m

)
dx = −m exp

(
− x
m

) ∣∣∣+∞
0

= m

〈X2〉 =
∫

R
x2 p2(x) =

∫ +∞

0

x2

m
exp

(
− x
m

)
dx =

(b)

=
��

���
���

���

−x2 exp
(
− x
m

) ∣∣∣+∞
0
−
���

���
���

��

2mx exp
(
− x
m

) ∣∣∣+∞
0
− 2m

∫ +∞

0
exp

(
− x
m

)
dx =

11



= −2m2 exp
(
− x
m

) ∣∣∣+∞
0

= 2m2

Var(X) = 〈X2〉 − 〈X〉2 = 2m2 −m2 = m2

where in (a) and (b) we performed (multiple) integrations by parts.

3. As before:∫
R

1
σ
√

2π
exp
Å
−(x−m)2

2σ2

ã
dx =
y=x−m√

2σ

∫
R

dy√
π
e−y

2
=

√
π√
π
= 1

〈X〉 =
∫

R

x

σ
√

2π
exp
Å
−(x−m)2

2σ2

ã
dx =

∫
R

√
2σy+m√
�2π�σ

e−y
2
��
�√2σ dy =

=
(a)

m√
π

∫
R
e−y

2
= m

In (a) we noted that the ye−y2 term is an odd function integrated over
a symmetric domain, and so it vanishes.

〈X2〉 =
∫

R

x2
√

2πσ
exp
Å
−(x−m)2

2σ2

ã
dx =

∫
R

(
√

2σy+m)2
√
�2π�σ

e−y
2
��
�√2σ dy =

=
∫

R

2σ2
√
π
y2e−y

2
dy+

��
���

���
���∫

R

2
√

2σm√
π

ye−y
2

dy+m2
∫

R

1√
π
e−y

2
dy =

=
2σ2
√
π

∫
R
y2e−y

2
dy+m2

For the last integral, we note that:∫
R
y2e−y

2
dy = − d

ds

∫
R
e−sy

2
dy
∣∣∣
s=1

and: ∫
R
e−sy

2
dy =

t=
√
sy

∫
R

dt√
s
e−t

2
=

…
π

s

meaning that:
∫

R
e−y

2
e−y

2
= − d

ds

…
π

s

∣∣∣
s=1

=

√
π

2 s−3/2
∣∣∣
s=1

=

√
π

2

Substituting in the previous expression we finally get:

〈X2〉 = A2σ2
√
�π

√
�π

A2
+m2 = σ2 +m2

Var(X) = 〈X2〉 − 〈X〉2 = σ2

12



�� ��Exercise 1.2.2 (Variance properties):

Show that:

1. Var(X) ≡ 〈(X − 〈X〉)2〉 = 〈X2〉 − 〈X〉2

2. min
a
〈(X − a)2〉 = Var(X)

Solution.

1. By using the linearity of the average:

Var(X) = 〈(X − 〈X〉)2〉 = 〈X2 − 2X〈X〉+ 〈X〉2〉 =
= 〈X2〉 − 2〈X〉〈X〉+ 〈X〉2 = 〈X2〉 − 〈X〉2

2. First we expand the square, and use again the linearity of the average:

〈(X − a)2〉 = 〈X2〉 − 2a〈X〉+ a2

Tominimize this expression, we differentiate wrt a and set the derivative
to 0:

d
da [〈X2〉 − 2a〈X〉+ a2] = −2〈X〉+ 2a !

= 0⇒ a = 〈X〉

And substituting in the expression above we have:

min
a
〈(X − a)2〉 = 〈X2〉 − 2〈X〉〈X〉+ 〈X〉2 = 〈X2〉 − 〈X〉2 = Var(X)

�� ��Exercise 1.2.3:

Consider the following pdf:

p(x) = (α+ 1)x−αθ(x− 1)

For what values of α ∈ R is it normalizable? Which moments 〈xk〉, with
k ∈ R, are well defined?
Solution. We start by checking the normalization:∫

R
p(x) dx =

∫ +∞

1
(α+ 1)x−α dx

If α = 1: ∫ +∞

1

1
x

dx = ln x
∣∣∣+∞
1

= +∞

If α 6= 1:

∫ +∞

1

1
xα

dx =
1

1− αx
1−α
∣∣∣+∞
1

=

+∞ α < 1

− 1
1−α α > 1

13



And so the integral certainly converges to a non-zero value for α > 1:∫
R
p(x) dx =

α+ 1
α− 1 = A α > 1

meaning that p(x)/A is normalized.

Note that the integral converges also for α = −1, where the prefactor
(α+ 1) vanishes. However, in this case the integral is 0, and so it cannot be
normalized to 1.

The k-th moment, with k ∈ R is given by:

〈Xk〉 =
∫ +∞

1
(α+ 1)xk−α dx α > 1

This converges if −(k− α) = −k+ α > 1, i.e. if k < α− 1, to:

〈Xk〉 = − α− 1
1− α+ k

1.2.2 Discrete Random Variables
A discrete random variable X can only assume values inside a discrete, count-
able (or denumerable) set E. The probability of X assuming a value ω ∈ E is
denoted by:

P(X = ω) ≡ Pω

Given an observable O(X), its possible outcomes are O(X = ω) ≡ Oω ∀ω ∈ E,
and its expected value is given by their average:

〈O(X)〉 =
∑
ω∈E

PωOω

�� ��Exercise 1.2.4 (Examples of discrete random variables):

a. Let Xi be a discrete random variable with only two possible values
Ei = {0, 1}, with probabilities:

P(Xi = 0) ≡ p; P(Xi = 1) = 1− p

Consider n random variables {Xi}i=1,...,n that are independently and
identically distributed like X (i.i.d.). Their sum is a new discrete
random variable X that assumes values between 0 and n (included):

X = X1 + · · ·+Xn; En = {0, 1, . . . ,n}

Show that:

14



i. The distribution of X is the binomial distribution:

p(k) = P(X = k) =
Ç
n

k

å
pk(1− p)n−k;

Ç
n

k

å
=

n!
k!(n− k)!

(1.4)

ii. p(k) so defined is properly normalized:
n∑
k=0

P(X = k) = 1

iii. Evaluate 〈X〉, 〈X2〉, Var(X).

b. As before, consider a set of n i.i.d. discrete random variables
{Xi}i=1,...,n, each following the same Poisson distribution:

P(Xi = k) = λk

k!
e−λ k ∈N; Ei = N (1.5)

Consider their sum:

X = X1 + · · ·+Xn

Show that:

i. The distribution of the sum X is:

P(X = k) = (nλ)k
k!

e−nλ

ii. It is properly normalized:
+∞∑
k=0

P(X = k) = 1

iii. Evaluate 〈X〉, 〈X2〉, Var(X).

Notice that the binomial distribution (1.4) in the case of rare events p = λ/n

with k � n becomes:Ç
n

k

å
pk(1− p)n−k = n(n− 1) · · · (n− k+ 1)

k!

Å
λ

n

ãk Å
1− λ

n

ãn−k
≈

≈ nk

k!

Å
λ/n

1− λ/n

ãk Å
1− λ

n

ãn
=

=
λk

k!

Å
1− λ

n

ã−k Å
1− λ

n

ãk
=

=
λk

k!

ï
exp
Å
k
λ

n
+ k

λ2

n2 + . . .

ãò ï
exp
Å
−λ− λ

n
+ . . .

ãò
≈

≈ λk

k!
e−λ

which is a Poisson distribution (1.5). This argument can be made more
precise using more sophisticated methods, by introducing a scalar product
in the space of distributions and prove convergence in total variation.
Solution.

15



1. X = k if and only if there are exactly k variables Xi = 1, and the
others are 0. This can happen in

(n
k

)
distinct ways. As the Xi are

independent, the probability of any configuration is just the product
of the probabilities of each state. In the case we are interested on, we
have always exactly k states Xi = 1, and n− k with Xi = 0, and so the
total probability of each configuration will be pk(1− p)n−k. Putting it
all together we arrive to the binomial distribution:

p(k) = P(X = k) =
Ç
n

k

å
pk(1− p)n−k

2. Applying the binomial theorem we have:
n∑
k=0

P(X = k) =
n∑
k=0

Ç
n

k

å
pk(1− p)n−k = (p+ [1− p])n = 1n = 1

3. By direct computation:

〈X〉 =
n∑
k=0

kP(X = k) =
n∑
k=0

k
n!

(n− k)! k!
pk(1− p)n−k =

=
n∑
k=1

n(n− 1)!

(n− k)! (k− 1)!
pk(1− p)n−k =

= n
n∑
k=1

Ç
n− 1
k− 1

å
pk(1− p)n−k =

Now we factor out a p and sum and subtract a 1 so that everywhere
we have k− 1:

= np
n∑
k=1

Ç
n− 1
k− 1

å
pk−1(1− p)(n−1)−(k−1)

And finally we shift the index of summation:

= np
n−1∑
k=0

Ç
n− 1
k

å
pk(1− p)(n−1)−k =

Applying the binomial theorem leads to the result:
= np[p+ (1− p)]n−1 = np1n−1 = np

For the second moment we repeat the first few steps:

〈X2〉 =
n∑
k=0

k2 P(X = k) =
n∑
k=0

k2 n!
(n− k)!k!

pk(1− p)n−k =

=
n∑
k=1

k
n(n− 1)!

(n− k)!(k− 1)!
ppk−1(1− p)(n−1)−(k−1) =

= np
n−1∑
k=0

(k+ 1)
Ç
n− 1
k

å
pk(1− p)(n−1)−k

Expanding the multiplication:

= np
[ n−1∑
k=0

k

Ç
n− 1
k

å
pk(1− p)(n−1)−k+
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+
n−1∑
k=0

Ç
n− 1
k

å
pk(1− p)(n−1)−k

︸ ︷︷ ︸
1

]
=

Let m = n− 1 for simplicity. Note that for the first term we can repeat
the same trick as before:

= np
m∑
k=1
��k

m(m− 1)!
(m− k)!��k(k− 1)!

ppk−1(1− p)(m−1)−(k−1) + np =

= np2m
m∑
k=1

Ç
m− 1
k− 1

å
pk−1(1− p)(m−1)−(k−1) + np =

And we shift once again the index of summation:

= np2m
m−1∑
k=0

Ç
m− 1
k

å
pk(1− p)(m−1)−k

︸ ︷︷ ︸
1

+np =

= np2(n− 1) + np = n2p2 + np(1− p)

Finally we can compute the variance:

Var(X) = 〈X2〉 − 〈X〉2 = n2p2 + np(1− p)− n2p2 = np(1− p)

Alternatively, we can re-derive the same results by using properties of
the expectation and the variance. In fact X is a sum of Xi, each with:

〈Xi〉 = 0 · (1− p) + 1 · p = p

〈X2
i 〉 = 02 · (1− p) + 12 · p = p

Var(Xi) = 〈X2
i 〉 − 〈Xi〉2 = p− p2 = p(1− p)

Then:

〈X〉 =
n∑
i=1
〈Xi〉 =

n∑
i=1

p = np

Var(X) =
n∑
i=1

Var(Xi) =
n∑
i=1

p(1− p) = np(1− p)

1.2.3 Characteristic Functions
The characteristic function of a random variable X is defined as the Fourier
transform of its pdf:

ϕX(α) =
∫

R
dx p(x)eiαx = 〈eiαX〉 (1.6)

ϕX(α) can be used to generate moments of X. Note that:

ϕX(α) = 〈eiαx〉 = 〈
+∞∑
n=0

(iαx)n
n!
〉 =

(a)

+∞∑
n=0

(iα)n
n!
〈xn〉 =

17



= 1 + iα〈x〉 − α2

2 〈x
2〉+ . . .

where in (a) we used the linearity of the expected value. Then, by differentiating
k times with respect to α and evaluating the derivative at α = 0, all terms
except the k-th vanish - meaning that the result is proportional to 〈xk〉.
Explicitly:

〈X〉 = −i ∂
∂α

ϕ(α)
∣∣∣
α=0

〈X2〉 = (−i)2 ∂
2

∂α2ϕ(α)
∣∣∣
α=0

...

〈Xk〉 =
Å
−i ∂
∂α

ãk
ϕ(α)

∣∣∣
α=0

(1.7)

In general, for a given distribution 〈Xk〉 may or may not exist - as it could
possibly be a non-converging integral. Thanks to formula (1.7) we know that the
k-th moment of a random variable X exists if and only if the k-th α-derivative
of its respective characteristic function ϕX(α) exists.�� ��Example 1 (Characteristic function of the gaussian):

Let’s compute the characteristic function for the gaussian pdf. By definition
(1.6), we have:

ϕm(α) =
∫

R

dx
σ
√

2π
exp
Å
iαx− (x−m)2

2σ2

ã
To simplify the integral, we perform a change of variables x = y+m, with
unit jacobian:

ϕm(α) = eimα
∫

R

dy
σ
√

2π
exp
Å
iαy− y2

2σ2

ã
= eimαϕ0(α) (1.8)

So we need to compute just ϕ0(α). To do this, we rewrite: eiαy = cos(αy) +
i sin(αy), so that:

ϕ0(α) =
∫

R

dy
σ
√

2π
exp
Å
− y2

2σ2

ã
(cos(αy) + i sin(αy) ) =

Note that the sin term is an odd function, integrated over a symmetric
domain, and so it vanishes, leaving only the cos term:

=
∫

R

dy
σ
√

2π
exp
Å
− y2

2σ2

ã
cos(αy)

To compute this integral, we note that the derivative of ϕ0(α) is proportional
to ϕ0(α) by a negative constant - meaning that we can reduce this problem
to the solution of a differential equation. Explicitly:
d

dαϕ0(α) = −
∫

R

dy
σ
√

2π
exp
Å
− y2

2σ2

ã
y sin(αy) =

18



We wish to have the same integrand as before, meaning that we need to
convert the sin(αy) to a cos(αy). This can be done by integrating by parts.
First, note that we can rewrite y exp(Ay) as a derivative of itself, adjusting
the prefactor:

= σ2
∫

R

dy
σ
√

2π

ï
∂

∂y
exp
Å
− y2

2σ2

ãò
sin(αy) =

And finally we integrate by parts:

= −σ2
∫

R

dy
σ
√

2π
exp
Å
− y2

2σ2

ã
∂

∂y
sin(αy) + σ2 exp

Å
− y2

2σ2

ã
sin(αy)

∣∣∣+∞
−∞︸ ︷︷ ︸

0

=

= −ασ2
∫

R

dy
σ
√

2π
exp
Å
− y2

2σ2

ã
cos(αy) = −ασ2ϕ0(α)

So we have transformed the integral in a first-order ordinary differential
equation:

d
dαϕ0(α) = −ασ2ϕ0(α)⇒ ϕ0(α) = C exp

Å
−α

2σ2

2

ã
To compute the integration constant we note that:

ϕ0(α = 0) = 〈1〉+
+∞∑
n=1

(iα)n〈xn〉
n!

∣∣∣
α=0

= 〈1〉 = 1

and so C = 1, leading to:

ϕ0(α) = exp
Å
−α

2σ2

2

ã
(1.9)

Then, substituting (1.9) in (1.8) we arrive at the final result:

ϕm(α) = exp
Å
iαm− α2σ2

2

ã
Thanks to (1.7) we can use ϕm(α) to compute the gaussian moments:

〈X〉 = −i ∂
∂α

ϕm(α)
∣∣∣
α=0

= m

〈X2〉 =
Å
−i ∂
∂α

ã2
ϕm(α)

∣∣∣
α=0

= −i ∂
∂α

ï
(m+ iασ2) exp

Å
iαm− α2σ2

2

ãò
α=0

=

= m2 + σ2

And finally the variance:

Var(X) = 〈X2〉 − 〈X〉2 = σ2
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�� ��Exercise 1.2.5 (Characteristic functions):

a. Calculate the characteristic function of the uniform distribution (1.3a)
and of the exponential distribution (1.3b), and re-obtain the results of
exercise 1.2.1.

b. Do the same for the binomial distribution (1.4) and the Poisson distri-
bution (1.5), replicating the results of ex. 1.2.4. In the discrete case
the definition of the characteristic function involves a sum instead of
the integral:

ϕ(α) =
∑
ω∈E

Pωe
iωα

c. Verify the following useful formulas:

−i ∂
∂α

lnϕ(α)
∣∣∣
α=0

= 〈X〉 (1.10a)Å
−i ∂
∂α

ã2
lnϕ(α)

∣∣∣
α=0

= Var(X) (1.10b)

1.2.4 Generating functions
As we saw in (1.7) the characteristic function ϕX(α) can be manipulated by
differentiation to obtain information about X. There are several other functions
that share this same mechanism, and that are so-called generating functions.
One such example is given by the probability generating function for a
discrete non-negative random variable X with E = N, which is defined as the
following:

G(z) ≡
∞∑
k=0

zkP(X = k) (1.11)

Differentiating G(z) and evaluating at z = 1 produces the factorial moments of
X, i.e. the expected values of X !/(X − l)!:

〈X〉 =
+∞∑
k=0

kP(X = k) = ∂

∂z
G(z)

∣∣∣
z=1

〈X(X − 1)〉 = ∂2

∂z2G(z)
∣∣∣
z=1

...

〈X(X − 1) · · · (X − l+ 1)〉 = ∂l

∂zl
G(z)

∣∣∣
z=1

We can produce the standard moments by applying a more complex operator
to G(z): Å

z
∂

∂z

ãl
G(z)

∣∣∣
z=1

= 〈X l〉
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�� ��Example 2 (Poisson generating function):

Consider the Poisson distribution:

P(X = k) = λk

k!
e−λ k ∈N

Its probability generating function is given by (1.11):

G(z) =
+∞∑
k=0

zkP(X = k) = eλ(z−1)

Note that:

G(1) =
+∞∑
k=0

P(X = k) = 1

by normalization. Then, by differentiation:

〈X〉 = ∂

∂z
G(z)

∣∣∣
z=1

= λ

〈X(X − 1)〉 = ∂2

∂z2G(z)
∣∣∣
z=1

= λ2 = 〈X2〉 − 〈X〉

And so 〈X2〉 = λ2 + λ, leading to:

Var(X) = 〈X2〉 − 〈X〉2 = λ2 + λ− λ2 = λ

1.2.5 Change of variables
Often we know a functional relation between two random variables Y = f(X),
and we wish to compute the distribution of Y ∼ py given that of X ∼ px.
To do this, note that the expected value of any generic observable O(Y ) can be
computed in two ways: by using the distribution px and the correspondence
X 7→ f(X), or directly with the distribution py:

〈O(Y )〉 =
∫

R
dxO(f(x))px(x) (1.12a)

〈O(Y )〉 =
∫

R
dy O(y)py(y) (1.12b)

The trick is now to introduce a δ in (1.12a):

〈O(Y )〉 =
∫

R
dxO(f(x))px(x)

∫
R

dy δ(y− f(x))︸ ︷︷ ︸
1

=

=
∫

R
dy
∫

R
dx px(x)O(f(x))δ(y− f(x)) =

=
∫

R
dy O(y)

∫
R

dx px(x)δ(y− f(x)) =
(1.12b)

∫
R

dy O(y)py(y)

As the equivalence holds for any arbitrary function O(y), the two integrands
must be the same, meaning that:

Change of random
variables21



py(y) =
∫

R
dx px(x)δ(y− f(x)) = 〈δ(y− f(X))〉X∼px (1.13)

Note that in the last expression the average is computed over the random
variable X, whereas y is just a generic real number.
In the special case where the equation y = f(x) is invertible, meaning that it
has only one solution x(y) = f−1(y) for any value of y, we can obtain a simpler
formula for the change of variables. We start by expanding f(x) in Taylor’s
series around x(y) in the rhs of (1.13):

δ(y− f(x)) = δ[y− [f(x(y)) + (x− x(y))f ′(x(y)) + . . . ]] =

= δ[(x− x(y))f ′(x(y))] = δ(x− x(y))
|f ′(x)|

Leading to the formula:

py(y) = px(x(y))
|f ′(x(y))| (1.14)

The same formula can be obtained by graphical reasoning, as shown in fig. 1.1.
The idea is that if y ∈ [y, y+ dy] with probability py(y) dy, then - as y = f(x)
is invertible - x must be in [x,x+ dx] with the same probability px dx, and with
x = x(y). So:

py(y) dy = px(x) dx⇒ py(y) = px(x)
∣∣∣∣dxdy

∣∣∣∣ = px(x(y))
∣∣∣∣dydx

∣∣∣∣−1
=

px(x(y))
|f ′(x(y))|

where the absolute value is needed because probabilities must be positive3

dx

dy

dx dy

px(x) dx = py(y)dy

same area

y

x x y

px(x) py(y)

Figure (1.1) – If y = f(x) is invertible on its range, then it is either strictly increasing or
decreasing. This means that the preimage f−1(I) of an interval I = [y, y+ dy] is again an
interval J = [x,x+ dx]. Clearly, the probability of y being in I (which is the area in the
central graph) must be the same of the probability of x being in J (the area in the graph to
the right). By equating these two areas, we can derive formula (1.14)..

1.2.6 Generating probability distributions
Changes of random variables can be used to simplify the problem of sampling
from a certain pdf. For example, suppose we are able to efficiently generate

3∧Formally, one should start by noting that if y = f(x) is invertible, then it is either
monotonically increasing or decreasing. The same reasoning can be applied to both cases, up
to a sign difference. So, we can “unify” the two formulas by adding the absolute value.
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random numbers that are uniformly distributed between 0 and 1, and that we
denote with Y ∼ U([0, 1]), with:

py(y) =

1 y ∈ [0, 1]

0 otherwise
= I[0,1] (1.15)

We would like to determine a transformation f(x) such thatX has an exponential
distribution:

px(x) = ae−axθ(x) a > 0 (1.16)

Using formula (1.14) we impose:∣∣∣∣dydx

∣∣∣∣ py(y) =
(1.15)

∣∣∣∣dydx

∣∣∣∣ = px(x) = ae−ax

Then the desired transformation f(x) ≡ y(x) can be obtained by integrating
and inverting:

y(x) = e−ax ⇒ x = −1
a

ln y

Since y ∈ [0, 1], we have that x ≥ 0. Thus, if we generate yi uniformly in [0, 1],
and then apply:

xi = −
1
a

ln yi

the resulting xi are distributed according to (1.16).�� ��Exercise 1.2.6 (Inverse transform method):

If Y ∼ U([0, 1]), find the transformation f such that:

a. px(x) = x−2I[1,∞)(x)

b. px(x) = |β|xβ−1I[1,∞)(x), with β < 0

c. px(x) = βxβ−1I(0,1](x), with β > 0

d. px(x) =
1

1 + x2
1
π

(Cauchy’s distribution), with Y ∼
U([−π/2,π/2]).

1.2.7 Gaussian Integrals
(Lesson 3 of
12/3/20)
Compiled: January
28, 2021

In Statistical Mechanics, many integrals involve gaussian functions.
These can be computed analytically in some quite general cases, as we now
show, starting from the simplest case:

I(b) ≡
∫

R
dx e−ax

2+bx =

…
π

a
exp
Å
b2

4a

ã
a ∈ R+, b ∈ C (1.17)
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Proof. When b ∈ R, we can just complete the square in the exponential
argument:

−ax2 + bx = −a
Å
x− b

2a

ã2
+
b2

4a

So that the integral becomes:

I(b) =
∫

R
dx exp

[
− a
Å
x− b

2a

ã2

︸ ︷︷ ︸
y2

+
b2

4a

]

We then extract the constant term from the integral, and change variables:

y =

Å
x− b

2a

ã√
a

So that I(b) reduces to computing the integral of a standard gaussian:

I(b) = 1√
a

exp
Å
b2

4a

ã ∫
R

dy e−y
2

︸ ︷︷ ︸√
π

=

…
π

a
exp
Å
b2

4a

ã
In the case of b = iα (pure imaginary) we have:

I(iα) = ϕ0(α)

where ϕ0 is the characteristic function for the gaussian (with a = 1/(2σ2)⇒
σ = (2a)−1/2) already computed in example 1 at pag. 16, which confirms the
result (1.17).�� ��Exercise 1.2.7 (General case):

Prove formula (1.17) in the most general case, where b = β + iα.

Hint: translate the integration path in the complex plane, close it with the
real line and apply the Cauchy Integral theorem.

It is useful to generalize (1.17) to the multidimensional case.
Let x ∈ Rd and A a d× d symmetric and positive definite matrix, i.e. such
that:

xTAx ≡
d∑

i,j=1
xiAijxj > 0 ∀x 6= 0 (1.18)

The multi-dimensional Gaussian integral is defined as:

I(A) ≡
∫

Rd
ddx e−x

TAx

To solve it, the idea is to decouple all the n components, so that the integral
becomes the product of n gaussian integrals of the type (1.17).
This is done by using the spectral decomposition of A. As it is symmetric, it
has d eigenvectors v·α = (v1α, . . . , vdα)T of eigenvalue λα (with α = 1, . . . , d)
that form an orthonormal basis of Rd (spectral theorem):

vTαvβ = δαβ
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If we then use the definition of eigenvector:

Avα = λαvα

we arrive to:

vTβAvα = λαδαβ (1.19)

Let V be the matrix with the orthonormal eigenvectors of A as columns:
V = (vαβ)α,β=i,...,d. Then (1.19) can be put in matrix form:

V TAV = Λ⇒
(a)

A = V ΛV T (1.20)

where Λ = diag({λα}α=1,...,d) = (δαβλα)αβ=1,...,d, and in (a) we used the fact
that V is an orthogonal matrix (as its columns are orthogonal to each other),
and so V −1 = V T . Equation (1.20) gives the spectral decomposition of A.
Substituting in the integral we get:

I(A) =
∫

Rd
ddx e−x

TAx =
∫

Rd
ddx exp

Ä
−xTV ΛV Tx

ä
Then we change variables y = V Tx ⇔ x = V y. The determinant of the
jacobian is unitary, because V is orthogonal. In fact, starting from V TV = I,
we have:

1 = det I = det(V TV ) =
(a)

(detV T )(detV ) =
(b)

(detV )(detV ) = (detV )2

⇒ | detV | = 1
(1.21)

where in (a) we applied Binet’s formula, and in (b) detV T = detV .
So we arrive to:

I(A) =
∫

Rd
ddy e−y

TΛy =
d∏

α=1

∫
R

dyα e−y
2
αλα =

(a)

d∏
α=1

…
π

λα

where in (a) we use (1.17), as all components are now decoupled. To use (1.17)
we need all λα to be positive - which is indeed true, because the matrix A is
positive definite:

0 <
(1.18)

vTαAvα = λαv
T
αvα = λa‖vα‖2 ⇔ λα > 0

Finally, note that:

det(A) =
(1.20)

det(V ΛV T ) =����
�det(V T ) det(Λ)����det(V ) =

(1.21)
det Λ =

d∏
α=1

λα

And so we can rewrite:

I(A) =
∫

Rd
ddx e−x

TAx =
d∏

α=1

…
π

λα
= πd/2(detA)−1/2 (1.22)
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�� ��Exercise 1.2.8 (Generalization):

Prove that:

I(A, b) ≡
∫

Rd
ddx e−x

TAx+bTx = πd/2(detA)−1/2 exp
Å1

4b
TA−1b

ã
(1.23)

where A is a symmetric, positive definite d× d real matrix, and b ∈ Cd.

1.2.8 Saddle Point approximation
Let f(x) be a function with a single minimum at x0 and such that:

If =
∫
D
e−Nf(x) ddx D ⊂ Rd (1.24)

Suppose that x0 is not on the boundary of D, meaning that there exists some
r > 0 so that the sphere centred on x0 of radius r is entirely inside D:

∃r > 0 s.t. {x ∈ Rd : |x−x0| < r} ⊂ D

We want to show that:

If ≡
∫
D
e−Nf(x) ddx = e−Nf(x0)

Å2π
N

ãd/2
[det(∂α∂βf(x0))]−1/2 ·

ï
1 +O

Å 1
N

ãò
N � 1

(1.25)

where ∂α∂βf(x0) is the Hessian of f(x) evaluated at x = x0.
In other words, If for a large enough N , is equal (up to the gaussian pre-factor)
to the maximum of the integrand e−Nf(x), which is obtained evaluating at the
minimum of the function x0.

To prove (1.25) we start by Taylor expanding f(x) around its minimum x0:

f(x) = f(x0) +
d∑

α=1
[xα − (x0)α]∂αf(x0) + 1

2

d∑
α,β=1

[xα − (x0)α][xβ − (x0)β]∂α∂βf(x0)+

+
1
3!

d∑
α,β,γ=1

[xα − (x0)α][xβ − (x0)β][xγ − (x0)γ ]∂α∂β∂γf(x0) + . . .

Since x0 is a stationary point for f , all first derivatives vanish: ∂αf(x0) = 0.
Substituting in the integral we get:

If =
∫
D

ddx exp
(
−N

[
f(x0) + 1

2

d∑
α,β=1

[xα − (x0)α][xβ − (x0)β]∂α∂βf(x0)+

+
1
3!

d∑
α,β,γ=1

[xα − (x0)α][xβ − (x0)β][xγ − (x0)γ ]∂α∂β∂γf(x0) + . . .
])

Note that f(x0) is constant and can be brought outside the integral. The
second term can be recognized as a multi-dimensional gaussian integral. In fact,
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the Hessian ∂α∂βf(x0) is surely symmetric (Schwartz theorem) and positive
definite (x0 is a minimum). This suggests the following change of variable:

y =
√
N(x−x0); det

∣∣∣∣∂x∂y
∣∣∣∣ = N−d/2 (1.26)

leading to:

If =
exp(−Nf(x0))

Nd/2

∫
D′

ddy exp
Å
−1

2y
TAy

ã
·

· exp
(
− 1

3!
√
N

d∑
α,β,γ=1

yαyβyγ∂α∂β∂γf(x0) +O

Å 1
N

ã)
where the matrix A is the Hessian: Aαβ ≡ ∂α∂βf(x0), and D′ is the new
integration domain. Finally, we expand the second exponential to first order
(e−z = 1− z + · · · ):

If =
exp(−Nf(x0))

Nd/2

∫
D′

ddy exp
Å
−1

2y
TAy

ã
· (1.27)

·

(
1 − 1

3!
√
N

d∑
α,β,γ=1

yαyβyγ ∂α∂β∂γf(x0) +O

Å 1
N

ã)
Note that the yellow term is even in y, while the blue one is odd. So, when
integrating, the third derivatives vanish, and only the even terms remain:

If =
exp(−Nf(x0))

Nd/2

∫
D′

ddy exp
Å
−1

2y
TAy

ãÅ
1 +O

Å 1
N

ãã
=

All that’s left is to compute the Gaussian integral:

=
(1.22)

e−Nf(x0)
Å2π
N

ãd/2
(detA)−1/2 (1.28)

Note that we are implicitly assuming that D′ is symmetric about x0 (for the
symmetry argument), and also that D′ = Rd (for the gaussian integral). This
is indeed true in the limit N → ∞. In fact, we required that the original
domain D contains a (small) spherical neighbourhood of x0. Then, the change
of variables (1.26) “stretches” D, such that the size of the resulting D′ scales
with N . It can be shown that approximating D′ with the entire Rd leads to
an error that vanishes exponentially, and which is � O(1/N). This is explored
explicitly in the d = 1 in ex. 1.2.10.

To summarize, the saddle point approximation essentially states that an integral
of the form IN can be approximated, provided that N is large, with the value
of the integrand calculated at its maximum (up to a multiplicative factor).

27



�� ��Exercise 1.2.9 (Gamma function):

The Γ function is defined as:

Γ(n) =
∫ +∞

0
dx xn−1e−x

Show that:

a. Γ(n+ 1) = nΓ(n). Since Γ(1) = 1, we have that Γ(n+ 1) = n! when
n ∈N, meaning that the Γ function is a generalization of the factorial
to the real case.

b. Γ(n + 1) =
√

2πn exp(n lnn− n)(1 + O(1/n)). This leads to Stir-
ling’s approximation:

lnn! ≈
n�1

n lnn− n+ 1
2 ln(2πn) +O

Å 1
n

ã
�� ��Exercise 1.2.10 (Motivation of the saddle-point result):

Consider a one-dimensional example of the saddle-point approximation (1.24),
with f(x) = x2 and D = [−r, r] (a small neighbourhood of x = 0 with radius
r > 0). Show that the error in computing If over F = R rather than D
decreases exponentially as N →∞:

0 <
∫ +∞

−∞
e−Nx

2
dx−

∫ +r

−r
e−Nx

2
dx < 2√

N
e−r

2N

In particular, this means that if we had kept track of that error in the d
dimensional case (1.28) we would have had extra terms of order less than
N−d/2e−r

2N , which is � O(1/N) - and so are irrelevant in the final result.

�� ��Exercise 1.2.11 (Saddle-point of a monotone increasing function):

Let f(x) in (1.24) be a monotone increasing function f : R→ R. Show that:

∫ b

a
e−Nf(x) dx =

e−Nf(a)

Nf ′(a)

Å
1 +O

Å 1
N

ãã
1.2.9 Gaussian averages
The multi-dimensional gaussian distribution is given by:

pG(x) ≡ (detA)1/2

(2π)d/2
exp
Ç
−x

TAx

2

å
(1.29)

The result we obtained in (1.22) confirms that (1.29) is properly normalized.
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Then, by using (1.23) we can derive its characteristic function:

ϕ(α) = 〈eiα·x〉 =
∫

Rd
ddx pG(x)eiα·x = exp

Å
−1

2α
TA−1α

ã
Then the first moment of the k-th component of (1.29) is:

〈Xk〉 =
∫

Rd
ddxxk pG(x) = −i ∂

∂αk
ϕ(α)

∣∣∣
α=0

=

= i
d∑
j=1

A−1
kj αj exp

Å
−1

2α
TA−1α

ã ∣∣∣
α=0

= 0 k = 1, 2, . . . , d

And the second moment of the k, l components is:

〈XkXl〉 =
∫

Rd
ddxxkxlpG(x) =

Å
−i ∂
∂αl

ãÅ
−i ∂

∂αk

ã
exp
Å
−1

2α
TA−1α

ã
=

= exp
Å
−1

2α
TA−1α

ã
[A−1

kl −
d∑

m,n=1
A−1
kmA

−1
ln αmαn]

∣∣∣
α=0

=

= A−1
kl

1.2.10 Central Limit Theorem
One of the most important results in statistics is the Central Limit Theorem,
which states that the sum Sn ≡

∑n
i=1Xi of n i.i.d. random variables Xi ∼ p(x)

with 〈Xi〉 = µ and finite variance:

σ2 ≡ 〈X2
i 〉 − 〈Xi〉2 <∞

converges in distribution to a random variable with gaussian distribution.
More precisely, we consider a shifted and rescaled version of Sn:

Zn ≡
Sn − nµ
σ
√
n

such that 〈Zn〉 = 0 and Var(Zn) = 1. Then the CDF of Zn is that of a standard
gaussian, in the limit of large n:

P(Zn < a) −−−→
n→∞

∫ a

−∞

dx√
2π

exp
Å
−x

2

2

ã
Equivalently4,this means that the pdf of Zn is a standard gaussian N (0, 1) (with
0 mean and unit variance):

pn(z) = 〈δ(Zn − z)〉 −−−→n→∞
1√
2π

exp
Å
−z

2

2

ã
= N (0, 1)

Proof. We start from the change of random variable formula:

pn(z) = 〈δ(Zn − z)〉
4∧The CDF for a random variable always exists. If it is differentiable, then we can

compute the pdf - so the CLT theorem is actually more general in its CDF form. However,
we will always work in the “nice cases” where the pdfs exist.
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and we use the Fourier representation of the Dirac’s delta:

δ(x) =
∫

R

dα
2π e

iαx

leading to:

pn(z) = 〈
∫

R

dα
2π e

iα(Zn−z)〉 =
∫

R

dα
2π e

−iαz〈eiαZn〉 (1.30)

As the Xi are all i.i.d., we can factorize the average:

〈eiαZn〉 = 〈exp
Å
−iαnµ
σ
√
n

ã n∏
i=1

exp
Å
iαXi

σ
√
n

ã
〉 = exp

Å
−iα
√
nµ

σ

ã n∏
i=1
〈exp

Å
iαXi

σ
√
n

ã
〉︸ ︷︷ ︸

ϕ(α/(σ
√
n))

and we recognize the characteristic function ϕ(α) of the Xi. Thus:

〈eiαZn〉 = exp
Å
−iαµ

√
n

σ

ãï
ϕ

Å
α

σ
√
n

ãòn
(1.31)

Then we rewrite the characteristic function by expanding the exponential:

ϕ(α) =
∫

R
dx p(x)eiαx =

∫
R

dx p(x)
Å

1 + iαx− α2x2

2 + . . .

ã
=

= 1 + iαµ− α2

2 (σ2 + µ2) +O(α3)

where we used 〈X2〉 = σ2 + µ2.
Note that we are implicitly assuming that the cubic moment of p exists - but in
a more careful proof this would not be necessary.

To proceed, we need to rewrite ϕ(α) as an exponential:

ϕ(α) = elnϕ(α)

and we use the logarithm expansion ln(1 + x) = x − x2/2 + x3/3 + . . . to
compute:

lnϕ(α) = iαµ− α2

2 σ2 +O(α3)

Substituting back in (1.31) we arrive to:

〈eiαZn〉 = exp
Å
−α

2

2 +O

Å 1
n

ãã
And finally we can go back to (1.30), and compute the resulting gaussian integral
in the large n limit:

pn(z) =
∫

R

dα
2π exp

Å
−iαz − α2

2 +

Å 1√
n

ãã
−−−→
n→∞

1√
2π

exp
Å
−z

2

2

ã
�

This concludes the proof.
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Note that:

Sn =
1
n

n∑
i=1

Xi −−−→n→∞ µ = 〈Xi〉 almost surely

That is, the sample average of a large number of samples will be very close to
the population average µ with a high probability. This convergence is, in a
sense, the “probabilistic equivalent” of the usual convergence in R.

However, Zn converges in distribution (or weakly) to a random variable X with
gaussian distribution.

1.3 Statistical Ensembles
The goal of equilibrium statistical mechanics is to connect the macroscopic
behaviour of a system to the dynamics of its microscopical constituents. This
allows to rederive the results of thermodynamics from a very different approach:
instead of focusing directly on the observables, we try to deeply understand the
nature of the system at hand.

We start our analysis from the case of a completely isolated system of N
particles, encased in a volume V , which does not exchange particles nor energy
with the outside world [1, Chapter 3].
Denote with ri and vi, with i = 1, . . . ,N , the positions and velocities of the
system’s particles, and with mi their mass. We can organize all the positions
and momenta in two 3N -dimensional vectors:

Q ≡
(
x1, y1, z1︸ ︷︷ ︸

r1

, x2, y2, z2︸ ︷︷ ︸
r2

, . . . , xn, yn, zn︸ ︷︷ ︸
rN

)
∈ R3N

P ≡
(
p1x, p1y, p1z︸ ︷︷ ︸
p1=m1v1

, p2x, p2y, p2z︸ ︷︷ ︸
p2=m2v2

, · · · , pNx, pNy, pNz︸ ︷︷ ︸
pN=mNvN

)
∈ R3N

Let F i be the force acting on the i-th particle. In the classical case, the system’s
dynamics is entirely determined by Newton’s laws of motion, which - for the
i-th particle - state: 

ṙi =
dri
dt =

ṗi
mi

ṗi =
dpi
dt = F i(Q)

(1.32)

For a macroscopic system, N is in the order of 1023 (Avogadro’s number),
meaning that:

1. It is not feasible to solve so many equations at the same time.

2. Even if we were able to solve 1, there would be no way to measure the
required 6N initial conditions with a sufficient accuracy, nor to store such
amount of information.
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3. Even if 1 and 2 could be solved, the system’s dynamics would likely prove
to be chaotic, meaning that even for a simple choice of interaction, the
trajectories would be extremely sensitive to initial conditions. In practice
this would severely limit the timescale at which the model is accurate.

Furthermore, merely solving the dynamics with numerical methods does not
produce any understanding of the system’s behaviour - and so this huge
computational task would give very little insight in the phenomena of interest.
In fact, we are more interested in global observables, such as pressure or tem-
perature, and not in the exact impact positions of molecules on a container’s
wall.

So, instead of tackling the system in (1.32) directly, in Statistical Mechanics we
take a different approach. Consider the system’s phase space, which is the space
of coordinates Γ = (Q, P) ∈ R6N . Equations (1.32) describe a trajectory in
phase-space. Given the chaotic dynamics of the particles, we suppose that, at
equilibrium, the system can reach any state in the phase-space (compatibly
with energy conservation), independently of the starting condition.
Moreover, we assume that all possible states (the ones with same energy) have
the same probability of happening. We denote this postulate with H.

All these states are “possible versions” of the same system. In principle, at
any given time the system is at a given point (Q0, P0), and follows a uniquely
determined trajectory in phase-space. However, from the macroscopic point of
view, all of these states are completely undistinguishable. So, with our imperfect
knowledge, we can best describe the system only with a probability distribution,
and talk about expected values of observables given that pdf. We call this
distribution, made of “copies” of the system with very different microscopical
dynamics but same macroscopic observables, a statistical ensemble. The H
postulate tells us that this pdf should be uniform - meaning that every state
in the ensemble is treated equally. We call this specific pdf microcanonical
ensemble.

So, let’s find an expression for that probability distribution. We start by allowing
the system to have an energy in an interval (E , E + δE), and we will then take
the limit δE ↓ 0.

This follows closely what can be done experimentally. In practice, we may not
know the exact value of E - every measurement will have a certain uncertainty.
So, to us, systems with very similar energies will look the same - meaning that
we need to account for that uncertainty in the statistical ensemble that we are
constructing5. In principle, by repeating measurements for an infinite time, we
could restrict the possible energy interval to a single value E ′.

So, if the energy is in (E , E + δE), the possible states (Q, P) in phase-space are
contained in a thin energy shell in that high-dimensional space, comprised
between the hypersurfaces at fixed E and E + δE . Then H states that we can
describe an isolate system with a uniform distribution over such energy shell.

5∧Recall that we introduced a probability distribution at first because of our imperfect
knowledge of the microscopical states
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Q ∈ R3N

P ∈ R3N

E E + δE

Figure (1.2) – Energy shell between E and E + δE in the microcanonical ensamble.

The energy associated with a certain microstate is given by the Hamiltonian
function:

H(Q, P) =
N∑
i=1

‖pi‖
2

2mi
+ U(Q) (1.33)

where U(Q) is the potential energy associated with the (conservative) forces
F i:

F i(Q) = −∇ri
U =

Å
−∂U
∂xi

,−∂U
∂yi

,−∂U
∂zi

ãT
We can rewrite Newton’s equations (1.32) by using the Hamiltonian as follows:

q̇α =
∂H(Q, P)

∂pα
qα ∈ {xi, yi, zi : i = 1, . . . ,N}

ṗα = −∂H(Q, P)
∂qα

pα ∈ {pxi, pyi, pzi : i = 1, . . . ,N}

So the energy shell D between E and E + δE can be written as:

D ≡ {(Q, P) : E ≤ H(Q, P) < E + δE} ⊂ R6N

Then, as consequence of H, we construct a uniform distribution over D:

P(Q, P) = 1
Z

[θ(E + δE −H(Q, P))− θ(E −H(Q, P))] = (1.34)

=

 1
Z H ∈ [E , E + δE ]

0 otherwise

where Z is just the normalization constant:

Z =
∫

R6N
d3Nq d3Np︸ ︷︷ ︸

dΓ

[θ(E + δE −H)− θ(E −H)] (1.35)

where H ≡ H(Q, P) for brevity.
We then expand the difference of θ functions to first order:

θ(E + δE −H)− θ(E −H) = δE ∂
∂E

θ(E −H) ≈ δE δ(E −H) (1.36)
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where we used the distributional derivative for the Heaviside function, which is
the Dirac delta δ.
We neglect all higher orders in δE , as, as we will then send δE → 0.
Substituting (1.36) in (1.35) we get:

Z =
∫

R6N
dΓ δ(E −H)δE ≡ Ω(E)δE (1.37)

where we defined:

Ω(E) =
∫

R6N
dΓ δ(E −H(Q, P)) (1.38)

(Lesson 4 of
16/3/20)
Compiled: January
28, 2021

We now substitute (1.36) and (1.37) in (1.34), leading to:

P (Q, P) = 1
Z
δE · δ(E −H(Q, P)) =

δE→0

δ(E −H(Q, P))
Ω(E ,V ,N) (1.39)

Then, we can compute the (microcanonical) average for any given observable
O(Q, P) as follows:

〈O〉 =
∫

R6N
dΓ P(Q, P)O(Q, P) =

δE→0

1
Ω

∫
R6N

dΓ δ(E −H(Q, P))O(Q, P)
(1.40)

1.3.1 Ideal gas
Now that we have obtained the microcanonical distribution, we can use it to
compute thermodynamic quantities, such as energy, temperature, pressure.
To make explicit calculations we need to fix the specifics of the system we are
working with, and in particular its Hamiltonian (1.33).
So, we start by considering the simplest possible case, where there are no
interactions between the N particles, meaning that:

Uint(Q) = 0 (1.41)

Thus the Hamiltonian involves only translational kinetic energies:

H(Q, P) =
N∑
i=1

‖pi‖
2

2m =
‖P‖2

2m ≡ H(P) (1.42)

This is the key hypothesis of the (monoatomic6) ideal gas model, which
approximates the behaviour of real gases at sufficiently high temperature and
low pressure.
However, some amount of interaction needs to be present if we want the gas to
reach equilibrium. Otherwise, the ‖pi‖ of each particle i would be conserved,
meaning that the velocity distribution would remain always that of the initial
state. So, more precisely, we consider:

0 6= U(Q)� |E|
6∧If we consider molecules we need also to account the rotational kinetic energies.
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In this way we can study equilibrium and still neglect Uint in our calculations,
as the kinetic energy always prevails.
Note that H in (1.42) depends only on P, and so also the probability density of
configurations, which can be obtained by marginalizing the joint pdf P(Q, P)
over P, must be independent of Q - and so it must be uniform over the “allowed”
domain VN :

P (Q) =
∫

R3N
d3NPP(Q, P) = 1

Ω

∫
R3N

d3NP δ

Ç
E − ‖P‖

2

2m

å
=

1
A

1VN (Q)

(1.43)

Here VN is the subset of Q containing the possible configurations, which are
constrained to have a fixed volume:

VN = {QN ∈ R3N : (xi, yi, zi) ∈ V , i = 1, . . . ,N}

And A is the normalization factor, given by:

A =
∫
VN

d3NQ =
∫
VN

N∏
i=1

dxi dyi dzi =
N∏
i=1

∫
V

dx dy dz︸ ︷︷ ︸
V

= V N (1.44)

Substituting in (1.43) we arrive to:

P(Q) = 1
V N

1VN (Q) =

 1
V N

ri ∈ V ∀i

0 otherwise
(1.45)

In the definition of Ω (1.38) we can then integrate over the Q, which just leads
to a factor of V N , leading to:

Ω(E ,V ,N) =
∫

R6N
dΓ δ

Ç
E − ‖P‖

2

2m

å
=
∫
VN

dQ︸ ︷︷ ︸
V N

∫
R3N

dP δ

Ç
E − ‖P‖

2

2m

å
︸ ︷︷ ︸

Ω1(E ,N)

=

≡ V NΩ1(E ,N) (1.46)

Fixed volume constraint. The constraint on the volume V is part of the
specification of the system. In fact, more precisely, it appears as part of the
potential term U(Q) in H, describing the interaction between the gas particles
and the walls.
Explicitly, we can write U(Q) as a sum of two terms:

U(Q) = Uint(Q) +
N∑
i=1

u(ri)

Here Uint(Q) describes the particle-particle interactions, and is such that 0 6=
|Uint(Q)| � E as we have seen above. The second term, on the other hand,
represents the particle-wall interactions. In particular, u(r) is a confining
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potential:

u(r) =

0 r ∈ V

+∞ r 6∈ V

So, all configurations with at least a particle /∈ V are assigned a infinite energy
H, meaning that:

δ(E −H(Q, P)) = δ

Å
E − P2

2m −U(Q)
ã

≈
|Uint|�E

δ

Ç
E − P2

2m −
N∑
i=1

u(ri)
å

= 0 ∀E

as E is always finite. It follows that the integrand of (1.43) is null outside VN ,
and constant (as it does not depend on Q) on the inside, leading back to:

P(Q) = 1
Ω

∫
R3N

d3NP δ

Ç
E − P2

2m −
N∑
i=1

u(ri)
å

=
1
V N

1VN (Q)

Probability distribution of the number of particles in half the volume

Consider the volume V as divided in two halves, VL and VR. To simplify
notation, we double the number of particles in the entire system, meaning that
now V contains 2N particles. We expect that, at any given instant, VL and VR
will contain roughly N particles - half of the total number - up to some slight
fluctuation.

We can quantify this argument by using the microcanonical ensemble.
Consider the probability Pm that, at a given instant at equilibrium, N +m

particles are found in VR, with m > 0. According to (1.45), the probability of
any configuration Q0 is the same. This means that configurations are distributed
uniformly in V2N , and - as all particles are independent - that each particle is
uniformly distributed in V . So, for any given i, ri ∈ VR with probability 1/2,
because VR = V/2 by definition.
Then Pm can be seen as the probability of tossing 2N coins and obtaining
exactly N +m heads, which is given by a binomial distribution:

Pm =

Ç
2N

N +m

åÅ1
2

ãN+m Å
1− 1

2

ãN−m
=

Ç
2N

N +m

å
2−2N −N ≤ m ≤ N

(1.47)

When both N ±m are � 1 we can use the Stirling’s approximation:

lnn! = n lnn− n+ 1
2 ln(2πn) +O

Å 1
n

ã
(1.48)

to evaluate lnPn:

lnPm = ln 2N !
(2N −N −m)!(N +m)!

2−2N =

= −2N ln 2 + ln(2N)!− ln(N +m)!− ln(N −m)! =
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= −XXXX2N ln 2 + 2N ln 2N︸ ︷︷ ︸
XXXX2N ln 2+2N lnN

−HH2N +
1
2 ln(4πN)+

− (N +m) ln(N +m) +ZZN −��m−
1
2 ln(2π(N +m))+

− (N −m) ln(N −m) +ZZN +��m−
1
2 ln(2π(N −m)) +O

Å 1
N

ã
=

= 2N lnN +
1
2 ln(4πN)− 1

2 ln(2π[N +m]) − 1
2 ln(2π[N −m])

− (N +m) ln(N +m)− (N −m) ln(N −m) +O

Å 1
N

ã
We then split the two highlighted terms, and group all terms with π:

=
1
2 ln(4πN)− ln(2π) + 2N lnN − 1

2 ln(N +m)− 1
2 ln(N −m)+

− (N +m) ln(N +m)− (N −m) ln(N −m) +O

Å 1
N

ã
=

As both N ±m� 1, m/N � 1, and so we can expand the logarithms:
ln(N +m) = ln

(
N
(

1 + m

N

))
= lnN + ln

(
1 + m

N

)
=

= lnN +
m

N
− m2

2N2 +O

Å 1
N2

ã
ln(N −m) = lnN − m

N
− m2

2N2 +O

Å 1
N2

ã
In particular we substitute the second order expansion in the N ln(· · ·) terms,
and the first order expansion everywhere else, so that at the end all the error
terms will be O(1/N):

Pm =
1
2 ln(4πN)− ln(2π) + 2N lnN − lnN −

�
�
�1

2
m

N
+
�
�
�1

2
m

N
+O

Å 1
N

ã
+

−N ln(N +m)−N ln(N −m) −m ln(N +m) +m ln(N −m) =

=
1
2 ln(4πN) − ln(2π) +

XXXXX2N lnN − lnN +

−XXXXX2N lnN −
�
�
�N
m

N
+
�
�
�N
m

N
+N

m2

N2 −m
(
���lnN +

m

N

)
−m

(
���lnN − m

N

)
+O

Å 1
N

ã
=

= ln
Ç√

4πN
2πN

å
+
m2

N
−2m

2

N
+O

Å 1
N

ã
=

= −1
2 ln(πN)− m2

N
+O

Å 1
N

ã
We can finally write:

Pm = elnPn =
N�1

1√
πN

exp
Å
−m

2

N

ã
= N

Ç
0,
…
N

2

å
(1.49)

Let NR be the random variable representing the number of particles in VR. We
expect NR ≈ N most of the time (here N is a number, not a r.v.). We then

37



define M = NR −N as the difference from the expected state, and note that M
is a discrete random variable following the distribution given by Pm. So:

〈M〉 = 0; Var(M) = N

2 (1.50)

Numbers and random variables. Sometimes we will denote a random
variable (e.g. M) with the same symbol used for the values it assumes (m), and
then write:

〈m〉 = 0; Var(m) = N

2 (1.51)

This isn’t rigorous mathematically, as M and m are very different objects: the
former is a random variable, i.e. a measurable function from the sample space
Ω to a measurable space E, while the latter is just a number. However, most
of the times the correct meaning can be inferred from the context, and writing
(1.51) frees us from defining another object (M) and reduces the cluttering in
the notation. In general, whenever an expected value or variance is used, we
are talking about random variables, and not numbers.

We know from probability theory that, most of the time, we will find M as
being close to its mean. Quantitatively, the probability of M being inside a
region [−3σ,+3σ], with σ =

√
N/2 is given by:

P(M ∈ [−3σ,+3σ]) =
∫ 3σ

−3σ
exp
Å
−m

2

2σ2

ã dm
σ
√

2π
=
∫ 3

−3
exp
Å
−x

2

2

ã dx√
2π
≈ 0.997

This means that, at any given time at equilibrium, with probability p = 99.7%,
the number of particles contained in VR is inside [N − 3σ,N + 3σ], i.e.:

NR ∈
ñ
N − 3

…
N

2 ,N + 3
…
N

2

ô
Dividing by the total number of particles 2N we can find the fraction of particles
in the right half :

m

2N ∈
ï1

2 −
3

2
√

2
1√
N

, 1
2 +

3
2
√

2
1√
N

ò
For N ∼ 1023, this fraction differs from 1/2 less than 3.35× 10−12. So, in
general, the two halves will contain almost the same number of particles, and
significant deviations are so rare that they just never happen7.
This also means that the approximation m/N � 1 that we did to derive (1.49)
is, effectively, always verified. In other words, even if m ∈ Z in (1.49) but is
“capped” to |m| ≤ N in (1.47), the results are the same - because all values of
m that are a significant fraction of N result in a negligible Pm. Mathematically,
(1.49) is not the same of (1.47) due to approximations, but physically they are.

7∧Quantitatively, the probability that they happen even once during the entire age of the
universe is negligible.
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�� ��Exercise 1.3.1:

1. Using Stirling’s approximation, prove that (1.47) becomes the gaussian
(1.49) if N ±m� 1.
(Already done in the notes)

2. Use the Central Limit Theorem to re-derive (1.49).
Hint: Introduce a random variable Xi which is −1 if the i-th particle is
on the left volume and +1 if it is in the right volume. Xi are i.i.d. with
P(Xi = ±1) = 1/2 and M = 1

2
∑N
i=1Xi is the number of particles

exceeding N in VR.

Velocity distribution

Velocity is related to momentum by pi = mvi, and we can find the momentum
distribution ρp(p) of a single particle from the joint pdf in (1.39), with a change
of random variables:

ρp(p) = 〈δ3(pi − p)〉 =
∫

R6N
dΓ δ3(pi − p)P(Q, P) =

We now factorize the integration over configurations Q and that over momenta
P, apply the volume constraint to the former and arrive to:

=
(1.39)

1
Ω(E ,V ,N)

∫
VN

dQ︸ ︷︷ ︸
V N

∫
R3N

d3NP δ3(pi − p) δ
Ç
E − ‖P‖

2

2m

å
(1.52)

Since all particles have the same mass and d3NP =
∏N
i=1 d3pi, there is no way

to distinguish them, meaning that all pi distribute the same. So, whatever i we
choose in (1.52) we will get the same result at the end. For simplicity, let’s fix
i = N :

ρp(p) = 1
Ω
V N

∫
R3N

d3NP δ3(pN − p) δ
Ç
E − ‖P‖

2

2m

å
Then we split the integration in two parts: one over the first N − 1 particles,
and the other over the last one:

=
1
Ω
V N

∫
R3(N−1)

d3(N−1)P′
∫

R3
d3pN δ3(pN − p) δ

Ç
E − ‖P‖

2

2m

å
where:

P′ = (p1x, p2x, p1z, p2x, p2y, p2z, . . . , pN−1,x, pN−1,y, pN−1,z) ∈ R3(N−1)

We do the same for the norm of P:
P2 =

∥∥∥P′∥∥∥2
+ ‖pN‖

2 (1.53)
leading to:

ρp(p) = V N

Ω

∫
R3(N−1)

d3(N−1)P′
∫

R3
d3pN δ3(pN − p) δ

Ç
E − ‖pN‖

2

2m − ‖P
′‖2

2m

å
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Finally we can integrate over pN and eliminate the δ3:

=
V N

Ω

∫
R3(N−1)

d3(N−1)P′ δ

Ç
E − ‖p‖

2

2m − ‖P
′‖2

2m

å
︸ ︷︷ ︸

Ω1(E−p2/(2m),N−1)

=

=
(1.46)

��
�V N

��
�V NΩ1(E ,N)

Ω1

Ç
E − ‖p‖

2

2m ,N − 1
å

=
Ω1
(
E − ‖p‖

2

2m ,N − 1
)

Ω1(E ,N)
(1.54)

The result in (1.54) shows that the distribution of momenta ρp(p) for a particle
depends only on ‖p‖2 - the modulus, not the direction of the argument -
meaning that it is rotation invariant. In other words, ρp(p) is a isotropic
distribution: it “looks the same” in every direction.

To proceed we need to explicitly compute Ω1. This problem will be tackled
in full detail later on, and for now we limit ourselves to just extracting the
dependence of Ω1 on energy E . So we start from the definition in (1.46):

Ω1(E ,N) =
∫

R3N
d3NPδ

Ç
E − ‖P‖

2

2m

å
The idea is to change variables so that we can factor E inside the δ. So we
extract a factor

√
2mE from P:

P =
√

2mEX
d3NP

d3NX
= (
√

2mE)3N

So that:
Ω1(E ,N) = (2mE)

3N
2

∫
R3N

d3NX δ(E [1− ‖X‖2])
We can then extract a constant factor from the δ as follows:

δ(ax) = 1
|a|
δ(x) ∀a ∈ R

leading to:
Ω1(E ,N) = (2mE)

3N
2 |E|−1

∫
R3N

d3NX δ(1− ‖X‖2)︸ ︷︷ ︸
Ω1(N)

=

= E
3N
2 −1(2m)

3N
2 Ω1(N) (1.55)

where we dropped the modulus because E > 0 since P2/(2m) > 0.
In this way we have extracted the dependence on E from Ω1(E ,N). The
computation of the remaining integral Ω1(N) will be tackled at another time.

Substituting (1.55) in (1.54) leads to:

ρp(p) =
Ç
E − ‖p‖

2

2m

å 3(N−1)
2 −1

E−
3N
2 +1 · Ω1(N − 1)

Ω1(N) (2m)−
3
2 =

=

Ç
1− ‖p‖

2

2mE

å 3N
2 −1Ç

E − ‖p‖
2

2m

å−3/2

(2m)−3/2 Ω1(N − 1)
Ω1(N) (1.56)
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We now take the thermodynamic limit N → ∞. We expect E to be pro-
portional to N - as more particles means more kinetic energy. So, to get a
meaningful limit, we need to fix the energy per particle ε:

ε =
E
N

constant ∀N (1.57)

Substituting (1.57) in (1.56) we get:

ρp(p) =
Ç

1− ‖p‖
2

2mNε

å 3N
2 −1Ç

Nε− ‖p‖
2

2m

å−3/2

(2m)−3/2 Ω1(N − 1)
Ω1(N) (1.58)

The first term of (1.58) becomes an exponential in the N → ∞ limit, as
consequence of the following theorem:

Theorem 1.3.1. Let f(x) and g(x) be two functions such that limx→a f(x) =∞
and limx→a g(x) = 0, with limx→a f(x)g(x) = λ and |λ| < ∞, with a ∈ R or
a = ±∞. Then:

lim
x→a(1 + g(x))f(x) = eλ

In fact: Ü
1− ‖p‖

2

2mNε︸ ︷︷ ︸
g(N)

ê f(N)︷ ︸︸ ︷
3N
2 −1

and g(N)→ 0, f(N)→∞, with:

lim
N→∞

g(N)f(N) = lim
N→∞

− ‖p‖
2

2mNε

Å3N
2 − 1

ã
= lim

N→∞
− 3

2ε
‖p‖2

2m +
‖p‖2

2mNε =

= − 3
2ε
‖p‖2

2m
and so: Ç

1− ‖p‖
2

2mNε

å 3N
2 −1

∼
N→∞

exp
Ç
− 3

2ε
‖p‖2

2m

å
In the second term of (1.58) we ignore the part not scaling with N , and so:Ç

Nε− ‖p‖
2

2m

å−3/2

∼
N→∞

(Nε)−3/2

Putting everything together we arrive to:

ρp(p) = exp
Ç
− 3

2ε
‖p‖2

2m

å
N−3/2 Ω1(N − 1)

Ω1(N) (2mε)−3/2︸ ︷︷ ︸
Constant C

(1.59)
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We can compute the constant term C by enforcing normalization:
∫

R3
d3p ρp(p) = C

∫
R3

d3p exp
Ç
− 3

2ε
‖p‖2

2m

å
!
= 1

meaning that:

C−1 =
∫

R3
d3p exp

Ç
− 3

2ε
‖p‖2

2m

å
=
∫

R
dpx

∫
R

dpy
∫

R
dpz exp

Ç
− 3

2ε
p2
x + p2

y + p2
z

2m

å
=

=

ñ∫
R

dp exp
Ç
− 3

2ε
‖p‖2

2m

åô3

=

Å4πεm
3

ã3/2
(1.60)

In particular:

lim
N→∞

N−3/2 Ω1(N − 1)
Ω1(N) =

Å 3
2π

ã3/2

We will verify this relation when we will compute explicitly Ω1(N).

Substituting (1.60) back in (1.59) we get:

ρP (p) =
Å 3

4πεm

ã3/2
exp
Ç
−‖p‖

2

2m
3
2ε

å
ε =

E
N

(1.61)

Or, equivalently, using the change of variable p = mv, the velocity distribution
is given by:

ρv(v) = ρp(p)
∣∣∣∣d3p

d3v

∣∣∣∣︸ ︷︷ ︸
m3

=

Å 3m
4πε

ã3/2
exp
Å
−1

2m‖v‖
2 3
2ε

ã
(1.62)

In order to relate ε = E/N to the temperature T , at least for this particular
instance, we can calculate the gas pressure P (which is left as exercise), and
then use the equation of state of the ideal gas known from experiments:

PV = nRT (1.63)

where n is the number of moles in the gas, which is equal to N/NA, with
NA = 6.205× 1023 being Avogadro’s number, R = 8.315 J K−1 the gas constant
and [T ] = K.
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�� ��Exercise 1.3.2 (Pressure of an ideal gas):

Determine the pressure P of an ideal gas using eq. (1.61) or (1.62). In
particular, determine:

a. The flux of particles with velocity in the d = 3 interval (vx, vx+ dvx)×
(vy, vy + dvy)× (vz, vz + dvz)

b. The variation of the total momentum, ∆P , of the gas due to the
collisions with an area A of the walls during a time interval ∆ti.

c. The force undergone by the gas is therefore:

lim
∆t→0

∆P

∆t

which must be equal in absolute value to P ·A.

See also exercise 3.4 of the textbook. Hint: use the result from exercise 1.3.3.

n̂

A

|~v|∆t

Figure (1.3) – Flux for a beam of particles perpendicular to a surface A.

Flux. Consider a beam of particles with velocity v and numerical density
nd = N/V (number of particles per unit volume). The number Nc of particles
crossing a flat area A, with unit normal n̂ ‖ v, during a time interval ∆t, is
given by the total number of particles inside the green region in fig. 1.3, meaning
that:

Nc = nd · ‖v‖∆tA︸ ︷︷ ︸
Volume of the region

≡ ‖J‖∆tA (1.64)

The quantity ‖J‖ defined by the relation (1.64) is called flux, and represents the
number of particles crossing a unit area during a unit time interval. Comparing
the left and right hand sides, we obtain the vector relation:

J ≡ ndv
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�� ��Exercise 1.3.3 (Flux: general case):

Show that for a generic n̂ (not necessarily ‖ v), the number of particles
crossing A during the time interval ∆t is given by:

Nc = ∆tAJ · n̂

The comparison with the equation of state (1.63) of the ideal gas leads to
identify:

T =
2
3
E
nR
⇔ E =

3
2nRT (1.65)

This result will be obtained also later when we will derive the equation of state
directly from Statistical Mechanics.
Substituting (1.65) in (1.61) leads to:

ρp(p) = (2πmkBT )−3/2 exp
Ç
−‖p‖

2

2m
1

kBT

å
where kB = R/NA = 1.3807× 10−23 J K−1 is the Boltzmann constant.
Equivalently, the velocity distribution is given by:

ρv(v) =
Å

m

2πkBT

ã3/2
exp
Ç
−m‖v‖

2

2kBT

å
(1.66)

�� ��Exercise 1.3.4 (Speed averages):

a. Use (1.66) to calculate the average speed, 〈‖v‖〉, of particles in a gas
at temperature T . Apply this for H2, He, N2, O2.
In order to calculate m, remember that NA ·m is the molar mass
Mmol of the atom (or molecule) of a given gas. So, for example,
MO2 = 2 · 16 g = 32 g is the mass of a mole of O2, whereas MHe = 2 g.

b. Determine also 〈vα〉, 〈|vα|〉, and 〈‖v‖2〉, with α ∈ {x, y, z}. Compare
〈|v|〉 with

»
〈‖v‖2〉 and notice how they depend on m and T .

c. Determine the mean kinetic energy of a particle of H2, He, N2 and O2
at T = 300 K.

d. Determine the number of collisions nc with a wall per unit time and
unit area. Show that:

nc =
N

V

〈|vα|〉
2 =

P√
2πRMmolT

NA

Show that at atmospheric pressure P = 1 atm = 1.013× 105 N m−2,
T = 300 K for a gas of O2, we have nc = 2.7× 1023 s−1 m−2.
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�� ��Exercise 1.3.5:

Do exercise 3.3 in the textbook.
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Chapter 2

Entropy and the Emergence of
Time

(Lesson 14 of
8/4/20)
Compiled: January
28, 2021

Irreversibility is one of the fundamental aspects of reality as we know it - it
describes why it is easy for things to break, scatter or decay, and why it is hard
- or in certain cases impossible - to return them to their previous unscathed
state. Irreversible processes are a key indicator of the directionality of time,
physical remainders of the difference between the past we remember and the
future we try to predict.

Statistical Mechanics allows us to understand - at least in part - why irre-
versibility exists, and where does it come from. In that regard, we will start
our discussion by stating two important results: Liouville’s theorem and the
Poincaré Recurrence theorem.

The first deals with the evolution of ensembles, showing that patches of phase-
space flow like incompressible fluids. This will provide both a stochastic origin
of irreversibility and also a more convincing motivation for the microcanonical
equiprobability postulate.

On the other hand, the Poincaré recurrence theorem will reveal the illusory
nature of irreversibility, as given sufficient time everything can be reversed. How-
ever, Poincaré recurrence works on unfathomably long time scales - completely
hiding its effects from our experience.

When talking about irreversibility, it is almost impossible not to include en-
tropy, and the consequences of the second law of thermodynamics. After
revising the two different definitions we gave of S - the one from classical
thermodynamics, and the other from Statistical Mechanics - we will introduce
a third point of view, originating from information theory, which will prove
extremely useful - allowing us to re-derive the entire equilibrium statistical
mechanics from a variational point of view, while offering several applications
to other fields (social sciences, image reconstruction, etc.).
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2.1 The Liouville theorem
Consider a physical system of N particles, with positions Q and momenta P:

Q = (q1x, q1y, q1z, . . . , qNx, qNy, qNz)
P = (p1x, p1y, p1z, . . . , pNx, pNy, pNz)

As we saw before, it is impossible to determine exactly Q and P. Practically, we Statistical
ensemblescan only measure with precision some macroscopic quantities (such as energy,

volume, pressure...) and infer the possible ranges for the values of Q and P

which are compatible with our observations, thus constructing a probability
distribution ρ(Q, P) over the 6N -dimensional phase space Γ. We call the ρ
so derived a statistical ensemble.

In this chapter we are particularly interested in the time evolution of an initial Time evolution of
an ensembleρ0(Q, P).

We can obtain it by sampling M points from the initial ρ0 - each representing a
possible realization of entire system - then letting them evolve for some time
t and seeing how they are distributed at the end. Mρ(Q, P, t) will be the
phase-space density of system-points in a tiny neighbourhood of (Q, P). So,
if we consider a tiny cube of volume d3NQ d3NP centred at (Q, P), the total
number of system-points in it at instant t will be:

Mρ(Q, P, t) d3NQ d3NP

Figure (2.1) – Evolution of an ensemble of system-points in phase space

So, by computing how each system-point moves, and then measuring their den-
sity in phase-space, we can estimate the final probability distribution ρ(Q, P, t),
i.e. the time evolution of the original ensemble.

Each system-point initially at (Q(0), P(0)) evolves in time according to the Evolution of a
system-pointHamilton equations:

q̇α =
∂H(Q, P)

∂pα
α ∈ {1x, 1y, 1z, . . . ,Nx,Ny,Nz} (2.1)
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ṗα = −∂H(Q, P)
∂qα

(2.2)

In the simplest case of N point-particles interacting through conservative forces
depending only on positions, H is given by:

H(Q, P) =
3N∑
i=1

‖pi‖
2

2mi
+ U(Q)

In this case (2.1) reduces to the second Newton’s law:

mαq̈α = −∂U(Q)
∂qα

mα ≡ mi if α ∈ {ix, iy, iz} (2.3)

More complicated H can be constructed to describe the motion of more involved
systems, such as rigid bodies, or to account more general forces, such as magnetic
ones (which depend also on P).
Liouville’s theorem states that the probability density along a trajectory does Liouville’s theorem
not change during the time evolution:

d
dtρ(Q(t), P(t), t) = ∂ρ

∂t
+

3N∑
α=1

Å
∂ρ

∂qα
q̇α +

∂ρ

∂pα
ṗα

ã
= 0 (2.4)

where (Q(t), P(t)) is the solution of (2.1) with given initial conditions, and d
dt

denotes a total derivative, taking into account the time-dependence of also Q

and P.
In other words, (2.4) means that if we follow a system-point during its evolution,
and measure the density of other system-points travelling in its neighbourhood,
we will find it unchanging. System-points do not “coalesce” together, nor
“disperse” in phase-space - they behave like droplets of water, flowing and
spreading, but never expanding nor compressing. In physical terms: probability
in phase-space flow like an incompressible fluid.
Substituting (2.1) in (2.4) and rearranging we get:

∂ρ

∂t
(Q(t), P(t), t) = −

3N∑
α=1

[
∂ρ

∂qα
(Q(t), P(t), t) ∂H

∂pα
(Q(t), P(t))+

− ∂ρ

∂pα
(Q(t), P(t), t)∂H

∂qα
(Q(t), P(t))

]
(2.5)

Note that in (2.4) we can fix any point (Q, P) and then find some appropriate
initial conditions (Q(0), P(0)) such that the trajectory will pass through that
point at time t, i.e. (Q(t), P(t)) = (Q, P).
So we can remove the time-dependence of Q(t) and P(t) in (2.5), leading to: Liouville operator

for time evolution
∂

∂t
ρ(Q, P, t) = −

3N∑
α=1

ï
∂ρ

∂qα
(Q, P, t) ∂H

∂pα
(Q, P)− ∂ρ

∂pα
(Q, P, t)∂H

∂qα
(Q, P)

ò
=

(2.6)
≡ −{ρ,H} = iL̂ρ
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Where {·, ·} are the so-called Poisson bracket:

{f , g} ≡
n∑
i=1

Å
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

ã
and L̂ is a linear operator called as the Liouvillian (or Liouville operator):

iL̂ ≡ {·,H}

We can then use (2.6) as an evolution equation to compute ρ(Q, P, t) given an
initial condition ρ(Q, P, 0) ≡ ρ0(Q, P) for any t > 0.
Since it is a linear differential equation in time, its formal solution can be written
in terms of the exponential of the operator L̂:

ρ(Q, P, t) = e−iL̂tρ0(Q, P)
Proof of Liouville’s
theoremProof. The idea is to compute explicitly the derivative in (2.6).

The probability density ρ(Q, P, t) at a given instant t can be obtained by
counting all system-points that arrive at (Q, P) from every possible origin
(Q0, P0), weighting each of them with its “origin probability” ρ0(Q0, P0):

ρ(Q, P, t) =
∫

Γ
d3Nq0 d3Np0︸ ︷︷ ︸

dΓ0

δ3N (Q(t)−Q) δ3N (P(t)−P) ρ0(Q0, P0) (2.7)

In this notation, δ3N is the product of 3N δs. For example, for the positions we
have:

δ3N (Q(t)−Q) ≡
3N∏
α=1

δ(qα(t)− qα)

and a similar expression holds for the momenta.
On the other hand, Q0, P0 are the initial conditions for the motion (Q(t), P(t)),
i.e. (Q(t = 0), P(t = 0)) = (Q0, P0). So, in the integral (2.7) the (Q(t), P(t))
depend (implicitly) on the origin coordinates (Q0, P0).
In the following, to simplify notation, we denote dΓ0 ≡ d3Nq0 dNp0.
Differentiating (2.7) with respect to t we get:

∂

∂t
ρ(Q, P, t) = ∂

∂t

∫
Γ

dΓ0 δ
3N (Q(t)−Q) δ3N (P(t)−P) ρ0(Q0, P0) =

=
(a)
−
∫

Γ
dΓ0 ρ0(Q0, P0)

3N∑
α=1

ï
q̇α(t) ∂

∂qα
+ ṗα(t) ∂

∂pα

ò
·

· δ3N (Q(t)−Q) δ3N (P(t)−P) (2.8)

The − sign comes from the definition of distributional derivative - see the
following green box for more information.

Derivative of the Dirac-delta. δ is a distribution, and so its derivative is
defined by its action on test functions ϕ ∈ S(R):

〈δ′,ϕ〉 ≡ −〈δ,ϕ′〉 = −ϕ′(0) ∀ϕ ∈ S(R)
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This definition is motivated by the following formal manipulation:

〈δ′,ϕ〉 =
∫

R
dx δ′(x)ϕ(x) =

by parts�
���

�
ϕ(x)δ(x)

∣∣∣x=+∞

x=−∞
−
∫

R
dx δ(x)ϕ′(x) = −ϕ′(0)

The same relation can be generalized to partial derivatives in higher dimension.
For example, let r = (x, y, z)T . Then:

〈 ∂
∂x
δ3,ϕ〉 ≡ − ∂

∂x
ϕ(0) ∀ϕ ∈ S(R3)

If the argument of the delta is shifted, so it will be in the result. Let δ3
r0 ≡

δ(r− r0). Then:

〈 ∂
∂x
δ3
r0 ,ϕ〉 ≡ − ∂

∂x
ϕ(r0) (2.9)

Let’s consider the time-derivative of just one of the δs in (2.8):

∂

∂t
δ(qα(t)− qα)

To compute it, we apply it to a test function ϕ(x) ∈ S(R), and apply definition
(2.9):

〈 ∂
∂t
δ(qα(t)− qα),ϕ〉 = − ∂

∂t
ϕ(qα(t)) = −

Å
∂

∂qα
ϕ(qα(t))

ã
q̇α(t) =

≡ −〈q̇α(t) ∂

∂qα
δ(qα(t)− qα),ϕ〉 (2.10)

And so we get the following identity between operators:

δ(qα(t)− qα) = −q̇α(t) ∂

∂qα
(qα(t)− qα)

Another way to see (2.10) is by formally writing:

〈 ∂
∂t
δ(qα(t)− qα),ϕ〉 =

∫
R

dqα
∂

∂t
δ(qα(t)− qα)ϕ(qα)

Here the ∂t acts on everything on its right, i.e. ∂tδ(· · · )ϕ is to be intended as
first applying δ to the ϕ, and then ∂t to the result. As ∂t acts on the entire
integral, we can bring it out:

=
∂

∂t

∫
R

dqα δ(qα(t)− qα)ϕ(qα) =

=
∂

∂t
ϕ(qα(t)) = (2.10)

To extend to more dimensions (e.g. 3), we need to use gradients when applying
the chain rule. For example, for d = 3 and R3 3 r 7→ ϕ(r):

〈 ∂
∂t
δ3(r(t)− r),ϕ〉 = − ∂

∂t
ϕ(r(t)) = −∇rϕ(r(t)) · ṙ(t) =
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= −
3∑
i=1

ṙi(t)
∂

∂ri
ϕ(r(t))

In operatorial terms:

∂

∂t
δ3(r(t)− r) = −ṙ(t) ·∇rδ(r(t)− r)

In step (a) of (2.8) we are dealing with 6N coordinates at once:

∂

∂t
δ6N [(Q(t), P(t))− (Q, P)] = −(Q̇(t), Ṗ(t)) ·∇(Q,P)δ

6N [(Q(t), P(t))− (Q, P)] =

= −
® 3N∑
α=1

ï
q̇α(t) ∂

∂qα
+ ṗα(t) ∂

∂pα

ò´
δ3N (Q(t)−Q) δ3N (P(t)−P)

where (Q(t), P(t)) denotes the 6N -dimensional vector with the first 3N entries
equal to the ones of Q(t), and the last ones equal to those of P(t).

In (2.8) we then use (2.1) to rewrite the q̇α(t) and ṗα(t):

∂

∂t
ρ(Q, P, t) = −

∫
Γ

dΓ0 ρ0(Q0, P0)
3N∑
α=1

[
∂H

∂pα
(Q(t), P(t)) ∂

∂qα
+

− ∂H

∂qα
(Q(t), P(t)) ∂

∂pα

]
δ3N (Q(t)−Q) δ3N (P(t)−P) =

The two δs fix the arguments of H and its derivatives to (Q, P):

= −
∫

Γ
dΓ0 ρ0(Q0, P0)

3N∑
α=1

ï
∂H

∂pα
(Q, P) ∂

∂qα
− ∂H

∂qα
(Q, P) ∂

∂pα

ò
·

· δ3N (Q(t)−Q) δ3N (P(t)−P) =
Now the sum (highlighted in blue) is independent of the integration variable,
and so can be brought outside the integral:

= −
3N∑
α=1

ï
∂H

∂pα
(Q, P) ∂

∂qα
− ∂H

∂qα
(Q, P) ∂

∂pα

ò
·

·
∫

Γ
dΓ0 ρ0(Q0, P0) δ3N (Q(t)−Q) δ3N (P(t)−P)︸ ︷︷ ︸

ρ(Q,P,t) (2.7)

(2.11)

This last result (2.11) can be rewritten as:

∂

∂t
ρ(Q, P, t) = −{ρ(Q, P, t),H(Q, P)}

which is exactly eq. (2.6). By computing the total derivative:

d
dtρ(Q(t), P(t), t)

and using (2.6) we can then derive also (2.4), thus completing the proof.
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�� ��Exercise 2.1.1 (Liouville’s theorem):

Show that (2.6) implies (2.4).

Solution. We start by computing the total derivative of ρ(Q(t), P(t), t)
with respect to time t:

d
dtρ(Q(t), P(t), t) =

3N∑
α=1

ï
∂ρ

∂qα
(Q(t), P(t), t)q̇α(t) + ∂ρ

∂pα
(Q(t), P(t), t)ṗα(t)

ò
+

+
∂ρ

∂t
(Q(t), P(t), t)

We rewrite q̇α and ṗα through the Hamilton equations (2.1):

=
3N∑
α=1

[
∂ρ

∂qα
(Q(t), P(t), t) ∂H

∂pα
(Q(t), P(t))+

− ∂ρ

∂pα
(Q(t), P(t), t)∂H

∂qα
(Q(t), P(t))

]
+

+
∂ρ

∂t
(Q(t), P(t), t)

Using (2.6) for the last term we have:

∂ρ

∂t
(Q(t), P(t), t) = −

3N∑
α=1

[
∂ρ

∂qα
(Q(t), P(t), t) ∂H

∂pα
(Q(t), P(t))+

− ∂ρ

∂pα
(Q(t), P(t), t)∂H

∂qα
(Q(t), P(t))

]

which leads to a total cancellation, and so:

d
dtρ(Q(t), P(t), t) ≡ 0 ∀t

as desired.

2.1.1 Measure theoretic version
We can express the results of Liouville’s theorem in terms of the (hyper)volumes
occupied by system-points in phase-space [2, Appendix A]. As we have noted
before, an ensemble evolves like an incompressible fluid. So, as a cup of water
does not change its total volume after being stirred or scattered or dispersed, so
do the ensembles experiencing Hamiltonian evolution.

Let’s make this more precise. Consider a Lebesgue-measurable subset A0 ⊂ Γ
of phase-space. Then we have a way to compute its measure (a generalization
of “volume”) with the integral:

V (A0) ≡
∫
A0

d3Nq d3Np ≡
∫
A0

dΓ0

Let A0 evolve for a time t according to Hamilton equations (2.1), and call its Measure-theoretic
Liouville’s
theorem
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evolved version At. Then we can restate Liouville’s theorem as the equality:

V (A0) = V (At) ∀t

Before providing a formal proof, consider the following heuristic considerations. Heuristic proof
Let A be a sufficiently small region of phase-space (obtained, for example, by
partitioning a larger region B), so that the density of system-points in it is
(approximately) constant: ρ(Q, P, t) ≈ const 6= 0. Let At be its evolved version
after time t. The fraction ∆Nt of system-points inside At is given by:

∆Nt = ρ(Q(t), P(t), t)V (At)

and remains constant by definition. Differentiating with respect to t:

0 ≡ d
dt∆Nt =

dρ
dt · V (At)︸ ︷︷ ︸

0 by Liouville’s theorem

+ρ(Q(t), P(t), t) d
dtV (At)

Dividing by ρ we obtain:

dV
dt = 0

Meaning that the volume of At does not change, and so:

V (At) = V (A0)

Proof. A more rigorous proof is given by the following. Formal proof
We can express the two regions A0 and At as uniform densities:

ρ0(Q, P) = 1A0(Q, P); ρ(Q, P, t) = 1At(Q, P)

Then, the volume of A0 is given by:

V (A0) =
∫

Γ
d3Nq d3Np ρ0(Q, P) =

And we rename the integration variables to q0 and p0:
=
∫

Γ
d3Nq0 d3Np0 ρ0(Q0, P0) (2.12)

By Liouville’s theorem (2.4), the local density does not change along a path. In
particular, consider the path starting at (Q, P0) and arriving at (Q(t; Q0, P0), P(t; Q0, P0))
at time t, i.e. such that:

Q(t; Q0, P0)
∣∣∣
t=0

= Q0; P(t; Q0, P0)
∣∣∣
t=0

= P0

Then:
ρ(Q(t; Q0, P0), P(t; Q0, P0), t) = ρ0(Q0, P0)

Substituting in (2.12) leads to:

V (A0) =
∫

Γ
d3Nq0 d3Nρ0 ρ(Q(t; Q0, P0), P(t; Q0, P0), t)
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Then we change variables, passing from the origins (Q0, P0) to an arbitrary
end-point (Q, P):

(Q, P) = (Q(t; Q0, P0), P(t; Q0, P0)) (2.13)

leading to:

V (A0) =
∫

Γ
d3Nq d3Np ρ(Q, P, t)J−1

where the determinant J of the jacobian of the change of variables is given by:

J = det
∣∣∣∣ ∂(Q, P)
∂(Q0, P0)

∣∣∣∣
If J = 1, then (2.13) would become:

V (A0) =
∫

Γ
d3Nq d3Np ρ(Q, P, t)︸ ︷︷ ︸

1At(Q,P)

= V (At)

thus concluding the theorem.

So, all that’s left is to verify that the following determinant is unitary:

J(t) = det
∣∣∣∣∂(Q(t; Q0, P0), P(t; Q0, P0))

∂(Q0, P0)

∣∣∣∣
where Q(t) and P(t) are obtained with the Hamilton equations (2.1).

For simplicity of notation, let’s define:

(Q0, P0) ≡ y; (Q(t; Q0, P0), P(t; Q0, P0)) ≡ x(t,y) (2.14)

And so:

J(t) = det
∣∣∣∣∂(x1, . . . ,x6N )
∂(y1, . . . , y6N )

∣∣∣∣
We already know that J(0) = 1, because x(0,y) = y. So, if we prove that J(t)
is constant, i.e. it does not depend on t, we will have J(t) ≡ 1, as desired. The
idea is thus to differentiate J(t) and use Hamilton equations (2.1).

In general, for a matrix A(t) with rows (A1(t), . . . ,An(t))T , we have:

d
dt detA(t) = d

dt det

∣∣∣∣∣∣∣∣∣∣∣∣∣

|— A1(t) —|
|— A2(t) —|

...

|— An(t) —|

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

= det

∣∣∣∣∣∣∣∣∣∣∣∣∣

|— A′1(t) —|
|— A2(t) —|

...

|— An(t) —|

∣∣∣∣∣∣∣∣∣∣∣∣∣
+ det

∣∣∣∣∣∣∣∣∣∣∣∣∣

|— A1(t) —|
|— A′2(t) —|

...

|— An(t) —|

∣∣∣∣∣∣∣∣∣∣∣∣∣
+ · · ·+ det

∣∣∣∣∣∣∣∣∣∣∣∣∣

|— A1(t) —|
...

|— An−1(t) —|
|— A′n(t) —|

∣∣∣∣∣∣∣∣∣∣∣∣∣
=
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=
n∑
i=1

det[(A1(t), . . . ,Ai−1(t),A′i(t),Ai+1(t), . . . ,An(t))T ]

(2.15)

For a proof of (2.15) see the green box at pag. 54.
In our case, (2.15) leads to:

d
dtJ(t) =

6N∑
i=1

det
∣∣∣∣∂(x1, . . . ,xi−1, ẋi,xi+1, . . . ,x6N )
∂(y1, . . . , yi−1, yi, yi+1, . . . , y6N )

∣∣∣∣ ≡ 6N∑
i=1

detAi (2.16)

where xi = qi for 1 ≤ i ≤ 3N , and pi for 3N < i ≤ 6N . In either case, when
we differentiate and compute ẋi, we will have, as consequence of (2.1) one of
the two results:

q̇α =
∂H

∂pα
; ṗα = −∂H

∂qα

which are both functions of (Q, P), i.e. of x. Thus, the (i, k) elements of such
matrices can be computed by the chain-rule:

∂ẋi
∂yk

=
6N∑
j=1

∂ẋi
∂xj

∂xj
∂yk

(2.17)

In vector notation:
∂ẋi
∂y

=
6N∑
j=1

∂ẋi
∂xj

∂xj
∂y

(2.18)

Note that ∂ẋi
∂y is the i-th row of the matrix Ai, which, according to (2.18), can

be written as a sum of 6N rows. As all other rows of Ai remain unchanged, we
can use the row-linearity of the determinant (see (2.19) and (2.20)):

detAi = det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

|— ∂x1
∂y —|
...

|— ∂xi−1
∂y —|

|—
6N∑
i=1

∂ẋi
∂xj

∂xj
∂y

—|

|— ∂xi+1
∂y —|
...

|— ∂x6N
∂y —|

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
6N∑
j=1

∂ẋi
∂xj

det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

|— ∂x1
∂y —|
...

|— ∂xi−1
∂y —|

|— ∂xj
∂y

|—

|— ∂xi+1
∂y —|
...

|— ∂x6N
∂y —|

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

=
6N∑
j=1

∂ẋi
∂xj

det
∣∣∣∣∂(x1, . . . ,xi−1,xj ,xi+1, . . . ,x6N )
∂(y1, . . . , yi−1, yi, yi+1, . . . , y6N )

∣∣∣∣︸ ︷︷ ︸
δijJ

The determinant in the sum argument is obtained by replacing the i-th row
of the jacobian in J with the j-th. But if there are two repeated rows, the
determinant will be 0. So the only non-zero possibility is when j = i, and in
that case the determinant will be exactly J . This leads to a Kronecker delta δij
that we can use to collapse the sum, leading to:

detAi =
∂ẋi
∂xi

J
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Substituting this last result back in (2.16) we get:

dJ
dt = J

6N∑
i=1

∂ẋi
∂xi

We then undo the change of variables (2.14), splitting the first and last 3N
terms of the sum:

6N∑
i=1

∂ẋi
∂xi

=
3N∑
α=1

ï
∂

∂qα
q̇α +

∂

∂pα
ṗα

ò
=

(2.1)

3N∑
α=1

ï
∂

∂qα

∂H

∂pα
+

∂

∂pα

Å
−∂H
∂qα

ãò
= 0

And so:

dJ
dt ≡ 0

meaning that J(t) is constant, and then - as noted before:

J(t) = J(0) = 1

which proves Liouville’s theorem.

Derivative of a determinant (Proof of (2.15)) .
We start by noting that the determinant of a matrix A is a linear function of
its rows or columns. For example, if A ∈M(Rd×d) has rows {Ai}i=1,...,n, then
the following two relations hold:

det |(A1, . . . ,Ai−1,λAi,Ai+1 . . . ,An)T | = (2.19)
λ det |(A1, . . . ,Ai−1,Ai,Ai+1 . . . ,An)T | ∀1 ≤ i ≤ n; ∀λ ∈ R

det |(A1, . . . ,Ai−1,Ai +w,Ai+1 . . . ,An)T | = (2.20)
det |(A1, . . . ,Ai−1,Ai,Ai+1 . . . ,An)T |+

+det |(A1, . . . ,Ai−1,w,Ai+1 . . . ,An)T | ∀1 ≤ i ≤ n; ∀w ∈ Rd

This property is proved geometrically in fig. 2.2.

We then proceed by computing the time derivative of detA(t) as the limit of
the difference quotient:

d
dt detA(t) ≡ lim

∆t→0

detA(t+ ∆t)− detA(t)
∆t

=

In terms of rows:

= lim
∆t→0

1
∆t

(
det

∣∣∣∣∣∣∣∣∣∣
|— A1(t+ ∆t) —|

...

|— An(t+ ∆t) —|

∣∣∣∣∣∣∣∣∣∣
− det

∣∣∣∣∣∣∣∣∣∣
|— A1(t) —|

...

|— An(t) —|

∣∣∣∣∣∣∣∣∣∣

)
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We sum and subtract the determinant of the first addend with only the first
row changed:

= lim
∆t→0

1
∆t

(
det

∣∣∣∣∣∣∣∣∣∣∣∣∣

|— A1(t+ ∆t) —|
|— A2(t+ ∆t) —|

...

|— An(t+ ∆t) —|

∣∣∣∣∣∣∣∣∣∣∣∣∣
− det

∣∣∣∣∣∣∣∣∣∣∣∣∣

|— A1(t) —|
|— A2(t+ ∆t) —|

...

|— An(t+ ∆t) —|

∣∣∣∣∣∣∣∣∣∣∣∣∣
+

det

∣∣∣∣∣∣∣∣∣∣∣∣∣

|— A1(t) —|
|— A2(t+ ∆t) —|

...

|— An(t+ ∆t) —|

∣∣∣∣∣∣∣∣∣∣∣∣∣
− det

∣∣∣∣∣∣∣∣∣∣∣∣∣

|— A1(t) —|
|— A2(t) —|

...

|— An(t) —|

∣∣∣∣∣∣∣∣∣∣∣∣∣

)
(2.21)

Focus on the first two terms. They are determinants of two matrices that differ
only for a single row. So we can apply linearity (2.20) in reverse and gather
them in a single determinant:

lim
∆t→0

1
∆t

(
det

∣∣∣∣∣∣∣∣∣∣∣∣∣

|— A1(t+ ∆t) —|
|— A2(t+ ∆t) —|

...

|— An(t+ ∆t) —|

∣∣∣∣∣∣∣∣∣∣∣∣∣
− det

∣∣∣∣∣∣∣∣∣∣∣∣∣

|— A1(t) —|
|— A2(t+ ∆t) —|

...

|— An(t+ ∆t) —|

∣∣∣∣∣∣∣∣∣∣∣∣∣

)
=

= lim
∆t→0

1
∆t

det

∣∣∣∣∣∣∣∣∣∣∣∣∣

|— A1(t+ ∆t)−A1(t) —|
|— A2(t+ ∆t) —|

...

|— An(t+ ∆t) —|

∣∣∣∣∣∣∣∣∣∣∣∣∣
= det

∣∣∣∣∣∣∣∣∣∣∣∣∣

|— A′1(t) —|
|— A2(t) —|

...

|— An(t) —|

∣∣∣∣∣∣∣∣∣∣∣∣∣
We can then reiterate the same argument on the last two terms of (2.21), arriving
at the end to:

d
dtA(t) =

n∑
i=1

det[(A1(t), . . . ,Ai−1(t),A′i(t),Ai+1(t), . . . ,An(t))T ]

Alternative proof for Liouville’s theorem [1, Chapter 4.1].

As particles move in continuous trajectories, i.e. they do not “teleport” between
spatially distant regions, the probability density describing their ensemble must
be locally conserved. Mathematically, this means that ρ(Q, P) satisfies a
continuity equation:

∂ρ

∂t
(Q, P) = −∇ · J(Q, P) = −∇ · [ρ(Q, P)v(Q, P)] (2.22)

In other words, the local change of ρ over time is equal to the opposite of the
outward flux ∇ ·J at that point, i.e. the rate of particles traversing a tiny closed
surface encompassing (Q, P) in the outward direction (as consequence of Gauss’
theorem). If that flux is positive, then “probability is escaping” (Q, P), and so
ρ will decrease. Otherwise, if the outward flux is negative, then “probability is
gathering” at (Q, P), and so ρ will rise.

The flux field J is given by ρv, where v = (Q̇, Ṗ)T . So (2.22) can be rewritten
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(a) Geometrically, the determinant is equal to the (signed) hyper-volume of the paralleliped spanned by the
column (or row) vectors. Here we consider the d = 3 case, with A = (v1, v2, v3)T .

(b) If we scale one of the edges by λ, the entire volume scaled by the same factor λ. Thus
det |(λv1, v2, v3)T | = λdet |(v1, v2, v3)T |

(c) The quantity det |(u+w, v2, v3)T | is the blue volume on the right, which is equal to the sum of the red
volume on the left (det |(u, v2, v3)T |) and the green one (det |(w, v2, v3)T |), as consequence of Cavalieri’s
principle. In fact the left figure is obtained from the right one by merely shifting some thin slices - which
does not change the total volume, as moving around some coins in a stack does not change their number.

Figure (2.2) – Geometrical proof of the row/column-linearity of the determinant, taken
from [3].
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as:

∂ρ

∂t
= −

3N∑
α=1

Å
∂(ρq̇α)
∂qα

+
∂(ρṗα)
∂pα

ã
=

= −
3N∑
α=1

Å
∂ρ

∂qα
q̇α + ρ

∂q̇α
∂qα

+
∂ρ

∂pα
ṗα + ρ

∂ṗα
∂pα

ã
(2.23)

Using Hamilton equations (2.1) we can cancel two terms. In fact:

∂q̇α
∂qα

=
(2.1)

∂

∂qα

∂H

∂pα
=

∂2H

∂qα∂pα
=
(a)

∂2H

∂pα∂qα
=

∂

∂pα

∂H

∂qα
=

(2.1)

∂

∂pα
(−ṗα) = −∂ṗα

∂pα

And so (2.23) becomes:

∂ρ

∂t
+

3N∑
α=1

Å
∂ρ

∂qα
q̇α +

∂ρ

∂pα
ṗα

ã
=

dρ
dt = 0

which is Liouville’s theorem.

2.1.2 Consequences of Liouville’s theorem
As system-points flow like an incompressible fluid, a uniform ensemble will Microcanonical

ensemble is
stationary

remain uniform indefinitely. Intuitively, a uniform ensemble is just a fluid with
a constant definite density. Hamiltonian dynamics just “stir” around that fluid,
but cannot change its local density anywhere: there cannot be points becoming
“denser” or “more rarefied”. This means that a uniform ensemble (i.e. the
microcanonical ensemble) is stationary - and thus is suitable to describe
the equilibrium condition. However, at least for now, nothing guarantees that
a generic isolate system at equilibrium will reach exactly the stationary state
given by the microcanonical. We have proved that it is a possible solution, but
not the unique solution!
An other interesting consequence of incompressible flow is that there are no Damping with no

attractorsattractors, there are no points in phase space to which many paths “converge”
over time. So, when we observe a pendulum stopping due to friction in the same
place independently of initial conditions, it must not be because it is converging
to some definite region of phase-space. Rather, the phase-space paths in which
the pendulum loses energy to random air particles are so much more than the
few where all molecules “hit the pendulum at the right times” to keep it going
indefinitely.
Liouville’s theorem also provides an intuitive explanation for the second law of Liouville’s theorem

and irreversibilitythermodynamics, following an argument by Jaynes [4][5].
Consider a physical system evolving from a macrostate A to another macrostate
B. If the process A→ B is reproducible, then the volume WA of microstates
compatible with A must fit in the volume WB of microstates compatible with
B, i.e. WA ≤ WB. In fact, if it were instead WA > WB, the evolution A→ B

would not be reliable: at any t, the volume Wt of the evolved ensemble A(t) is
the same as WA (by Liouville’s theorem) - and so if we require all of A(t) to
end up in B (which is necessary for the evolution to happen reliably), then we
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would be trying to “squeeze” too much (incompressible) “fluid” WA in a “too
small bucket” WB.

Entropy in Statistical Mechanics is the logarithm of the volume in phase-space
associated with a certain macrostate, and so from WA ≤ WB follows SA ≤ SB,
i.e. the second law of thermodynamics.

In the case the inequality holds strictly, then the inverse process B → A cannot
happen reliably. We can estimate the “rate of success” of an inverse transition
as the ratio WA/WB. Intuitively, if we try to fill a bucket of 1 l with 3 l of
water, only 1 in 3 molecules will make it to the end - and the others will be left
outside the bucket. Then, we note that even the tiniest difference in entropy
would make WA/WB negligible, because S = kB lnW , and so the ratio decays
exponentially:

p =
WA

WB
= exp

Å
−SB − SA

kB

ã
This means that not only the process B → A cannot happen reliably, but that
it is so unreliable that it never happens!

Figure (2.3) – A gas, initially constrained to the left side of a box (state A), is released at
t = 0, and quickly fills the entire volume (state B). In phase-space, the ensemble associated
with A occupies a volume Ω(E ,V/2,N), which evolves by flowing like an incompressible fluid
due to Liouville’s theorem. Denote with At its evolved version at time t, which in general
will be spread in some complex way. Consider a symmetrized version of At, obtained by
reversing all momenta, and denoted with Āt. Clearly it has the same volume Ω(E ,V/2,N)
(by symmetry), and if we pick any microstate in it and let it evolve for an interval of time t it
will go back to state A, because of the reversibility of Hamiltonian mechanics. However,
experimentally we have no control on the choice of microstate: when constructing B, we
effectively pick at random a microstate from a larger set Ω(E ,V ,N), which contains many
more paths than the ones coming from A (there is a plethora of ways to obtain a box full of
gas). The probability of picking a microstate in Āt is given by the ratio
Ω(E ,V/2,N)/Ω(E ,V ,N) = 2−N , which is negligible. So, while A→ B happens every time
we run the experiment, B → A is never observed.

Note: to be more precise, we should account also for the microstates in B that reach state A
in a time ≤ t, which is a set much larger than the sole Āt. This makes the discussion much
more complex - but the result remains the same.
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2.2 Poincaré Recurrence Theorem
The Poincaré Recurrence Theorem states that a mechanical system en-
closed in a finite volume and possessing a finite amount of energy will,
after a finite time, return to an arbitrary small neighbourhood of almost any1
given initial state in phase-space [2, Chapter 1.7]. In general, the smaller the
neighbourhood chosen, the larger will be the first arrival time.

Proof. Omitted.

In other words, the Poincaré Recurrence theorem states that everything is
reversible, given enough time. This seems in contradiction with experience.
For example, suppose we start with a gas contained in one half of a box (state
A), and let it expand freely in the entire box (state B). This process is clearly
irreversible: the gas will not spontaneously return to the initial state.
If we reverse time, we will obtain a motion B → A that it is still physically
possible, but that in practice never happens. This clearly defines a preferred
direction for time evolution - a so-called “arrow of time”.
Similarly, if we see a video of an egg crashing on the floor, and that of an egg
“recomposing” itself after being destroyed, we can surely tell which one has been
time-reversed.

However, Poincaré Recurrence is mathematically proved - and indeed must
happen. The key to resolve the apparent contradiction with experience lies in
the amount of time T required to observe such recurrence. For any macroscopic
system, T is orders of magnitude larger than the age of the universe. So, while
recurrence will happen, it will do so so far in the future that it will not matter
anymore to anyone!

Recurrence can be observed and verified for systems of few particles. For
example, consider just N = 2 particles, moving at random2 in a box. At a
given moment, each of them is inside the left half of the box with probability
1/2. So, the two will be in the left side with probability 1/4. If we do not care
about which side the particles are grouped in, we need to double this result: the
probability that N = 2 particles lie in the same side of a box is 1/2.

If we repeat the same computation for N = 3, we will obtain p = 1/8 · 2 = 1/4.
So, by adding more particles, the “grouping probability” quickly decreases, but
it is always non-zero. So, given infinite time, the particles will spontaneously
return to an half-box configuration an infinite number of times.

2.2.1 Heuristic estimate of recurrence time
To get a sense of the time scales proper of Poincaré recurrence, consider the
following heuristic computation.

1∧Apart of a set of zero measure.
2∧In classical mechanics, particles follow deterministic trajectories given by Hamilton

equations. Here we are implicitly assuming that the resulting motions are comparable with
random motion.
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We start with a box filled by N particles of an ideal gas. Let’s discretize time,
and denote with Xn the macrostate of the system at time tn. Xn+1 depends
only on the previous state Xn, and so we can model the system as a Markov
chain.
If the chain is regular, i.e. if it is possible to start in any state i and reach
every other state j given sufficient time, then, due to Kac’s lemma (the basic
limit theorem for Markov chains), the Markov chain will reach, for t → ∞ a
stationary state, where the probability πi of being in state i is given by:

πi =
1
〈Ti〉

(2.24)

where Ti is the time it takes to visit state i for the first time.

Let i be a macrostate with all particles occupying the left side of the box,
corresponding to a region A0 of microstates in phase-space. Then Ti is the time
needed for the set of N particles starting in the left side of the box to regroup
for the first time in the same side.

If the deterministic motion is sufficiently chaotic, on the long run it can be
considered like if it was random - meaning that all microstates are equiprobable.
Then, at stationarity, the probability of the system being in A0 is given by a
ratio of phase-space volumes:

P(V/2) = Ω(E ,V/2,N)
Ω(E ,V ,N) =

(V/2)NΩ(E , 1,N)
V NΩ(E , 1,N) = 2−N (2.25)

In other words, the microstates with all particles in the left side occupy a
phase-space volume of Ω1 ≡ Ω(E ,V/2,N), inside a larger volume of physically
possible states Ω2 ≡ Ω(E ,V ,N). So, if we pick a microstate at random inside
Ω2, it will be in Ω1 with probability3 Ω1/Ω2.

Then we take the inverse of the stationary probability to find the number of
time step necessary for recurrence. Before doing that, we need to properly
specify the size of a single discretised time step. One possibility is to use the
characteristic time needed for a gas molecule to visit regions of phase-space
sufficiently “separated” - for example the time interval τ needed to traverse the
entirety of the volume. Assuming a square box, the particles needs to travel
a length of V 1/3, and it does so at a mean velocity 〈|vx|〉, given by Maxwell’s
distribution. Then:

τ ≈ V 1/3

〈|vx|〉

where:

〈|vx|〉 =
1∫

R dvx exp
Ä
−βmv2

x
2

ä ∫
R

dvx |vx|exp
Å
−βmv2

x

2

ã
=

…
2kBT
πm

=

 
2RT
πMmol

3∧Intuitively, the probability that a coin will drop inside the area of a carpet, is the ratio
between the carpet’s area and the room’s area.
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And so the first return time to i is:

〈TV
2
〉 =

(2.24)

τ

P(V/2) ≈
V 1/32N
〈|vx|〉

Numerically, consider 1 mol of O2 (MO2 = 32 g mol−1), corresponding to N =
NA = 6.2× 1023 molecules in a box of length V 1/3 ≈ 0.4 m, at atmospheric
pressure P = 1 atm and room temperature T = 300 K. Then 〈|vx|〉 ≈ 500 m s−1,
and 〈TV

2
〉 ≈ 101.86×1023−11 y, which is so much higher than the age of the universe

Tuniv = 14× 109 y.
So, based on this heuristic calculation, we might think that irreversibility is
just a matter of time scales: everything is theoretically reversible, but we will
never see it reverse any time soon. (Lesson 14 of

9/4/20)
Compiled: January
28, 20212.3 Asymptotic Evolution

Liouville’s theorem showed us that a uniform ensemble, such as the micro-
canonical ensemble for a isolate system, is stationary, thus suitable to describe
equilibrium.
However, we would like to prove that it is in fact, the only suitable description.
Intuitively, this requires that the Liouville’s evolution “throughly stirs” phase-
space, so that the trajectory followed by almost4 any point in phase-space
passes arbitrarily close to any other point in phase-space. In such case, it can
be shown that all states can be treated “equally”, and so we can compute the
expected values of observables by using the microcanonical ensemble, as we
previously postulated. A system satisfying this condition is said to be ergodic.
Unfortunately, it is usually very difficult to prove.
To make the argument formal, consider any observable O(Q, P) and compute its
average at time t over all the initial conditions compatible with some ensemble
ρ0:

〈O(Q(t), P(t))〉 =
∫

Γ
d3Nq0 d3Np0 ρ0(Q0, P0)O(Q(t; Q0, P0), P(t; Q0, P0)) =

We change variables (Q(t), P(t))→ (Q, P) by introducing two δs:

=
∫

Γ
d3Nq0 d3Np0 ρ0(Q0, P0)·

·
∫

Γ
d3Nq d3Np δ3N (Q−Q(t; Q0, P0))δ3N (P−P(t; Q0, P0))O(Q, P) =

In this way we can bring O(Q, P) outside the inner integral:

=
∫

Γ
d3Nq d3NpO(Q, P)·

·
∫

Γ
d3Nq0 d3Np0 ρ0(Q0, P0)δ3N (Q−Q(t; Q0, P0)) δ3N (P−P(t; Q0, P0)) =

4∧Up to a set of null measure
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And so we have rewritten the average of O in terms of the evolved distribution
ρ(Q, P, t):

=
(2.7)

∫
Γ

d3Nq d3NpO(Q, P)ρ(Q, P, t)

For an ergodic system, in the limit t → ∞ this is equivalent to using the
microcanonical ensemble:

〈O(Q(t), P(t))〉 −−−→
t→∞

∫
Γ

d3Nq d3NpO(Q, P)ρMC(Q, P) (2.26)
where:

ρMC =

const E ≤ H(Q, P) ≤ E + δE

0 otherwise

This is equivalent to saying that the time average of an observable over a
single trajectory is equal to the microcanonical ensemble average, which is the
argument used in [1, Chapter 4.2]:

lim
T→∞

1
T

∫ T

0
O(Q(t), P(t)) dt =

∫
Γ

dΓO(Q(t), P(t))ρMC(Q, P) (2.27)

The full proof that (2.26) and (2.27) follow from ergodicity is quite involved.
Here, we focus only on its last part. Namely, we suppose that:

1. Hamilton dynamics lead, in the large time limit, to a stationary distribution
ρst: lim

t→∞
ρ(Q, P, t) = ρst(Q, P)

And then show that:

2. The stationary distribution coincides with the microcanonical ensemble:
ρst = ρMC

This can be done by using Liouville’s theorem (2.4), which states that the local
probability density is a constant of motion:

d
dtρst(Q(t), P(t)) = 0

For a generic system, there are only 7 possible constants of motion: the energy
H, three components of the total momentum P and the three components of
the angular momentum L. So ρst is necessarily a function of them:

ρst(Q, P) = F(H,L,P )

However, if our system is at rest and not rotating, P = 0 = L, and so the only
remaining constant is H:

ρst(Q, P) = F(H)

For an isolated system the energy is constant: H(Q(t), P(t)) ≡ E , and thus
ρst = const on the hypersurface H = E , implying that:

ρst = ρMC

(In fact, recall that we chose ρMC as the uniform distribution in phase-space
over the hypersurface H = E).
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2.4 Three kinds of entropy
In its classical and original interpretation, entropy quantifies the irreversibil-
ity of a process. More precisely, it is a function of state, depending on macro-
scopic observables of an equilibrium system. For a reversible process, the total
entropy - i.e. that of the system and anything it has interacted with - remains
the same. For any irreversible transformation, however, it increases. The more
the process is “difficult” to reverse, the more the total entropy will rise.

It is not clear from this definition alone where does entropy come from, or if it
is a real “physical” quantity and not some mathematical abstraction.
Fortunately, decades of analysis have given entropy new and clearer meanings.
Boltzmann proved a connection between the thermodynamical S and the amount
of states in phase-space available to a system, leading to the interpretation of
entropy as some sort of “disorder”. Irreversibility is then merely the fact that
while “macroscopically ordered states” are few, states of “maximum disorder”
are the most - by an incredible margin. So, inevitably, any system will tend to
explore the latter, just as an artifact of chance.

An even more general interpretation of entropy comes from information theory,
where S is a measure of the experimenter’s ignorance about the system. Shifting
from an ontological property to an epistemological one has several benefits:
for example it allows to search for the most general probability distributions
compatible with some given conservation laws and experimental results. This is
done by maximizing the experimenter’s ignorance - rejecting every bias except
a few experimentally observable “truths”. Surprisingly, this MaxEnt principle
provides a variational re-derivation of all equilibrium statistical mechanics,
where informational entropy plays the role the action had in re-deriving classical
mechanics (or, with some extensions, even relativistic mechanics, QM or QFT).

Informational entropy can be defined also for non-equilibrium states - but its
respective variational principle does not hold anymore in general. It can be
adapted to a few restricted cases - such as the flow of heat from the equator to
the poles of a planet - but unfortunately not to general complex systems.

Even if MaxEnt is not the desired solution to non-equilibrium dynamics, it
still can be applied in a variety of situations outside statistical mechanics: for
example in pattern recognition tasks, or in image reconstruction.

In this section, we will start by revising the first two definitions of entropy -
the one from classical thermodynamics, and that from statistical mechanics.
Then we will introduce the third kind of entropy - information entropy - and
motivate its definition as the only function satisfying some reasonable require-
ments. We will then introduce the MaxEnt principle, and employ it to re-derive
statistical mechanics, and in particular all the results we previously got for the
microcanonical and canonical ensembles. We will then go even further, deriving
and discussing the grandcanonical ensemble, in which we allow both energy
and particles to flow in and out the system.

Finally, we will examine the relation linking entropy and information in the
first place - demonstrating with Landauer’s principle that even an “irreversible
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processing of information”, such as erasing a bit-sized register, increase the
entropy of the universe!

1. Thermodynamic entropy. In classical thermodynamics, entropy is a
mysterious quantity introduced to characterize the second law.
The difference in entropy S(B)− S(A) between two equilibrium states A
and B is defined as:

S(B)− S(A) =
∫ B

A

ÅdQ
T

ã
R

(2.28)

where A and B are connected by a reversible transformation R. The
system is at equilibrium at every point on the path A→ B, possessing
a definite temperature Tsys, and exchanging an infinitesimal amount of
heat dQ with a thermal bath at the same temperature T = Tsys.
The second law of thermodynamics states that the same integral, if done
along any path, will lead to a result which is lower than that of the
reversible case: ∫ B

A

dQ
T
≤ S(B)− S(A) (2.29)

T is the temperature of the heat bath in thermal contact with the system
during the path A → B. Note that if the latter does not traverse
equilibrium points, then Tsys will not be defined. (2.29) holds as an
equality if and only if the transformation A→ B is reversible.

For an isolated system, dQ ≡ 0, and so (2.29) leads to:

S(B) ≥ S(A)

with the equality holding only for reversible transformations.
Thus, an isolated system is in thermal equilibrium if and only if it has the
maximum possible entropy compatible with the given macroscopic
constraints (e.g. energy, volume, number of particles...). In this case, in
fact, it cannot do any other transformation to increase the entropy. A
similar argument will prove to be the key for introducing the MaxEnt
principle later on.

2. Statistical Mechanics entropy.
In Statistical Mechanics we define the entropy as the logarithm of the
volume of microstates in phase-space corresponding to the observed
macrostate (with definite macroscopic observables), scaled by kB:

S(E ,V ,N) = kB ln Ω(E ,V ,N) (2.30)
where:

Ω(E ,V ,N) =
∫

Γ
dΓ δ(H(Q, P;N ,V )−E)
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The definition (2.30) is compatible with (2.28) because for both of them
the following holds:

dS =
dE
T

+
P

T
dV − µ

T
dN

This means that the derivative of S with respect to E at constant V and
N is 1/T , and similarly:ÅdS

dE

ã
V ,N

=
1
T

;
Å dS

dV

ã
E ,N

=
P

T
;
Å dS

dN

ã
E ,V

= −µ
T

Furthermore, for an isolated system the only possible transformation
(apart from chemical reactions, or nuclear decays) is a free expansion,
where V → V ′ > V . The initial entropy is Sin = S(E ,V ,N), and at the
end it will be Sfin(E ,V ′,N). Note that:

Ω(E ,V ′,N) =
∫
V ′×···×V ′︸ ︷︷ ︸
N times

dQ

∫
R3N

dP δ(H(Q, P;N)−E)

>
∫
V×···×V︸ ︷︷ ︸
N times

dQ

∫
R3N

dP δ(H(Q, P;N)−E)

since the integration domain for the configuration space is larger after the
expansion (V ′ > V ).
Taking the logarithm of both sides, we note:

Sfinal > Sinitial

which is exactly the result we would have obtained from classical ther-
modynamics. In other words, the entropy defined in (2.30) is compatible
with the second law of thermodynamics.

3. Information entropy. A third definition of entropy comes from infor-
mation theory.
Consider a discrete event space E = {i}i=1,...,N , with probabilities pi ≥ 0,
such that ∑i pi = 1.
We want to quantify the amount of information I(pi) acquired by the
observation of event i occurring.
For example, if pi = 1, i.e. the event occurs with certainty, we will not
gain any new information by its occurrence: we already knew that it
would occur! In other words, if now the sky is free of clouds and it is a
beautiful sunny day, the fact that it will be still sunny in 15 minutes is
almost sure, and it will not be surprising when it indeed happens. On the
other hand, we would not expect that in 15 minutes it will start to rain.
Such a unlikely scenario, if it occurs, will give a lot of new information to
us: for example that we were ignoring little dark clouds on the horizon,
or did not properly account of the air currents.
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Equivalently, we can quantify the gain in information by measuring the
minimum length of a message needed to precisely communicate to someone
that a certain event has occurred. To optimize the sending of data, we
can in fact create a code such that the shorter combinations of characters
refer to likely events, while the longer ones to unlikely events. In this way,
on average, we will have to send shorter messages. Then, in this scenario,
a likely event holds less information becaus e it can be coded with shorter
messages (assuming that the code we are using for transmission is the
most efficient possible).

In other words, I(pi) encodes the amount of surprise held by event i
occurring. Then, clearly a gain in information must be non-negative:

I(p) ≥ 0 (2.31a)

It will be minimum (0) for an event that is completely expected:

I(p = 1) = 0 (2.31b)

And it will be higher the rarer the event:

I(p) is a decreasing function of p (2.31c)

Furthermore, if we have two independent events occurring with probability
p1 and p2, it is reasonable that the gain of information obtained by both
of them happening to be just the sum of the information gains of each of
them happening separately:

I(P[1∧ 2]) = I(p1 · p2) = I(p1) + I(p2) (2.31d)

Assuming I(p) to be differentiable, differentiating (2.31d) with respect to
p2 leads to:

p1
d
dxI(x)

∣∣∣
x=p1p2

=
dI
dp2

If we now set p2 = 1 and p1 = x we get:

x
d
dxI(x) = I ′(1)⇔ I(x) = I ′(1) ln x+ c

By (2.31b) I(1) = 0, and so the integration constant c must be 0. From
(2.31a) we also find that I ′(1) < 0.

We now define the information entropy of an ensemble (i.e. a pdf) as
the average of I(p). Suppose the set E contains exactly K elements (i.e.
|E| = K), then:

SI(p1, . . . , pk) = 〈I(p1)〉 = −|I ′(1)|
k∑
i=1

pi ln pi (2.31e)

We will show that in order for (2.31e) to be compatible with (2.28) and
(2.30) we have to choose:

I ′(1) = −kB
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Thus (2.31e) becomes:

SI(p1, . . . , pk) = 〈I(pi)〉 = −kB
k∑
i=1

pi ln pi (2.31f)

Or, in the continuum case:

SI [ρ] = −kB
∫

Γ
dΓ ρ(Q, P) ln ρ(Q, P) (2.31g)

Since limx→0 x ln x = 0, we define, by continuity, 0 ln 0 = 0.
We now show that (2.31g) agrees with the Statistical Mechanics entropy (2.30).

• Microcanonical case. The microcanonical ensemble is given by:

ρMC(Q, P) =
1[E ,E+δE ](H(Q, P))∫

Γ dΓ 1[E ,E+δE ](H)
The information entropy is then:

SI [ρMC] = −kB
∫

Γ
dΓ

1[E ,E+δE ](H)∫
Γ dΓ 1[E ,E+δE ](H) [((((((

((ln 1[E ,E+δE ](H)− ln
∫

Γ
dΓ 1[E ,E+δE ](H)] =

Note that 1[E ,E+δE ] ln 1[E ,E+δE ] is either 1 log 1 = 0 if (Q, P) is inside the
energy shell, or 0 log 0 = 0 otherwise. The logarithm of the integral does
not depend on the integration variables, and so can be factored out:

= kB

[
ln
∫

Γ
dΓ 1[E ,E+δE ](H)

]
((((

(((
(((∫

Γ dΓ 1[E ,E+δE ](H)

(((
((((

(((∫
Γ dΓ 1[E ,E+δE ](H)

= kB ln
∫

Γ
dΓ 1[E ,E+δE ](H)︸ ︷︷ ︸

Ω(E ,V ,N)δE

= kB ln Ω(E ,V ,N) + kB ln δE︸ ︷︷ ︸
Irrelevant constant

leading to (2.30) up to a constant, which is irrelevant, as only differences
in entropy have physical meaning.

• Canonical case. The canonical ensemble is given by:

ρc(Q, P) = 1
Z(T ,V ,N)e

−βH(Q,P) Z(T ,V ,N) =
∫

Γ
dΓ e−βH(Q,P) = e−βA(T ,V ,N)

where A(T ,V ,N) is the Helmholtz free energy.
The corresponding information entropy is then:

SI [ρc] = −kB
∫

Γ
ρc(Q, P) ln ρc(Q, P) dΓ =

= −kB
∫

Γ
dΓ ρc[−βH + βA] = 1

T
〈H〉c −

1
T
A

Recall that:
A = 〈H〉c − TSc ⇒

and substituting above we obtain:
SI(ρc) = Sc

where:

Sc(T ,V ,N) = −∂A
∂T

What is the max SI(p1, . . . , pk), given
∑
i pi = 1? (Lesson 15 of

15/4/20)
Compiled: January
28, 2021
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2.5 Information Entropy and Ignorance
The definition we gave of information entropy in the last section, as the average
“surprise” of data sampled from a distribution, may seem quite arbitrary and
contrived.

In fact, more in general, we can interpret SI as a measure of the amount of
ignorance or uncertainty contained in a probability distribution. In other
words, if SI [ρ] is maximum, then ρ possess the least amount of bias.
While it is not easy to exactly define what we mean by “ignorance”, we can still
find some key properties any ignorance-measure should have, and use them to
fix the functional form of SI .

So, let’s suppose SI(p) to be a measure of the uncertainty of the discrete
distribution p = (p1, . . . , pΩ), with ∑Ω

i=1 pi = 1. We require the following 3
properties:

• Uniform distribution = maximum ignorance, i.e.:

SI

Å 1
Ω

, . . . , 1
Ω

ã
> SI(p1, . . . , pΩ) (2.32)

for all p that are non-uniform (i.e. such that not all pi are the same).

Clearly, if not all pi are the same, then some states are more probable than
others, meaning that we possess some bias towards them. The uncertainty
is maximum for a uniform distribution, as in that case we have no bias
towards any state at all.

• Impossible events do not alter the uncertainty:

SI(p1, . . . , pΩ, 0) = SI(p1, . . . , pΩ)

If a state is never visited, then it makes no difference on the amount of
knowledge we possess about the distribution.

• Rule for updating knowledge. ...

2.6 MaxEnt Principle
The main idea of theMaxEnt principle is to find themost general probability Main idea
distribution compatible with a set of constraints - i.e. conservation laws
or measurements - by maximizing the information entropy SI subject to
these constraints. As SI can be interpreted as a measure of ignorance, the
MaxEnt principle merely suggests to choose the most “unbiased” distribution,
i.e. the one with “just enough information” to satisfy the constraints, without
containing any further assumption.

In Statistical Mechanics, when constructing a macrostate we may control only MaxEnt in
Statistical
Mechanics

a few macroscopic parameters {Oi} - i.e. the energy, the volume, etc. Still, the
majority of the system’s degrees of freedom are not under control: we cannot
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choose the exact microstate the system will be in. At any given moment, the
system is in a single definite microstate - but we do not know which one. Thus
we assign probabilities to each microstate, expressing our degree of belief about
them5, i.e. how much we suspect that a certain microstate may be the “real”
one. There are many possible choices for these probabilities. For sure, they
must be compatible with our previous observations {Oi} - and so any microstate
which would lead to some different value for the measurements must have a
probability 0. Apart from this, our assignment of probabilities will be arbitrary.
However, note that many possible choices of pi, while compatible with the
observed {Oi} are biased towards some measurement values Bj that we do not
have under control. MaxEnt tells us to choose pi such that this bias is removed:
if we have not measured any Bj , then the pi we choose must weigh each possible
value of Bj equally, i.e. maximize our ignorance about any other observable
which is not under our control. Practically, if we have fixed energy and volume,
we know nothing about pressure6, and so we must choose a microstate pdf (i.e.
an ensemble) which treats all possible p equally.

MaxEnt and Bayesian statistics. MaxEnt is often used as a way to construct
prior distributions, encoding all the “available” knowledge about some system.
Then, in the framework of Bayesian statistics, subsequent observations can be
used to “update” the prior pdf through Bayes theorem, allowing inference (or
learning) from data.

2.6.1 Single constraint: probability normalization
Mathematically, to maximize a function (SI) subject to some constraints we
use the method of Lagrange multipliers.

Brief refresher of Lagrange multipliers. Suppose we have two functions
F , g : R2 → R, with F (x, y) being the function to maximize, and g(x, y) = c ∈
R a constraint.
A stationary point (x0, y0) of F subject to the constraint g(x, y) = c is such
that if we move slightly from (x0, y0) along the contour g(x, y) = c, the value
of F (x, y) does not change (to first order). This happens if the contour of F
passing through the stationary point F (x, y) = F (x0, y0) is parallel at (x0, y0)
to that of g(x, y) = c, meaning that at (x0, y0) the gradients of F and g are
parallel:

∇x,yF = λ∇x,yg λ ∈ R

(Here we assume that ∇x,yg(x0, y0) 6= 0). Rearranging:

∇x,y(F (x, y)− λg(x, y)) = 0

Together with the constraint equation g(x, y) = c, we have now 3 equations

5∧In the Bayesian sense
6∧Except in the ideal gas case, but here we are talking in general
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in 3 unknowns (x, y,λ) that can be solve to yield the desired stationary point
(x0, y0).

This procedure can be extended to the n-dimensional case F (x), with d con-
straints g(x) = (g1(x), . . . , gd(x)) = (c1, . . . , cd) = c:

∇x
Ç
F (x)−

d∑
i=1

λigi(x)
å

= 0

The parameters λ = (λ1, . . . ,λd) are called the Lagrange multipliers.

For example, consider a discrete distribution over a (disjoint) partition of state- First example of
MaxEntspace Ω in K states {Ai}i=1,...,K , with P[Ai] = pi. Without further knowledge,

the only constraint we have on the {pi} is the one given by normalization:

K∑
i=1

pi
!
= 1

We choose {pi} following the MaxEnt principle:

max
p :
∑
i pi=1

SI(p1, . . . , pK)

which is solved with Lagrange multipliers:

0 =
∂

∂pj

Ç
SI(p) + λ

K∑
i=1

pi

å
= −kB

ñ
∂

∂pj

K∑
i=1

pi log pi
ô
+ λ =

= −kB

ñ
K∑
i=1

δij log pj + piδij
1
pj

ô
+ λ =

= −kB(log pj + 1) + λ = 0 ∀j = 1, . . . ,K

Rearranging:

ln pj =
λ

kB
− 1⇒ pj = exp

Å
λ

kB
− 1
ã
= constant ∀j = 1, . . . ,K

Then by imposing the normalization:

K∑
i=1

pi = 1⇔ K exp
Å
λ

kB
− 1
ã
= 1⇔ exp

Å
λ

kB
− 1
ã

︸ ︷︷ ︸
pj

=
1
K
⇔ pj =

1
K

As expected, the “most ignorant” distribution over n states is the uniform
distribution.

Interestingly, note that the maximum entropy is given by:

max
p :
∑
i pi=1

SI(p) = −kB
K∑
i=1

1
K

ln 1
K

= −kBK
1
K

(− lnK) = kB lnK

∝ ln “Volume of space of possible events”
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2.6.2 Multiple constraints
In general, we will have some additional constraint on the {pi}i=1,...,K . For
example, suppose we have m functions {G(a)}a=1,...,m, each assigning some
value to each state: Ak 7→ G(a)(Ak) ≡ G

(a)
k ∈ R. As each state Ak is chosen

with a probability pk, the G(a) are random variables.
Suppose we have a collection (data) of states sampled from the (unknown)
distribution {pi}, and we measure the averages of G(a) over such collection,
obtaining:

〈G(a)〉data = g(a) a = 1, . . . ,m (2.33)

We want to determine the {pi} that are compatible with those measurements:

g(a) =
K∑
i=1

piG
(a)
i a = 1, . . . ,m (2.34)

without adding any “unnecessary” hypothesis other than the constraints (2.34).
Applying the MaxEnt principle, we choose the p = (p1, . . . , pK)T that maximizes
SI(p) while satisfying the m+ 1 constraints given by:

K∑
i=1

piG
(a)
i = g(a) a = 1, . . . ,m (2.35a)

and the normalization:
K∑
i=1

pi = 1 (2.35b)

This can be done by using m+ 1 Lagrange’s multipliers, one for each of the
(m+ 1) constraints (2.35a-2.35b). So, the maximizing pmax is chosen such that:

pmax s.t. 0 !
=

∂

∂pj

[
SI(p)−

m∑
a=1

λa
K∑
i=1

piG
(a)
i︸ ︷︷ ︸

g(a)

−λ
K∑
i=1

pi

]
p=pmax

∀j = 1, . . . ,K

If we let G(0)
i ≡ 1 and λ0 ≡ λ, then we can write all the constraints with a

single sum:

pmax : 0 =
∂

∂pj

ñ
SI(p)−

m∑
a=0

λa
K∑
i=1

piG
(a)
i

ô
p=pmax

(2.36)

Inserting the expression for the Shannon entropy in (2.36):

SI(p) = −kB
K∑
i=1

pi ln pi

leads to:

−kB
Å

ln pj +��
pj

��
pj

ã
−

m∑
a=0

λaG
(a)
j = 0⇒ pmax

j = exp
Ç
− λ0
kB
− 1−

m∑
a=1

λa
kB
G

(a)
j

å
(2.37)
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We can immediately determine λ0 from the normalization condition:

1 !
=

K∑
j=1

pmax
j = exp

Å
− λ0
kB
− 1
ã K∑
j=1

exp
Ç
−

m∑
a=1

λa
kB
G

(a)
j

å
︸ ︷︷ ︸

Z(λ1,...,λm)≡Z(λ)

(2.38)

And so:

Z(λ) ≡
K∑
j=1

exp
Ç
−

m∑
a=1

λa
kB
G

(a)
j

å
=

(2.38)
exp
Å

1 + λ0
kB

ã
(2.39a)

pmax
j ≡ pj(λ) ≡

(2.37)

1
Z(λ) exp

Ç
−

m∑
a=1

λa
kB
G

(a)
j

å
(2.39b)

with λ = (λ1, . . . ,λm)T .

To find {λa}a=1,...,m we need to impose the constraints (2.35a):

〈G(a)〉p ≡
K∑
j=1

pmax
j G

(a)
j =

(2.39b)

1
Z(λ)

K∑
j=1

G
(a)
j exp

Ç
−

m∑
a=1

λa
kB
G

(a)
j

å
= (2.40)

Note that the sum looks like Z(λ), except for the factor G(a)
j that can be

“extracted” by differentiating with respect to λa and adjusting the constants:

= − kB
Z(λ)

∂

∂λa

K∑
j=1

exp
Ç
−

m∑
a=1

λa
kB
G

(a)
j

å
︸ ︷︷ ︸

Z(λ)

= − kB
Z(λ)

∂

∂λa
Z(λ) =

Which can be written as the derivative of logZ(λ):

〈G(a)〉p = −kB
∂

∂λa
lnZ(λ) (2.41)

Thus the λ are the solutions of the following equations:

ga = 〈G(a)〉p =
(2.41)

−kB
∂

∂λa
lnZ(λ) (2.42)

We can rewrite this system as an optimization problem, i.e. see λ as the
minimum of some function h(x):

∇xh(x)
∣∣∣
x=λ

= 0 (2.43)

This is useful, as it is computationally easier to find a minimum than solve the
non-linear equations (2.42).

In practice, we start by rewriting (2.42) in vector form:

g = −kB∇λ lnZ(λ) (2.44)
and bring both terms inside the gradient:

0 = ∇λ[g ·λ+ kB lnZ(λ)]
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It is also convenient to divide by kB, so that the arguments inside the brackets
become dimensionless:

0 = ∇x

[
g ·x
kB

+ kB lnZ(x)︸ ︷︷ ︸
h(x)

]
x=λ

(2.45)

So, we define:

h(x) ≡ g ·x
kB

+ kB lnZ(x) (2.46)

And clearly (2.42) are equivalent to the minimization problem (2.43), by con-
struction, i.e.:

∂h

∂xa
(x)
∣∣∣
x=λ

!
= 0⇔ ga = −kB

∂

∂xa
lnZ(x)

∣∣∣
x=λ

Legendre transform. Note that h(x) so defined is the (non-standard) Legen-
dre transform of lnZ(x) with respect to x.

Recall that the Legendre transform of a convex function F (x) is given by:

H(s(x)) = xs(x)− F (x) s(x) = dF
dx (x)

This definition is best remembered when rearranged in a more symmetric form:

H(s) + F (x) = xs

with x and s being conjugate variables, i.e. dF
dx = s and dH

ds = x.

The definition naturally extends to the multidimensional case:

H(s(x)) = x · s(x)− F (x) (2.47)

Leta F (x) = lnZ(x), then the gradient of F (x) with respect to x leads to the
following conjugate variable g, according to (2.44):

− g
kB

= ∇x lnZ(x)

So the Legendre transform of F (x) with respect to x is given by applying the
definition (2.47):

h(g(x)) = − g
kB
·x− lnZ(x)

Often, in Statistical Mechanics, we redefine the Legendre transform as its
opposite h(x)→ −h(x), so that the annoying − signs are removed:

h(x) = g

kB
·x+ lnZ(x)
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We call such Legendre transform h(x) non-standard, in the sense that it has an
added −, as if the definition were:

−H(s(x)) = x · s ·x− F (x)
a∧The convexity of F (x) is proved below

All that’s left is to show that h(x) has at most one minimum corresponding to
the solution (2.42), meaning that everything is well defined. The proof proceeds
in two parts:

1. We prove that h(x) is convex in general, and strictly convex in all the
applications we are interested in.

2. Then, we show that a strictly convex function has at most one minimum.

Proof. For the first step, we proceed by direct computation of the second
derivative:

∂2h

∂xa∂xb
(x) = ∂2

∂xa∂xb
lnZ(x) =

(2.42)
− ∂

∂xa
〈G(b)〉 1

kB
=

=
(2.40)
(2.39a)

− ∂

∂xa

1
kB

Num︷ ︸︸ ︷
K∑
j=1

G
(b)
j exp

Å
−
λ ·Gj
kB

ã
K∑
j=1

exp
Å
−
λ ·Gj
kB

ã
︸ ︷︷ ︸

Den

=

With Gj ≡ (G(1)
j , · · · ,G(m)

j )T . To compute the derivative, we split the fraction
as A/B = A · 1/B and apply Leibniz rule:

=��−
1
kB

[��− 1
kB

K∑
j=1

G
(a)
j G

(b)
j exp

Å
−
λ ·Gj
kB

ã
K∑
j=1

exp
Å
−
λ ·Gj
kB

ã
︸ ︷︷ ︸

1
Den

∂Num
∂xa

−

K∑
j=1

G
(b)
j exp

Å
−
λ ·Gj
kB

ã
K∑
j=1

exp
Å
−
λ ·Gj
kB

ã ��−
1
kB

K∑
j=1

G
(a)
j exp

Å
−
λ ·Gj
kB

ã
K∑
j=1

exp
Å
−
λ ·Gj
kB

ã
︸ ︷︷ ︸

Num ∂
∂xa

1
Den=−

Num
Den

∂xaDen
Den

]
=

=
1
k2
B

î
〈G(a)G(b)〉p − 〈G(a)〉p〈G(b)〉p

ó
=

=
1
k2
B

[〈G(a)G(b)〉p − 〈G(a)〉p〈G(b)〉p + 〈G(a)〉p〈G(b)〉p−〈G(a)〉p〈G(b)〉p] =

=
1
k2
B

〈[G(a) − 〈G(a)〉p][G(b) − 〈G(b)〉p]〉p =
1
k2
B

Cov(G(a),G(b))p

This means that the Hessian of h(x) is, up to a constant, the covariance matrix
of the observables {G(a)}a=1,...,m which is positive semi-definite, meaning
that h(x) is convex.
In fact, let G = (G(1) − 〈G(1)〉, . . . ,G(m) − 〈G(m)〉)T be the vector of 0-mean
observables. Then the covariance matrix can be written as 〈GGT 〉p. For any
vector w ∈ Rm \ {0}, we have:

wT 〈GGT 〉w = 〈wTGGTw〉 = 〈wTG(wTG)T 〉 = 〈
∥∥∥wTG

∥∥∥2
〉 ≥ 0 (2.48)
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Where wTG is a scalar, and ‖·‖2 is the L2 norm. (2.48) proves that the
covariance matrix is positive semi-definite.
Note that equality is reached if and only if:

〈
∥∥∥wTG

∥∥∥2
〉p = Varp(wTG) = Varp

Ç
m∑
a=1

waG
(a)
å

= 0

for some vector w ∈ Rm \ {0}. This means that a certain linear combination
of the observables has variance 0 - i.e. it is constant. As this rarely happens in
a reality, we can assume the covariance matrix, and thus the Hessian of h(x) to
be positive definite, meaning that h(x) is strictly convex.
We can now deal with the second part of the proof. Consider a scalar function
(for simplicity) f : R→ R which is a strictly convex, and has a local minimum
at x1.
Suppose that x2 is a local minimum too, with x1 6= x2 and f(x1) ≤ f(x2).
Then by definition of (strict) convexity:

f(hx1 + (1− h)x2) < hf(x1) + (1− h)f(x2) 0 < h < 1 (2.49)

As h is positive:

f(x1) ≤ f(x2)⇒ hf(x1) ≤ hf(x2) (2.50)

Substituting (2.50) in (2.49) leads to:

f(hx1 + (1− h)x2) < hf(x1) + (1− h)f(x2) ≤
(2.50)

hf(x2) + (1− h)f(x2) = f(x2)

meaning that:

f(hx1 + (1− h)x2) < f(x2) ∀h ∈ (0, 1) (2.51)

However, x2 is by hypothesis a local minimum, and so there is a neighbourhood
D of x2 such that f(x) > f(x2) ∀x ∈ D \ {x2}. This contradicts (2.51) when h
is sufficiently close to 1, meaning that x2 cannot be a local minimum of f(x)
which is distinct from x1. So, f(x) can only have up to one minimum, which
concludes the proof.

Once we have found the λ, we can finally compute the maximum value of SI(p): Maximum
constrained entropy

SI(pmax) = −kB
K∑
j=1

pmax
j log pmax

j = (2.52)

=
(2.39a)�

�−kB
K∑
j=1

1
Z(λ) exp

Ç
−

m∑
a=1

λa
kB
G

(a)
j

åñ
��−

m∑
a=1

λa
kB
G

(a)
j ��− lnZ(λ)

ô
=

In the first term we exchange the sums to recognize 〈G(a)〉:

=��kB
m∑
a=1

1
Z(λ)

K∑
j=1

λa

��kB
G

(a)
j exp

Ç
−

m∑
a=1

λa
kB
G

(a)
j

å
︸ ︷︷ ︸

(2.40) : λa〈G(a)〉

+ (2.53)
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+ kB lnZ(λ)

K∑
j=1

exp
Ç
−

m∑
a=1

λa
kB
G

(a)
j

å
Z(λ)︸ ︷︷ ︸

1

=

= kB lnZ(λ) +
m∑
a=1

λa〈G(a)〉p ≡ S(λ)

2.6.3 Types of constraints
In the previous example, we met two different types of constraints:

• First class (soft constraints), as the ones in (2.35a). These correspond
to observables G(a) that are fixed on average:

K∑
i=1

piG
(a)
i

!
= g(a) (2.54)

One example may be the energy of a system in thermal equilibrium with
the environment. The total energy is strictly conserved - but many different
partitions are physically possible. However, on average the smaller system
will have a definite energy, which can be experimentally measurable.
We denote with λ = (λ1, . . . ,λm)T the Lagrange multipliers corresponding
to the constraints (2.54), i.e. the conjugate variables of the g(a). In fact,
recall from (2.42) that:

ga = 〈G(a)〉p = −kB
∂

∂λa
lnZ(λ) a = 1, . . . ,m (2.55)

• Second class (hard class), such as the probability normalization con-
straint (2.35b). These correspond to exact conservation laws, that are
satisfied at all times with no uncertainty:

hb
!
= const. b = 1, . . . ,n (2.56)

For example, in an isolate system the energy, volume and number of par-
ticles are strictly fixed to E , V and N . We denote with γ = (γ1, . . . , γn)T
the conjugate variables of the hb, which are defined following (2.42) as:

γb = kB
∂ lnZ
∂h(b) (2.57)

In general, the entropy S will depend on both kinds of constraints:

S(λ,h) = kB lnZ(λ,h) +
m∑
a=1

λa〈G(a)〉p (2.58)

Let’s consider an infinitesimal change λ→ λ+ dλ, h→ h+ dh. The entropy
change dS is given by its differential:

dS =
m∑
a=1 �

��
��

kB
∂ lnZ
∂λa︸ ︷︷ ︸

(2.42) : −g(a)

dλa +
n∑
b=1

kB
∂ lnZ
∂hb︸ ︷︷ ︸

(2.57) : γb

dhb +
m∑
a=1

λa d〈G(a)〉p︸ ︷︷ ︸
(2.40) : dg(a)

+
m∑
a=1

��
��〈G(a)〉︸ ︷︷ ︸

(2.40) : g(a)

dλa =

(2.59)
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=
n∑
b=1

γb dhb +
m∑
a=1

λa dg(a)

If G(1) = H, the system energy, we call λ1 = 1/T and:

g(1) = 〈H〉p ≡ U (2.60)

From (2.59):

dU = T dS︸ ︷︷ ︸
δQ

−
ñ
T

m∑
a=2

λa dg(a) + T
m∑
b=1

γb dhb
ô

︸ ︷︷ ︸
δW

= δQ+ δW (2.61a)

which is the first law of thermodynamics.
If h1 = H ≡ U (fixed) then we identify γ1 = 1/T and again from equation
(2.59):

dU = T dS︸ ︷︷ ︸
δQ

−
ñ
T

m∑
a=1

λa dg(a) + T
m∑
b=2

γb dhb
ô

︸ ︷︷ ︸
δW

= δQ+ δW (2.61b)

which is again the first law of thermodynamics. Thus E = E(g,h) and:

λa = −
1
T

∂E
∂g(a) γb = −

1
T

∂E
∂hb

(2.61c)

Summarizing, in case (2.61a) we have a ≥ 2, b ≥ 1 and λ1 = 1/T , while in
(2.61b) we have a ≥ 1, b ≥ 2 and γ1 = 1/T .
Equations (2.42) and (2.57) are, respectively:g(a) = 〈G(a)〉 = −kB ∂

∂λa
lnZ(λ,h)

γb = kB
∂
∂hb

lnZ(λ,h)
(2.61d)

And from (2.61c):

if hb = V
∂E
∂V

= −P ⇒ Tγb = P =
(2.61d)

kBT
∂ lnZ
∂V

(2.61e)

if hb = N
∂E
∂N

= µ⇒ Tγb = µ =
(2.61d)

kBT
∂ lnZ
∂N

If g(1) = H, then:

〈H〉 =
(2.61d)

−kB
∂

∂(1/T ) lnZ = − ∂

∂β
lnZ

If g(2) = N , then from (2.61c) we have:

−Tλ2 =
∂E
∂N

= µ (2.61f)

and so (2.61d) implies that:

〈N〉 = −kB
∂

∂λ2
lnZ = kBT

∂

∂µ
lnZ (2.61g)
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�� ��Exercise 2.6.1 (Linear combination of constraints):

Show that if we have an extra constraint that is a linear combination of the
other ones, i.e.:

G(m+1) =
m∑
a=1

αaG
(a) (2.62)

then λm+1 = 0. In other words, redundant constraints are “not needed” to
find the solution.
However, if G(m+1) is non-linear, then in general λm+1 6= 0.
Solution.
Let {pmax} = (pmax

1 , . . . , pmax
K )T be the probability distribution satisfying a

set of m constraints:

〈G(a)〉pmax ≡ ga(pmax) =
K∑
i=1

pmax
i G

(a)
i

!
= ga a = 1, . . . ,m (2.63)

for some g = (g1, . . . , gm) ∈ Rm, such that SI(pmax) is maximum. In other
words, (pmax,λmax) is the solution of the system:∇SI(p) =

m∑
a=1

λa∇gk(p)

ga(p) = ga ∀a = 1, . . . ,m
(2.64)

Let’s introduce another another constraint which is a linear combination of
the previous m ones:

α1〈G(1)〉+ · · ·+ αm〈G(m)〉 !
= α1g1 + · · ·+ αmgm (2.65)

with α = (α1, . . . ,αm)T ∈ Rm \ {0}. Clearly (2.65) is immediately satisfied
by pmax, because of (2.63), and so adding (2.65) does not lead to a different
solution for the pdf.
In this case, the first K equation of systems (2.64) become:

∇SI(p) =
m∑
a=1

λa∇ga(p) + λm+1 ∇gm+1(p) =

=
(a)

m∑
a=1

λa∇ga(p) + λm+1
m∑
a=1

αa∇ga(p) =

=
m∑
a=1

(λa + αaλm+1)∇ga(p) (2.66)

where in (a) we applied the linearity of the gradient:

gm+1(p) =
m∑
a=1

αaga(p)

⇒∇gm+1(p) = ∇
m∑
a=1

αaga(p) =
m∑
a=1

αa∇ga(p)
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which works only because the constraint gm+1(p) is a linear combination
of the other constraints in the first place.
As pmax has not changed, also ∇SI(pmax) remains the same, meaning that
we can directly equate the right hand sides of (2.64) and (2.66), evaluated
at their respective solutions (pmax,λmax) and (pmax,λ′max):

m∑
a=1

λmax
a ∇gk(pmax) =

m∑
a=1

(λ′max
a + αaλ

′max
m+1 )∇ga(pmax)

One immediate solution is given by λ′max
a = λmax

a with a = 1, . . . ,m and
λ′max
m+1 = 0 - which is the one we expected.

Note, however, that this solution is not unique. For example: λ′max
a =

λmax
a − αaλ′max

m+1 with a = 1, . . . ,m is a solution for any value of λ′max
m+1 ∈ R.

This makes sense, as the system is overdetermined. Moreover, the linear
dependence of the observables {G(a)}a=1,...,m+1 makes their covariance matrix
singular, meaning that it isn’t positive definite (but positive semi-definite),
and so h(x) (2.46) is convex and not strictly convex, thus it may have more
than one minimum.

2.7 Variational Statistical Mechanics
All the ensembles from equilibrium Statistical Mechanics can be derived by
maximizing the information entropy SI(p) with some appropriate constraints.

2.7.1 Derivation of the MC ensemble
We start our discussion with the microcanonical ensemble, describing an
isolate system with fixed energy E , volume V and number of particles N .
As we did in section 1.3, we construct the microcanonical distribution ρMC
through a limiting process. In particular:

1. We consider the energy H(Q, P) fluctuating in a small interval [E , E + δE ],
with δE → 0. In other words, only the phase-space coordinates (Q, P)
corresponding to an energy H(Q, P) “sufficiently close to” E are allowed:

H(Q, P) ∈ [E , E + δE ] ≡ I

2. We discretize the phase-space Γ in 6N -dimensional non-overlapping cells
ci . If ci is sufficiently small, i.e. when its volume |ci| ≈ 0, then any
function f(Q, P) will be approximately constant for all points (Q, P) ∈ ci ,
and so we evaluate it at the cell’s centre (Qi, Pi).
For example, the energy H(Q, P) becomes:

H(Q, P) = H(Qi, Pi) + (negligible) terms when |ci| ≈ 0 ∀(Q, P) ∈ ci

For simplicity, let’s denote H(Qi, Pi) ≡ Hi (and similarly for other func-
tions).
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Consider the probability distribution ρd(Q, P) of microstates. For |ci| ≈ 0, it
is (approximately) constant inside each ci , and equal to ρi. Moreover, it is
non-zero only for ci corresponding to energies inside I. Putting everything
together, we can write:

ρd(Q, P) =
∑
ci∈Γ

1ci (Q, P)1I(Hi)ρi 1ci (Q, P) =

1 (Q, P) ∈ ci

0 otherwise
(2.67)

So the average of a generic observable O can be computed as:

〈O〉d =
∫

Γ
d3NQ d3NP ρd(Q, P)O(Q, P) =

=
(2.67)

∫
Γ

d3NQ d3NP
∑
ci∈Γ

1ci (Q, P)1I(Hi)ρiO(Q, P) =

=
∑
ci∈Γ

ρi1I(Hi)
∫

Γ
d3NQ d3NP 1ci (Q, P)O(Q, P) =

=
(a)

∑
ci∈Γ

ρi1I(Hi)
∫
ci

d3NQ d3NP︸ ︷︷ ︸
|ci|

Oi

=
∑
ci∈Γ
|ci|ρiOi1I(Hi) (2.68)

where in (a) we considered O(Q, P) equal to the constant Oi ≡ O(Qi, Pi) inside
the cell ci .
If we let O = ln ρd, then SI [ρd] = 〈O〉d is the information entropy of the pdf:

SI [ρd] = −kB
∫

Γ
d3NQ d3NP ρd(Q, P) ln ρd(Q, P) = (2.69)

=
(2.68)

−kB
∑
ci∈Γ

1I(Hi)|ci|ρi ln ρi = −kB
∑
ci∈Γ
Hi∈I

|ci|ρi ln ρi (2.70)

The only constraint that is left to impose is the normalization:

1 !
=

(2.35b)

∫
Γ

d3NQ d3NP ρd(Q, P) = 〈1〉d =
(2.68)

∑
ci∈Γ
|ci|1I(Hi)ρi =

∑
ci∈Γ
Hi∈I

|ci|ρi

(2.71)

So the values {ρmax
i } that maximize SI [ρd] subject to (2.71) are the solutions

of the Lagrange equations:

0 =
∂

∂ρj

[
SI [ρd]− λ0

∑
ci∈Γ
Hi∈I

|ci|ρi
]
= −kB(ln pmax

j + 1)|cj | − λ0|cj |

Rearranging:

ρmax
j = exp

Å
−1− λ0

kB

ã
= const. (2.72)
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And so, by applying the normalization (2.71):
∑
ci∈Γ
Hi∈I

|ci|ρmax
i

!
= 1⇒ pmax

i

∑
ci∈Γ
Hi∈I

|ci|
!
= 1⇒ pmax

i =
1∑

ci∈Γ
Hi∈I

|ci|
≡ ρ̄

Equivalently: ∑
ci∈Γ
Hi∈I

|ci| =
1
ρ̄

(2.73)

In the limit maxi |ci| → 0, the left hand side of (2.73) tends to the integral:∫
Γ

d3NQ d3NP 1I(H(Q, P)) =
(1.35)
(??)

pag.??

δE ·Ω(E ,V ,N)

while the right hand side remains the same constant, so that:

δE ·Ω(E ,V ,N) = 1
ρ̄

(2.74)

Where:

Ω(E ,V ,N) = lim
δE→0

∫
Γ d3NQ d3NP 1I(H)

δE
=
∫

Γ
d3NQ d3NP δ(H−E)

We can finally compute the entropy at the maximum:

SI [ρmax
d ] = −kB

∫
Γ

dΓ ρ̄ ln ρ̄ = −kB ln ρ̄
∫

Γ
dΓ ρ̄︸ ︷︷ ︸
1

= −kB ln ρ̄ (2.75)

Which in the limit maxi |ci| → 0 becomes:

SI [ρmax
d ] =

(2.74)
−kB ln 1

δE Ω(E ,V ,N) = kB ln(δE ·Ω(E ,V ,N)) =

= kB ln Ω(E ,V ,N) + kB ln δE︸ ︷︷ ︸
Irrelevant term

which corresponds exactly to the microcanonical entropy in Statistical Mechanics,
up to a irrelevant constant, which is not a problem as only differences in entropy
have physical meaning.
Similarly, we can use (2.74) to rewrite the average (2.68) as follows:

〈O〉d =

∑
ci∈Γ
|ci|Oi1I(Hi)

∑
ci∈Γ
|ci|1I(Hi)

−−−−−−−→
maxi |ci|→0

1
δEΩ(E ,V ,N)

∫
Γ

d3N d3NPO(Q, P)1I(H)

(2.76)

−−−→
δE→0

1
Ω(E ,V ,N)

∫
Γ

d3NQ d3NPO(Q, P)δ(H −E)

(2.77)

which is again equivalent to the previously obtained results (1.40, pag. 32). (Lesson 17 of
16/4/20)
Compiled: January
28, 2021
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2.7.2 Derivation of the C ensemble
In the case of the canonical ensemble we do not need any limiting procedure,
as we are not dealing with a “infinitely thin” hyper-surface of constant energy,
meaning that Dirac Deltas appear and all functions are well behaved.
So, let’s consider a system with fixed volume V and number of particles N that
is put in thermal contact with a larger environment at a fixed temperature
T . As energy exchanges are now possible, the system’s energy H will not be
conserved. However, experimentally, we see that at equilibrium the average
value of H is well defined, with Var(H) vanishingly small.
We represent this situation with a constraint of the first class (2.35a):

U
!
= 〈H〉 =

∫
Γ

d3NQ d3NP︸ ︷︷ ︸
dΓ

H(Q, P)ρ(Q, P) (2.78)

And the usual normalization constraint (second class):

1 !
=
∫

Γ
dΓ ρ(Q, P) (2.79)

However, now we are dealing with a continuous pdf ρ, and not discrete proba-
bilities pi or ρi as seen in the previous cases, meaning that we need to introduce
some results from the calculus of variations7.
In fact, the information entropy SI is now a functional, i.e. a mapping between
functions (which, in this case, are pdfs over phase-space ρ : Γ→ [0, 1]) and real
numbers, defined by:

SI [ρ] = −kB
∫

Γ
d3NQ d3NP ρ(Q, P) ln ρ(Q, P) (2.80)

We want to maximize SI [ρ] subject to the constraints (2.78) and (2.79). The
method of Lagrange multipliers naturally extends to the maximization of func-
tionals, by just replacing derivatives with functional derivatives.
Recall that the functional derivative (or Gateaux derivative, or first variation)
of a functional F evaluated at ρ is defined as:

δF [ρ] = lim
τ→0

f(ρ+ τs)− f(ρ)
τ

=
d
dτ f(ρ+ τs)

∣∣∣
τ=0

(2.81)

where s : Γ→ R is a “perturbation of ρ”, i.e. some function vanishing at ∞.
Thus, the Lagrange multipliers method leads to:

0 !
= δ[SI [ρ]− λ1

∫
Γ

d3NQ d3NP ρ ·H − λ0

∫
Γ

d3NQ d3NP ρ]

The functional derivative is linear (as the usual one), and so we may compute
separately the variation of each term, starting from δSI [ρ]:

δSI [ρ] =
(2.81)

d
dτ SI(ρ+ τs)

∣∣∣
τ=0

= −kB
d
dτ

∫
Γ

dΓ (ρ+ τs) ln(ρ+ τs)
∣∣∣
τ=0

=

(2.82)
7∧See www2.math.uconn.edu/~gordina/NelsonAaronHonorsThesis2012.pdf for a re-

fresher

84

www2.math.uconn.edu/~gordina/NelsonAaronHonorsThesis2012.pdf


= −kB
∫

Γ
dΓ [s ln(ρ+ τs) + s

���
�ρ+ τs�
���

�(ρ+ τs)]
∣∣∣
τ=0

=

= −kB
∫

Γ
dΓ s[1 + ln(ρ)]

δλ1

∫
Γ

dΓ ρH = λ1
d
dτ

∫
Γ

dΓ (ρ+ τs)H
∣∣∣
τ=0

= λ1

∫
Γ

dΓ sH

δλ0

∫
Γ

dΓ ρ = λ0
d
dτ

∫
Γ

dΓ (ρ+ τs)
∣∣∣
τ=0

= λ0

∫
Γ

dΓ s

Putting everything back together leads to:

0 !
=
∫

Γ
d3NQ d3NP s(Q, P)[−kB − kB ln ρ(Q, P)− λ1H(Q, P)− λ0]

This relation holds for any possible s : Γ→ R (that vanishes at ∞), which can
only happen if the function multiplying s vanishes everywhere:

0 !
= −kB − kB ln ρ(Q, P)− λ1H(Q, P)− λ0

And rearranging leads to:

ρ(Q, P) = exp
Å
−1− λ0

kB

ã
exp
Å
− λ1
kB
H(Q, P)

ã
(2.83)

As λ1 is the conjugate variable of the energy, λ1 = 1/T , and so λ1/kB =
1/(kBT ) ≡ β, which is generally known by experiment (it is easier to measure
the temperature T of the environment than the energy of the system). To find
λ0 we only need to impose the normalization constraint (2.79):

1 !
=
∫

Γ
dΓ ρ(Q, P) = exp

Å
−1− λ0

kB

ã ∫
Γ

dΓ exp (−βH(Q, P))︸ ︷︷ ︸
Z(T ,V ,N)

⇒ exp
Å

1 + λ0
kB

ã
= Z(T ,V ,N)

Substituting back in (2.83) we get:

ρ(Q, P) = e−βH(Q,P)

Z(T ,V ,N) (2.84a)

with:

β =
1

kBT
Z =

∫
Γ

d3NQ d3NP e−βH(Q,P) = e−βA(T ,V ,N)

From (2.61c-2.61g) and (2.84a):

P = −∂A
∂V

(T ,V ,N) µ =
∂A

∂N
(T ,V ,N) (2.84b)

E = 〈H〉 = −∂ lnZ
∂β

=
∂

∂β
[βA(T ,V ,N)] (2.84c)

The maximum entropy is then:

SI [ρ] = −kB
∫

Γ
dΓ ρ ln ρ =

(2.84a)
−kB

∫
Γ

dΓ
e−βH

Z
(−βH − logZ) =
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= −kB

[ ∫
Γ

dΓ
e−βH

Z
(−βH)− logZ

∫
Γ

dΓ
e−βH

Z︸ ︷︷ ︸
1

]
=

= −kB(−β〈H〉ρ − logZ) = 1
kBT

kB〈H〉ρ + kB logZ =

=
〈H〉
T

+ kB logZ

�� ��Exercise 2.7.1 (2):

Fix the correct constants for the volume element dΓ ∝ d3NQ d3NP and the
case of identical particles.

Solution. As only differences in entropy are physical, Z is defined up to a
multiplicative constant. So we can divide the volume element dΓ by h3N ,
making it dimensionless. In this way, Z becomes proportional the number
of cells of hyper-volume h3N occupied by the ensemble in phase-space (this
choice can be fully motivated by quantum mechanical arguments, as it
amounts to a “quantization” of Γ).

Moreover, to resolve the Gibbs paradox, we need to count all permutations
of identical particles as one. So, for a system of N particles, this amounts to
rescaling dΓ by N !

At the end, the final definition of Z(T ,V ,N) becomes:

Z(T ,V ,N) =
∫

Γ

d3NQ d3NP

h3NN !
e−βH(Q,P)

2.7.3 Derivation of the G-C ensemble
In the grandcanonical ensemble we consider a system exchanging both heat
Q and particles δN with a larger environment. Let’s assume, for simplicity,
that all particles are identical.
At equilibrium, it is experimentally observed that the average number of particles
〈N〉 inside the system is fixed to a certain value N , and does not fluctuate
much. This is similar to what happened with energy in the canonical ensemble,
and so we need to add a similar soft constraint:

〈HN 〉
!
= E ; 〈N〉 !

= N (2.85)

where:

HN (QN , PN ) = ‖P‖
2

2m + U(QN ) QN , PN ∈ R3N

is the Hamiltonian of N particles interacting with with the potential U .
We search for a distribution ρN (Q, P) such that:

ρN (QN , PN ) dΓN
N !h3N =

Probability to find N particles of the system with
coordinates within a volume element
d3NQN d3NPN ≡ dΓN in phase space

(2.86)
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The normalization constraint (2.35b) is:

1 !
=

∞∑
N=0

∫
ΓN
ρN (QN , PN ) dΓN

N !h3N ≡ 〈1〉g.c. (2.87)

whereas the constraints in (2.85) become:

E !
= 〈HN 〉 =

∞∑
N=0

∫
ΓN
ρN (QN , PN )HN (QN , PN ) dΓN

N !h3N (2.88a)

N !
= 〈N〉 =

∞∑
N=0

N
∫

ΓN
ρN (QN , PN ) dΓN

N !h3N︸ ︷︷ ︸
Marginalized distribution:
probability that the system

contains N particles

(2.88b)

The grand-canonical average of a generic observable ON (QN , PN ) is:

〈O〉g.c. =
∞∑
N=0

∫
ΓN
ρN (QN , PN )ON (QN , PN ) dΓN

N !h3N (2.89)

In the case of ON = log ρN the average is the information entropy:

SI [ρg.c.] = −kB
∞∑
N=0

∫
ΓN

dΓN
h3NN !

ρN (QN , PN ) ln ρN (QN , PN ) (2.90)

The Lagrange multipliers equations are:

0 !
= δ[SI [ρg.c.]− λ0〈1〉g.c. − λ1〈H〉g.c. − λ2〈N〉g.c.] =

With similar calculations as in (2.82) we get:

= −
∞∑
N=0

∫
ΓN

dΓN
N !h3N δρN (QN , PN )

[
kB + kB ln ρN (QN , PN ) + λ0+

+ λ1HN (QN , PN ) + λ2N)
]

(2.91)

where δρN : Γ→ R is a “perturbation” of ρN .

Equation (2.91) holds for any δρN , meaning that the expression in the square
brackets must vanish everywhere:

0 !
= kB + kB ln ρN (QN , PN ) + λ0 + λ1HN (QN , PN ) + λ2N

leading to:

ρN (QN , PN ) = exp
Å
−λ0 + 1

kB

ã
︸ ︷︷ ︸

1/Θ

exp
Å
− λ1
kB
HN (QN , PN )− λ2

kB
N

ã
λ1 is the conjugate variable to the energy, and so λ1 ≡ −1/T . On the other
hand, λ2 is the conjugate variable of the number of particles N , and so we
define λ2 ≡ −µ/T , where µ is called chemical potential.
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So we can rewrite ρN as follows:

ρN (QN , PN ) = 1
Θ

exp
(
− βHN (QN , PN ) + βµN

)
; β =

1
kBT

(2.92)

Then, from the normalization constraint (2.87):

1 !
=

∞∑
N=0

∫
ΓN
ρN (QN , PN ) dΓN

N !h3N =

=
1
Θ

∞∑
N=0

∫
ΓN

dΓN
N !h3N exp

(
− βHN (QN , PN ) + βµN

)
Rearranging:

exp
Å

1 + λ0
kB

ã
≡ Θ(T ,µ,V ) =

=
∞∑
N=0

∫
ΓN

dΓN
h3NN !

exp
(
− βHN (QN , PN )

)
exp(+βµN) =

=
∞∑
N=0

[ eβµ︸︷︷︸
z

]N
∫

ΓN

dΓN
h3NN !

exp
(
− βHN (QN , PN )

)
︸ ︷︷ ︸

Z(T ,V ,N)

(2.93)

=
∞∑
N=0

zNZ(T ,V ,N); z = eβµ (2.94)

Θ(T ,µ,V ) is the grand canonical partition function. Z(T ,V ,N) is the
partition function of a canonical ensemble of N particles in a volume V at
temperature T , with corresponding Helmholtz free energy AN (T ,V ,N): And
so:

Z(T ,V ,N) =
∫

ΓN

dΓN
h3NN !

e−βHN (QN ,PN ) ≡ e−βAN (T ,V ,N) (2.95)

Finally, we can find T and µ (related to the Lagrange multipliers λ1 and λ2) by
imposing the constraints (2.88a-2.88b), leading to:

N !
= 〈N〉 = kBT

∂

∂µ
ln Θ(T ,µ,V ) (2.96)

E !
= 〈H〉 = − ∂

∂β
ln Θ(T ,µ,V ) (2.97)

as it is immediate to verify using the definitions (2.89) and (2.94).

The maximum entropy can be obtained by substituting ρN given by (2.92) in
the formula for SI (2.90):

max
ρ

SI [ρ] ≡ SGC(T ,µ,V ) = kB ln Θ(T ,µ,V ) + 〈H〉
T
− µ

T
〈N〉

We then define:

Φ(T ,µ,V ) ≡ −kBT ln Θ = E − TSGC − µN (2.98)
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Large V limit

From (2.94) and (2.95) we have:

e−βΦ(T ,µ,V ) = Θ =
∞∑
N=0

eβ(µN−A(T ,V ,N)) (2.99)

Then from (2.61c-2.61g):

P =
∂

∂V
Φ(T ,µ,V ) (2.100)

〈H〉 = ∂

∂β
[βΦ(T ,µ,V )] = E(T ,µ,V ) (2.101)

〈N〉 = − ∂

∂µ
Φ(T ,µ,V ) = N (T ,µ,V ) (2.102)

where the last two equations coincide with (2.96) and (2.97).

Since E and N in (2.101) and (2.102) are expected to be extensive, whereas µ
and β are intensive, we must have that Φ is extensive, i.e.:

Φ(T ,µ,V ) = V ϕ(T ,µ) (2.103)

Using (2.100) we have ϕ(T ,µ) = −P , the grand canonical pressure (since it
depends on µ and T ).
Thus we have:

e−βPV =
(2.94)
(2.98)

∑
N

eβµN−A(T ,V ,N) (2.104)

The large V limit

From (2.84b) the canonical chemical potential is:

µC(T ,V ,N) = ∂

∂N
A(T ,V ,N)

which is intensive since both N and A are intensive:

µc(T ,V ,N) ≡ µc(T ,V ) +O

Å 1
N

ã
�� ��Exercise 2.7.2 (2):

Prove the last chain using:

A(T ,V ,N) = Na

Å
T , V
N

ã
+O(lnN)

as was shown in chapter 2.
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In (2.102) we can replace the sum ∑∞
N=0 with an integration

∫∞
0 dN as the

leading contributions are the large N , and we can verify “a posteriori” that
if V is macroscopic, then N/V → const. when V → ∞. Then, applying the
saddle-point approximation:

−βΦ = βP (µ,T )V = β[µN̄ −A(T ,V , N̄)] +O(ln V )

and so N̄ is such that:

µ =
∂

∂N
A(T ,V ,N)

∣∣∣
N=N̄

= µc(T ,V ,N)
∣∣∣
N̄
=

= µc(T ,V ) +O

Å 1
N

ã
Then:

PV = µN̄ −A(T ,V , N̄)

with N̄ satisfying:

µ =
∂A

∂N

∣∣∣
N=N̄

Finally, from (2.102):

N = 〈N〉 = − ∂

∂µ
Φ =

∂

∂µ
(PV ) =

= N̄ +
∂

∂N
(µN −A(T ,V ,N))

∣∣∣
N=N̄︸ ︷︷ ︸

=0

∂N̄

∂µ
= N̄

What remains to be proved is that this is really a maximum, by computing the
second derivative. (Lesson 18 of

20/4/20)
Compiled: January
28, 20212.7.4 Remark on the Legendre Transform

We saw that the Free energy A(T ,V ,N) is the Legendre transform of the
energy with respect to the entropy:

dE = −P dV + T dS + µ dN (2.105)Å
∂E
∂S

ã
V N

= E − TS (2.106)

Then we solve for S(T ,V ,N) and write
: A(T ,V ,N) = E − TS (2.107)

dA = −P dV − S dT + µ dN (2.108)Å
∂A

∂N

ã
V T

= µ (2.109)

And we solve for N(T ,µ,V ). The Legendre transform of A wrt N (or equiva-
lently the Legendre transform of E wrt both S and N) is:

Φ(T ,µ,V ) = A−Nµ (2.110)
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dΦ = −P dV − S dt−N dµ (2.111)
Note that Φ is extensive since A and N are, and so Φ(T ,µ,V ) = V ϕ(T ,µ).
Then:

−P =

Å
∂Φ
∂V

ã
T ,µ

= ϕ(T ,µ) (2.112)

Φ(T ,µ,V ) = −P (T ,µ)V (2.113)

where P (T ,µ) is the grand-canonical pressure.�� ��Exercise 2.7.3 (4):

Determine Φ for the Ideal Gas and show that:

P (T ,µ)V = 〈N〉kBT

which is the equation of state in the GC ensemble.

2.7.5 Fluctuation of the number of particles
This is related to the correction of the saddle-point approximation.

eβPV =
(2.94)
(2.98)

∑
N

eβµN−βA(T ,V ,N) = (2.114)

=
V�1

eβN̄µ−βA(T ,V ,N̄)
∫

dN exp
Å
−(N − N̄)2

2σ2
N

ã
+ . . .

where:

σ2
N = 〈(N − N̄)2〉 =

Å
β
∂2A

∂N2

ã−1

N=N̄
(2.115)

Since from exercise 3 above we have:

A(T ,V ,N) = Na(T , v) +O(lnN) v =
V

N
(2.116)

(In the following the subindex c refers to “Canonical Ensemble”).Å
∂2A

∂N2

ã
N̄
=

∂

∂N

ï
a− v∂a

∂v

ò
︸ ︷︷ ︸
∂A
∂N≡µc(T ,v)

∣∣∣
N̄
= −v

2

V

∂

∂v
µc(T ,V )

∣∣∣
v̄
=
v3

V

∂2a

∂v2

∣∣∣
v̄
= (2.117)

= −v
3

V

∂PC
∂v

∣∣∣
v=v̄

v̄ ≡ N̄

V

where we have used:

Pc =
(2.108)

−∂A
∂V

= −∂a
∂v

(2.118)

From equations (2.115) and (2.117) we have:

σ2
N =

kBTV

v̄2 kT = N̄
kBT

v̄
kT ⇒

σN√
N̄
∝ 1√

N̄
(2.119)
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where:

kT ≡ v̄

Å
−∂Pc
∂v

(T , v)
ã
v̄

(2.120)

is the isothermal compressibility.�� ��Exercise 2.7.4 (5):

Show that in the special example of the Ideal Gas we have:

kT (T , v) = kBT

v
(2.121)

In chapter 2 we found the energy fluctuation in the canonical ensemble to be:

σ2
E = 〈(H − 〈H〉)2〉 = kBT

2Cv(T ,V ,N)⇒ σF
〈H〉

∝ 1√
N

(2.122)

where CV is the heat capacity (∝ N).
Equations (2.120) and (2.122) are two instances of the famous fluctuation
dissipation theorem (another instance is the Einstein relation we found in
chapter 4).
In both cases above we see that the fluctuations σN/〈N〉 and σE/〈H〉, (〈H〉 ∝ N)
tend to 0 in the thermodynamic limit unless the isothermal compressibility and
the heat capacity diverges. Typically this is what happens at a phase transition
as we will see in the next chapter.

2.7.6 Absence of macroscopic motion in equilibrium
The MaxEnt principle allows us to prove that in equilibrium there cannot exist
macroscopic motion of matter. Indeed, divide the 3D system in macroscopically
small regions such that at stationarity the part of the system occupying the
j-th cell has a momentum pj , a mass Mj , a total energy Ej and thus an internal
energy:

Ej −
P 2
j

2Mj
= EInternal

j

and an entropy:
Sh(Ej − P 2

j /(2Mj))

Figure (2.4) – Each macroscopic region of the system at equilibrium shares the same
momentum and angular momentum.
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We assume that the volume of the cell is fixed and also the number of particles
that it contains (thus we will not display their dependence in Sj). If interparticle
forces are short range, the total entropy is:

S =
∑
j

Sj

Ç
Ej −

P 2
j

2Mj

å
(2.123)

The system is isolated and so:∑
j

Ej = E ,
∑
j

pj = P ,
∑
j

rj ×P j = L (2.124)

are conserved but otherwise undetermined. Assuming the MaxEnt principle we
have to maximize S wrt pj under the 7 constraints (2.124), and so we have to
determine the stationary conditions for the following system:

F =
∑
j

Si

Ç
Ej −

P 2
j

2Mj

å
+ a

∑
j

pj + b
∑
j

rj × pj − c
∑
j

Ej

∂F
∂Ej

= 0⇔ ∂Sj
∂Ej

Ç
Ej −

P 2
j

2Mj

å
= c ∀j (2.125)

∇pj
F = 0⇔ ∂

∂Ej
Sj

Ç
Ej −

P 2
j

2Mj

å
︸ ︷︷ ︸

1/T

pj
Mj

= a+ b× rj (2.126)

vj =
pj
Mj

= (a+ b× rj)T (2.127)

which tells us that all parts have a common uniform translation velocity aT
and a uniform rotatory motion with angular velocity Ω = bT . Thus the system
behaves like a rigid body as far as the macroscopic motion is concerned.
He4 is exceptional since it cannot rigidly rotate.

Figure (2.5)
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rj = R+ r′j

vj = ṙj = Ṙ+ ṙ′j = V + Ω× r′j = V −Ω×R︸ ︷︷ ︸
aT

+Ω× rj︸ ︷︷ ︸
bT

2.8 Non Equilibrium Entropy
May we define the entropy in non equilibrium like we did in (??).

SI [ρ(t)] = −kB
∫

dΓ ρ(Q, P, t) ln ρ(Q, P, t) (2.128)

where the non-equilibrium probability distribution is time independent and, of
course, satisfies the Liouville Theorem (??, ch. 5):

∂

∂t
ρ(Q, P, t) = −

∑
α

ï
∂ρ

∂qα
(Q, P, t) ∂H

∂pα
(Q, P)− ∂ρ

∂pα
(Q, P, t)∂H

∂qα
(Q, P)

ò
=

(2.129)
≡ −{ρ,H}

with a given initial condition ρ(Q, P, t = 0).

Let us consider our paradigm of irreversible transformation:

Figure (2.6) – Irreversible transformation: free gas expansion.

and let us calculate dSI / dt using (2.128) and (2.129) (compare with exercise
5.7 of Sethna).
For a generic functional F (SI is a particular instance):

F [ρ] =
∫
f(ρ(Q, P, t)) d3NQ d3NP︸ ︷︷ ︸

dΓ

(2.130)

we have:

d
dtF [ρ] =

∫ ∂

∂t
f(ρ(Q, P, t)) dΓ =

∫
dΓ f ′(ρ)∂r

∂t
= (2.131)

=
(2.129)

−
∫

dΓ f ′(ρ)∇ρ ·V = −
∫

dΓ∇f(ρ) ·V

∇ρ =
Å
∂ρ

∂qα
, ∂ρ
∂pα

ãT
∈ R6N (2.132)

V =

Å
∂H

∂pα
,−∂H

∂qα

ãT
∈ R6N (2.133)
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Notice that:

∇ ·V =
∑
α

Å
∂

∂qα

∂H

∂pα
− ∂

∂pα

∂H

∂qα

ã
= 0 (2.134)

⇒∇f ·V = ∇ · (fV)− f∇ ·V = ∇(fV) (2.135)

Thus (2.131) becomes:

d
dtF [ρ] = −

∫
dΓ∇(fV) = −

∮
Surface
in Γ at∞

dΣ ·Vf = 0 (2.136)

In our case f(ρ) = −kBρ ln ρ. Since
∫
ρ dΓ = 1, then ρ→ 0 when Q, P→∞

and so f(ρ)→ 0 on the surface at ∞ in the last integral. In summary:

d
dtSI [ρ(t)] = 0 (2.137)

that is the information entropy does not change in the irreversible process of
the free expansion (and any other process!).
This is because ρ encodes full information about the system, and during the
deterministic evolution we do not lose any of it, meaning that our ignorance
does not rise.
If we discard some of the information, we will see the entropy rise. For example,
consider the marginal probability distribution ρD(Q, t), and suppose it evolves
as a diffusion process:

ρ̇D(Q, t) = D∇2ρD(Q, t) (2.138)

We now compute:

dvtSI [ρD(t)] = −kB
d
dt

∫
ρd ln ρd d3NQ =

= −kB
∫ ï∂ρD

∂t
ln ρd + ρd

∂ρd
∂t

1
ρd

ò
d3NQ

Note that the last term:

−kB
∫

d3NQ
∂

∂t
ρD(Q, t) = −kB

∂

∂t

∫
d3NQ ρD(Q, t)︸ ︷︷ ︸

=1

= 0

Thus:
d
dtSI [ρD(t)] = −kB

∫
d3NQ

∂

∂t
ρD ln ρD = (2.139)

= −kBD
∫

d3NQ (∇2ρD) ln ρD = kBD
∫

d3NQ
(∇ρD)2

ρD
≥ 0

(2.140)

where we have integrated by parts and assumed that (∇ρD) ln ρD → 0 when
Q→∞. This is due to the fact that −D∇ρD is the probability flux and this
has to be 0 at infinity if the probability has to be conserved. Then:

0 =
∂

∂t

∫
ρD d3NQ = D

∫
∇2ρD d3NQ = D

∫
dΣ ·∇ρ0 (2.141)
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As expected, now the entropy rises during the irreversible transformation.

Clearly, the diffusion assumption is ad-hoc. To obtain a definition of entropy
for the non-equilibrium case which is truly general we need a different approach
altogether. One possible way is to divide the system in macroscopically small
parts, so that each of them d3r, has a well defined energy density ε(r, t), number
of particles density n(r, t) and velocity u(r, t) and so it can be considered “in
equilibrium”. This is, in essence, the hypothesis of local thermal equilibrium
(lte).

Recall that, for a macroscopic system, we have:

S(E ,V ,N) = V s

Å E
V

, N
V

ã
(2.142)

This suggests to define the entropy of the system outside equilibrium but in lte
(and with short range interparticle forces) as:

S(ε,n,u) =
∫

d3r s
(
ε(r, t)− m

2 u
2(r, t)︸ ︷︷ ︸

Internal energy of the
subsystem in d3r

centred at r

,n(r, t)
)

(2.143)

This S never decreases over time!
Notice that (2.143) does not take into account all the details of the evolution
like it did SI [ρ]. Thus the set of configurations (Q, P) at time t which derives
from initial configurations at time t = 0 where all the particles were on the
left side of a box have an essentially zero measure (from the Liouville theorem)
and thus when included in (2.143) have the same ε(r, t), u(r, t), n(r, t) as the
almost totality of configurations that will “never” have the possibility to lead
the gas again the left half of the box once the momenta P→ −P. This means
that even changing t→ −t will make S in (2.143) to increase in time.

2.8.1 Maxwell demon

Figure (2.7)
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The demon is a device that allows fast particles from the right to go to the left.

0 ≤ ∆Stot = ∆Senv + ∆Ssys︸ ︷︷ ︸
might be ≤ 0

+∆Sdemon

The second principle of thermodynamics may appear violated when considering
only the system and the environment. However, it must apply when we consider
also the demon. In other words, the act of storing information (or, more precisely,
deleting it), produces entropy. See ex. 5.2.
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Chapter 3

Ising Model

(Lesson 19 of
22/04/20)
Compiled: January
28, 2021

Statistical Mechanics, at its core, allows us to understand and quantify macro-
scopic phenomena starting from microscopic dynamics. In particular, it provides
a window in how surprisingly complex emergent behaviours arise from the
interaction of many relatively simple components.
One such example is given by phase transitions, i.e. abrupt changes of a Phase transitions
system’s properties when surpassing a well-defined threshold. For instance,
water becomes ice when its temperature dips below T = 0 °C, or steam when
T = 100 °C is reached.
Perhaps one of the simplest models describing a phase-transition is the Ising
Model. At its origin, it was meant as an explanation of ferromagnetism.
Certain materials possess no net magnetic moment above a certain temperature Ferromagnetism

and paramagnetismTc (the Curie temperature), and develop a temporary induced magnetization
only in the presence of an external magnetic field (paramagnetic phase).
However, when T dips below Tc, they exhibit spontaneous magnetization,
even in the absence of any external field, and behave like permanent magnets
(ferromagnetic phase).
Classical Statistical Mechanics, by itself, cannot explain this kind of behaviour. Quantum nature of

ferromagnetismIn fact, if we suppose that magnetization arises from tiny current loops, its
(canonical) thermal average is predicted to be always 0, regardless of temper-
ature1. This is because paramagnetism and ferromagnetism are inherently
quantum phenomena, arising from the alignment of intrinsic magnetic dipoles
of atoms, i.e. spins.
In 1920, Wilhelm Lenz proposed a model of interacting spins on a lattice to his
student Ernst Ising, who then found an analytic solution for the one-dimensional
case in 1924. Underwhelmingly, the model did not exhibit any kind of phase
transition - but it was still able to capture the attention of many researcher.
An analytic solution for the d = 2 generalization was found by Lars Onsager
in 1944, requiring a long and sophisticated mathematical derivation. In this
case, however, the model was complex enough to capture a phase transition -
a very important result for Statistical Mechanics.
The Ising Model a lot of research and applications. Nowadays, the Ising Model Applications

1∧This is consequence of the Bohr-van Leeuwen theorem. See [6]
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is relevant for simulating the behaviour of gases on a discretized grid (lattice
gases), more complex spin glasses, and also the activity of neural networks
(e.g. Hopfield networks). Also higher dimensional cases are of interest - for
example the d = 4 model is relevant for modelling spacetime (3 dimensions for
space plus 1 for time). While no analytic solution for d > 2 is known, efficient
numerical methods are available, and will be examined in a later chapter.

3.1 Lattice gas
The Ising Model can be introduced as a purely classical model when applied to
the behaviour of gas particles in a discretized grid (lattice), completely bypassing
the need to deal with quantum effects which are often difficult to interpret.
Consider a system S of N particles of mass m enclosed in a volume V . Its state
is completely specified by 3N positions and 3N momenta:

Q = (q1x, q1y, q1z, . . . , qNx, qNy, qNz) = (q1, . . . , qN ) ∈ R3N

P = (p1x, p1y, p1z, . . . , pNx, pNy, pNz) = (p1, . . . ,pN ) ∈ R3N

Suppose that the particles interact through a potential VN (Q) depending only
on the spatial coordinates. The Hamiltonian is then given by:

HN (Q, P) =
N∑
i=1

‖pi‖
2

2m + VN (Q) (3.1)

The system is at equilibrium with a much larger environment, with which it
exchanges both energy and particles. Denoting with P the grand-canonical
pressure, the grand-canonical partition function is given by:

eβPV =
+∞∑
N=0

1
N !

∫
ΓN

N∏
i=1

d3qi d3pi
h3 exp(−β[HN (Q, P)− µN ]) (3.2)

where µ is the system’s chemical potential, representing the energy cost of
adiabatically adding one particle to S such that the resulting N + 1 system
is still at equilibrium. Physically, the value of µ fixes the average number of
particles 〈N〉 in S: if we “forcefully empty S”, making N = 0, particles will
flow in S from the environment until the “cost” of adding a new particle reaches
µ, and then N will only slightly oscillate.
Since in (3.1) momenta and positions are independent, the integral over P in
(3.2) is just a gaussian integral, resulting in:

∫
R3N

d3NP

h3N exp
Ç
−β

N∑
i=1

‖pi‖
2

2m

å
=

Å2πm
βh2

ã 3N
2
≡ λ−3N (3.3)

where:

λ =

 
βh2

2πm =
β=1/kBT
}=h/2π

 
2π}
mkBT
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is called the thermal wavelength2, and has dimensions of a length (in fact
[d3p /h3] = 1/m3).

Substituting (3.3) back in (3.2) leads to:

eβPV =
+∞∑
N=0

1
N !

∫
V N

d3NQ e−βVN (Q)

(
eβµ

λ3︸︷︷︸
z

)N
=

=
+∞∑
N=0

zN

N !

∫
V N

d3NQ e−βVN (Q) (3.4)

We now discretize the system’s volume V in small cubic sites, each with 1. Lattice
discretizationedges of size a (fig. 3.1). Space is thus divided in cells, each labelled by its

3-dimensional integer indices xi ∈ Z3.

More in general, we may consider a d-dimensional system, of d-volume3 V . Then,
each cell i will be labelled by d indices: xi ∈ Zd. In fact, many physical systems
can be modelled with d 6= 3 dimensions. For example, oxygen interacting with
a graphite plane is intrinsically a d = 2 system.

Also, cells may be of different shapes: it suffices that they are all equal and
that they tessellate the entire space. For instance, in d = 2 we may subdivide
a plane in triangles instead of squares, or with tetrahedra instead of cubes in
d = 3. In our case we will focus on the simplest choice, the cubic one.

Suppose now that VN (Q) may be written as sum of two-body interactions: 2. Pair-wise
close-range
potential

VN (Q) =
N∑
i<j

v(qij) qij ≡
∥∥∥qi − qj∥∥∥ (3.5)

where v(qij) is the potential of two particles i and j separated by a (relative)
distance qij . If the gas is made of neutral particles, then v(q) is a close-range
attractive interaction, with the shape of a Lennard-Jones potential (fig.
3.2).

Figure (3.1) – Examples of cubic lattices in d = 2 and d = 3.

2∧It is the average de Broglie wavelength of particles of an ideal gas at temperature T ,
i.e. of particles with energy of order kBT .

3∧If d = 1, then V is a length, if d = 2 it is an area, and if d = 3 it is the usual volume.
For higher dimensions it is a hyper-volume.
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Figure (3.2) – Shape of the Lennard-Jones potential. Two particles separated by a
sufficiently small distance q ∼ a are weakly attracted to each other, and repelled if q → 0 (as
if they were hard spheres). As v(q) quickly vanishes for q →∞, particles that are too far
from each other do not interact. Physically, such v(q) is due to interactions of the electronic
clouds of neutral atoms. For q too small, the (Pauli) repulsion of electrons dominates. Due
to quantum fluctuations, the electronic clouds are not completely uniform: sometimes an
electron “spends more time one one side”, producing a short-lived polarization. If q ∼ a, one
such “instantaneous dipole” may induce a temporary dipole in the other atom. It is this
correlation between temporary polarizations that leads to a weak attractive force between
the atoms (van der Waals force).

If we choose the lattice step length a as the position of the minimum of v(q),
then on average at most one particle will occupy a given cell at any time -
because two particles in the same site would be separated by q < a, for which
v(q) is strongly repulsive. Moreover, only particles in neighbouring cells are
sufficiently close to interact with each other.
So, in approximation, we consider a model in which cells can contain at 3. Discretized

potentialmost one particle at a time (at its centre), and interactions between non-
neighbouring cells are neglected. Thus the distance q between two particles
must be a multiple of a, and the interaction potential is given by:

v(q) =


+∞ q = 0

−ε0 q = a

0 otherwise

We then define the occupancy ni of cell i as a binary variable:

ni =

1 Site i contains a particle

0 Site i is empty

If we know all {ni}, then the system (in this discretized approximation) is
completely determined. Note that dealing with occupancies automatically takes
into account the indistinguishability of particles: ni = 1 regardless if cell i is
occupied by particle #3 or #42.

Shortcomings of the lattice model. In summary, the lattice model is a way
to deal with the complex integration in 3.4, making the following approximations:

1. Discretization: space is divided in small cubic units, each containing at
most one particle.
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2. Close-range pair-wise interaction: the only possible interactions are
between pairs of neighbouring cells.

As a consequence of these approximation, there is a maximum density in the
system, corresponding to the case when all cells are occupied - meaning that
the system cannot be compressed over a certain threshold.
Moreover, there is no way to understand if, in the densest case, particles are
still moving from one cell to the other, “exchanging places” with each other,
or if they just stay forever in their original site: in both cases, all the ni will
be equal to 1, and remain constant. In other words, there is no difference
between the liquid phase and the solid one, meaning that the model cannot
appreciate the liquid-solid phase transition, and so it is not very good for
explaining the usual three phases of matter. However, it can describe accurately
the liquid-vapour transition, and - more importantly - it leads to the Ising
Model, which is very important in physical mechanics.

There are of course more complex methods that relax the lattice approximation,
dealing directly with the grand partition function in the continuum. In general
they apply perturbation theory to the pair-wise potential, and through quite
involved expansions (e.g. Virial expansion, or Mayer cluster expansion) they
lead to equations of state capturing both the solid-liquid transition and the
liquid-vapour transition. These are all well-known techniques (Mayer worked in
the 1940s), with not much conceptual difficulty, apart of some very long and
uninspiring computations. For more information, see [7].

We can now write VN (Q) as function of the {ni}. We consider two particles
occupying neighbouring cells as being separated by a distance of a, and experi-
encing a potential V (a) = −ε0. Then the total potential experienced at cell i is
given by summing a contribution of V (a) for each occupied neighbouring cell:

V (xi) = −ε0
∑
〈j,i〉

nj

The notation 〈j, i〉 represents a sum over all cells j that are the nearest neigh-
bours of cell i. Then ∑〈j,i〉 nj is exactly to the number of cells around i that
are occupied. In particular, the total number N of particles in the system is
the number of occupied cells:

N =
∑
x
nx (3.6)

Then, the total potential VN (Q) can be approximated as the sum of V (xi)
terms over all cells i that are occupied, leading to:

VN ({σi}) = −ε0
∑
〈x,y〉

nxny (3.7)

Note that the product nxny is 1 if and only if both cells are occupied.
So, in other words, VN is obtained by multiplying the average potential of an
interaction (−ε0) by the number of such pairwise interactions, i.e. the number
of pairs of neighbouring cells 〈x, y〉 that are both occupied.
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Note that not all sites are treated equally: the ones at the boundaries of V Open and periodic
boundary
conditions

have a lower number of neighbours than the ones in the bulk. If we consider
this asymmetry, letting cells at the margins interact only with their neighbours,
the system is said to have open boundaries. Alternatively, boundaries may be
removed by “connecting” sites at one margin with the ones from the opposite side
(periodic boundaries). In this way, all cells have exactly the same number
of neighbours, and can then be treated the same, achieving translational
invariance.

Periodic boundary conditions alter the system’s topology. For example, in Periodic boundaries
and topologyd = 1, the open case can be represented as a segment, while the periodic one as

a circle (fig. 3.3). In d = 2, open boundaries result in a planar topology, while
periodic conditions produce a toroidal surface (fig. 3.4).

Figure (3.3) – Ising model in d = 1 with open boundaries (top), or periodic boundaries
(bottom). Periodic conditions are obtained by deforming the initial line to “attach” its two
ends.
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Figure (3.4) – Ising model in d = 2, with periodic boundaries (top) or open boundaries
(bottom). Starting from a square, two opposite edges are attached together, forming a
cylinder. Then the two circles at the boundaries are attached, deforming the cylinder into a
torus.

Boundaries may also be fixed to a particular state: for example to be always
empty or full of particles.
It is now useful to shift the occupancies ni so that they assume symmetrical
values. So, we define a “spin-like” occupancy σi as follows:

σi =

+1 Cell i is occupied

−1 Cell i is empty
(3.8)

Clearly σi = 2ni − 1, and so:

ni =
1 + σi

2
And so we may rewrite (3.6) and (3.7) as follows:

N =
∑
x

1 + σx
2 (3.9)

VN ({σi}) = −ε0
∑
〈x,y〉

nxny (3.10)

We can then use (3.10) and (3.9) to approximate (3.4) on the lattice:

Zg.c. ≡ eβPV =
(3.4)

∑
{σ}

exp(−βVN (σ) +N(σ) ln z) =

=
(3.10)
(3.9)

∑
{σ}

exp
(
βε0

∑
〈x,y〉

1 + σx
2

1 + σy
2 + ln z

∑
x

1 + σx
2

)
(3.11)
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In fact the sum over all possible unique4 configurations of N particles over all
values of N is equivalent to the sum over all possible occupancies σ = {σi}:

+∞∑
N=0

∫
V N

dd·NQ

N !
−−−−−−−−→
discretization

∑
σ1=±1

· · ·
∑

σlast=±1
=
∑
{σ}

The choice of using spin-like variables (3.8) has lead to the appearance of
constant terms, independent of the system’s state, in (3.11), that we now
extract. Consider the argument of the exponential, and expand the sums:

βε0
4

[∑
〈x,y〉

1 +
∑
〈x,y〉

(σx + σy) +
∑
〈x,y〉

σxσy

]
+

ln z
2

Å∑
x

1 +
∑
x
σx

ã
(3.12)

Summing ones over all cells is just the total number of cells in the lattice, each
with volume ad: ∑

x
1 = Ncells =

V

ad

For simplicity, let’s choose our units so that a = 1, and thus:∑
x

1 = V (3.13)

Similarly ∑〈x,y〉 1 counts the number of pairs of neighbours. Graphically, if we
represent cells as nodes in a graph, each connected to its neighbours by edges,
then ∑〈x,y〉 1 is just the number of edges (fig. 3.3). Let’s consider, for simplicity,
a system with periodic boundary conditions - so that all cells have the same
number q of neighbours (this is also true for a system with open boundaries, in
the limit of a lattice of infinite size). Then, the number of pairs (edges) will be:

∑
〈x,y〉

1 = N. of pairs = Ncellsq

2 =
V q

2

where the division by 2 accounts for the fact that edges are undirected - i.e. if
a is connected to b, then b is connected to a by the same edge. Without this
division, we would be counting every edge twice.
For a cubic lattice (with no boundaries), each cell has exactly 2 neighbours in
each direction. So the total number of neighbours q will be twice the number of
dimensions d: ∑

〈x,y〉
1 =

2V d
2 = V d (3.14)

Finally, consider the second sum:∑
〈x,y〉

σx + σy

4∧Due to the division by N !, configurations where only N cells are occupied are considered
distinguishable only if the occupied cells are different. In other words, permuting the position
of two particles is not counted.
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Practically, to compute it we may inspect each edge (x, y), and sum the values
σx and σy of the spins at its extrema. When we are done, each value σx at a
node will have been considered exactly q times - one for every neighbour of x:∑

〈x,y〉
σx + σy =

∑
x
σxdg(x) (3.15)

where dg(x) is the degree of node x, i.e. the number of connections (edges)
involving cell x. In our case, dg(x) = q = 2d:∑

〈x,y〉
σx + σy = 2d

∑
x
σx

This relation will allow to highlight the common factor ∑x σx.

Substituting (3.13), (3.14) and (3.15) back in (3.12) leads to:

β
ε0
4

[
V d+ 2d

∑
x
σx +

∑
〈x,y〉

σxσy

]
+

ln z
2

Å
V +

∑
x
σx

ã
=

=

[
β
ε0
4︸︷︷︸
J

∑
〈x,y〉

σxσy +

ï
βε0d

2 +
ln z
2

ò
︸ ︷︷ ︸

βb

∑
x
σx

]
+ V

Å
β
ε0
4 d+

ln z
2

ã
(3.16)

The term in the first set of square parentheses is the only one depending on σ,
and thus the one capturing the essence of the Ising Model. The last one is just
a scaling factor given by the current application (lattice gas).

For simplicity, let’s define:

J ≡ ε0
4 ; βb ≡ βε0d

2 +
ln z
2 (3.17)

In this way we may collect a β in (3.16):

β

[
J
∑
〈x,y〉

σxσy + b
∑
x
σx

]
+ βV

Å
Jd+

ln z
2β

ã
Substituting back in (3.11):

Zg.c. ≡ eβPV =

(∑
{σ}

exp
[
β

(
J
∑
〈x,y〉

σxσy + b
∑
x
σx

)])
︸ ︷︷ ︸

Z

exp
Å
βV

ï
Jd+

ln z
2β

òã
(3.18)

We define the Ising Model partition function Z to contain the only relevant
factor:

ZIsing ≡
∑
{σ}

exp
[
β

(
J
∑
〈x,y〉

σxσy + b
∑
x
σx

)]
≡ e−βV f(T ,b) (3.19)
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where f(T , b) (defined by the above relation) is the model’s free energy
density. Then, taking the logarithm of both terms in (3.18):

��βP��V =
(3.19)

−��βV f(T , b) +��βV Jd+��βV
ln z
2β (3.20)

Rearranging the definition of b (3.17):

b =
ε0d

2 +
ln z
2β ⇒

ln z
2β = b− ε0d

2

and substituting in (3.20) we get the grand-canonical pressure of the lattice gas:

Pg.c. = −f(T , b) + ε0
4 d+ b− ε0d

2 = −f(T , b)− ε0
4 d+ b =

= −f(T , b) + b− Jd (3.21)

The physical interpretation of J and b depends on which application we are
considering. In the lattice gas, J is clearly proportional to the strength of
interaction between gas molecules occupying neighbouring cells, while b depends
on the chemical potential µ (through z), the temperature and the system’s
dimensionality.
A clearer meaning for b is found when the Ising Model is applied to ferro-
magnetism. In this case, the {σi} represent the direction (up or down) of the
particle’s spins, i.e. their intrinsic magnetic momenta (of pure quantum origin).
Then b∑x σx measures the correlation between the spin directions and b. In
particular, configurations for which the majority of σi have the same sign of b
(i.e. are “parallel” to b) have a higher probability (as each term in the sum over
states in Z is the probability associated with a particular configuration σ). So,
b can be interpreted as an external magnetic field, pushing each particle to
align its spin to it.
On the other hand, for a quantum system (such as a ferromagnet), J is called
the exchange energy, and measures the overlap of electronic clouds of neigh-
bouring atoms.
From (3.19) we can extract the Hamiltonian for the Ising Model:

ZIsing ≡
∑
{σ}

e−βH(σ) ⇒ H(σ) = −J
∑
〈x,y〉

σxσy − b
∑
x
σx (3.22)

βH(σ) is called the reduced Hamiltonian:

βH(σ) = − βJ︸︷︷︸
K

∑
〈x,y〉

σxσy − βb︸︷︷︸
h

∑
x
σx

= −K
∑
〈x,y〉

σxσy − h
∑
x
σx

Intuitively, H(σ) is the sum of two interactions:

• Spin-spin interactions: −J∑〈x,y〉 σxσy. If J > 0, the term is minimized
if σxσy > 0, i.e. if neighbouring spins are all parallel to each other
(ferromagnetic order). If J < 0, spins tend instead to be anti-parallel
to each other (anti-ferromagnetic order), as can be seen in fig. 3.5.
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• Spin-field interaction: −b∑x σx, which is minimized if spins are aligned
(parallel) to the magnetic field b (when applying the model to a ferromag-
net).

In particular, if h = 0 (and so b = 0), then there is no “preferred direction”
for the alignment of spins. This results in two equivalent ground states, as
H(σ) = H(−σ). For instance, if J > 0, the two possibilities are all σi = +1
(up), or all σi = −1 (down).

Figure (3.5) – The spin-spin interaction energy when all neighbouring spins are ordered in
a (anti)parallel way, depending on the sign of J .

3.2 Ising Partition Function
Our next goal is to compute explicitly the Ising partition function (3.19):

Z(K,h) =
∑
{σ}

exp
(
K
∑
〈x,y〉

σxσy + h
∑
x
σx

)
= e−βV f(K,h) K=βJ

h=βb (3.23)

Note that the sum is over 2Ncells = 2V (as the lattice step a is set to 1) possible
states (spin configurations).
We define the magnetization m as the average alignment of spins: Magnetization

m ≡ 1
V
〈
∑
x
σx〉 =

1
V

1
Z

∑
{σ}

exp
(
K
∑
〈x,y〉

σxσy + h
∑
x
σx

)∑
x
σx =

=
1
V

∂

∂h
lnZ(K,h) =

(3.23)
−β ∂

∂h
f(K,h) (3.24)

The average number of particles 〈N〉 in a grand-canonical ensemble is given by: Average number of
particles 〈N〉

〈N〉g.c. =
1
β

∂

∂µ
lnZg.c. =

1
β

∂z

∂µ

∂

∂z
lnZg.c. (3.25)

with:
∂z

∂µ
=

∂

∂µ

eβµ

λ3 = β
eβµ

λ3︸︷︷︸
z

= βz
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and so:

〈N〉g.c. =
1
��β
��βz

∂

∂z
lnZg.c. = z

∂

∂z
lnZg.c. (3.26)

Let v be the average volume per particle, i.e. 〈N〉/V . Then the average density Particle density
of particles is v−1:

v−1 ≡ 〈N〉
V

=
(3.26)

z

V

∂

∂z
lnZg.c. =

(3.18)

z

V

∂

∂z
βPV =

=
(3.21)

z

V

∂

∂z
[−βV f(T , b(z)) + βV b(z)− βV Jd] =

=
(3.23)

z

V

∂

∂z
[ lnZIsing + βV b ] (3.27)

as the third term does not depend on z. It is useful to change variables from
z → ln z, as b is a function of ln z:

z
∂

∂z
= z

∂(ln z)
∂z

∂

∂(ln z) = �z
1
�z

∂

∂(ln z) =
∂

∂(ln z)

So that:

z

��V

∂

∂z
β��V b = β

∂b

∂(ln z) =
(3.17) �

�β
1

2��β
=

1
2 (3.28)

With another change of variable z → h we can rewrite z∂z lnZIsing as a function
of the magnetization m:

z

V

∂

∂z
lnZIsing =

∂h

∂(ln z)
1
V

∂

∂h
lnZIsing︸ ︷︷ ︸
m

=

Å
∂(ln z)
∂(h)

ã−1
m =

(a)

m

2 (3.29)

where the derivative in (a) can be computed by isolating ln z in the definition
of b (3.17):

b =
ε0d

2 +
ln z
2β ⇒ 2βb = ε0︸︷︷︸

4J

dβ + ln z ⇒ ln z = 2β(b− 2Jd) = 2(h− 2Kd)⇒ ∂(ln z)
∂h

= 2

Substituting (3.28) and (3.29) back in (3.27) leads to: Particle density
and magnetization

v−1 =
m

2 +
1
2 =

m+ 1
2 (3.30)

So a higher m corresponds (in the lattice gas model) to a higher particle density.
Intuitively, a high m means that, on average, cells are more occupied - meaning
that particles will be, in general, closer together. Note that m ∈ [−1,+1]
(which happens, respectively, when all spins point up or down, i.e. if all cells
are occupied or empty), and so v−1 ∈ [0, 1] as expected.

Assuming periodic boundary conditions, the system is translational invariant: Consequences of
translational
invariance

there is no “preferred” position in the lattice - all cells are exactly equal to each
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other. This means that 〈σx〉 ≡ σ̄ must be independent of x, and so it is equal
to the magnetization m:

m =
1
V
〈
∑
x
σx〉 =

1
V

∑
x
〈σx〉 =

1
��V
��V σ̄ = σ̄ = 〈σx〉

On the other hand, the 2-point correlation function 〈σxσy〉 must depend only on
the distance ‖rx − ry‖ between the two cells, because of translational invariance.

Note that for any finite V , the sum in (3.23) is a sum over a finite number 2V
of states. As each term is an analytic function, Z is also an analytic function,
and so it is lnZ = −βV f(K,h), and in particular the free energy f(K,h).
However, we expect phase-transitions to correspond to points at which the free
energy is non-analytic - which would explain the sudden changes in the system’s
properties that are experimentally observed during such a transition.
So, in any finite lattice we won’t be able to see any phase-transition. Conversely,
to observe a phase-transition, an infinite lattice is required, which is obtained
when V →∞, i.e. in the thermodynamic limit.�� ��Example 3 (Non-interacting spins):

Let’s examine the simplest possible case in the Ising Model, occurring when
J = 0 (or, equivalently, K = 0). The Hamiltonian becomes:

H(σ) = −h
∑
x
σx (3.31)

meaning that spins (or cells) are completely independent from each other
(decoupled). In fact, the partition function factorizes:

Z =
∑
{σ}

exp
Å
h
∑
x
σx

ã
=

∑
σ1=±1

ehσ1 · · ·
∑

σV =±1
ehσV

Noting that:

∑
σi=±1

ehσi = 2e
h + e−h

2 = 2 cosh h

the partition function becomes:

Z = (2 cosh h)V (3.32)

Then the free energy f is:

Z = e−βV f(h) ⇒ f(h) = − lnZ
βV

=
(3.32)

− ln(2 cosh h)
β

(3.33)

The magnetization:

m(h) =
(3.24)

−β ∂

∂h
f(h) = ∂

∂h
ln(cosh h) = sinh h

cosh h =
eh − e−h

eh + e−h
= tanh h

(3.34)
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A plot of m(h) can be seen in fig. 3.6.
Inverting (3.34) allows to express h as a function of m:

h = βb = tanh−1m

This can be solved by letting t = eh, and so:

m = tanh h =
t+ 1/t
t− 1/t =

t2−1
Ct

t2+1
Ct

⇒ m(t2 + 1) = t2 − 1

⇒ t2(m− 1) = −(m+ 1)⇒ t = ±
…

1 +m

1−m

As t = eh > 0, only the positive solution is acceptable, leading to:

eh =

…
1 +m

1− h ⇒ h = ln
…

1 +m

1− h =
1
2 ln 1 +m

1−m (3.35)

Substituting back:

h = βb = tanh−1m =
1
2 ln 1 +m

1−m − 1 < m < +1 (3.36)

We can also express the free energy (3.33) as function of m. First note that:

ln cosh h =
1
2 ln(cosh h)2 =

1
2 ln cosh2 h

cosh2 h− sinh2 h︸ ︷︷ ︸
1

=

= −1
2 ln cosh2 h− sinh2 h

cosh2 h
= −1

2 ln
Ä
1− tanh2 h

ä
=

=
(3.36)

−1
2 ln
(
1−m2) (3.37)

and so:

f =
(3.33)
− ln(2 cosh h)

β
⇒ βf = − ln(cosh h)− ln 2 =

=
(3.37)

1
2 ln
(
1−m2)− 1

2 ln 22 =
1
2 ln 1−m2(h)

4
(3.38)

Note that the free energy is an even function of the magnetization, whereas
m is an odd function of h.
Finally, from (3.34) note that the derivative of f with respect to b is −m:

∂f

∂b
=

∂2f

∂h∂ ∂h∂b
=

h=βb
(3.34)

−m
��β
��β = −m

So, the (non-standard) Legendre transform of f(b) with respect to b is
γ(m) defined by the following relation:

−γ(m) + f(b(m)) = ∂f

∂b
· b(m) = −mb(m)⇒ γ(m) = f + bm (3.39)
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b(m) is obtained rearranging (3.36):

h

β
= b =

1
2β ln 1 +m

1−m (3.40)

Then substituting (3.38) and (3.40) in (3.39) leads to:

γ(m) = 1
2β ln 1−m2

4 +
m

2β ln 1 +m

1−m =

=
1

2β

ï
ln 1−m

2
1 +m

2 +m

Å
ln 1 +m

2 +��ln 2− ln 1−m
2 −��ln 2

ãò
=

=
1

2β

ï
ln 1−m

2 + ln 1 +m

2 +m

Å
ln 1 +m

2 − ln 1−m
2

ãò
=

=
1

2β

ï
(1 +m) ln 1 +m

2 + (1−m) ln 1−m
2

ò
=

=

ï1−m
2 ln 1−m

2 +
1 +m

2 ln 1 +m

2

ò
β−1

Note that, due to the properties of the Legendre transform, we have:

∂γ(m)
∂m

= b

Then, the entropy density is obtained by differentiating f (or equivalently
its Legendre transform γ, as T is not involved in the transformation):

s = − ∂f
∂T

= − ∂γ
∂T

= −kB
ï1−m

2 ln 1−m
2 +

1 +m

2 ln 1 +m

2

ò
(3.41)

This can be derived also from the definition of the Shannon Entropy. Recall
that the probability of a certain spin configuration σ is:

ρ(σ) = 1
Z
e−βH(σ)

As spins are decoupled, ρ(σ) factorizes:

ρ(σ) =
(3.31)
(3.32)

∏
x

ehσx

2 cosh h ≡
∏
x
ρ1(σx) ρ1(σx) ≡ ehσx

2 cosh h (3.42)

Any generic function g(σ) of a binary variable σ ∈ {±1} can be written as:

g(σ) = g(+1) + g(−1)
2 + σ

g(+1)− g(−1)
2

In fact:

g(+1) = g(+1) +����g(−1)
2 +

g(+1)−����g(−1)
2 = g(+1)

g(−1) = �
���g(+1) + g(−1)

2 −�
���g(+1)− g(−1)

2 = g(−1)

In particular, if g(σ) = exp(hσ):

ehσ =
eh + e−h

2 + σ
eh − e−h

2 = cosh h+ σ sinh h (3.43)
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And so:

ρ1(σ) =
(3.42)

ehσ

2 cosh h =
(3.43)

cosh h+ σ sinh h
2 cosh h =

1 + σ tanh h
2 =

(3.34)

1 + σm

2
(3.44)

The ρ1 so defined is already normalized:∑
σ=±1

ρ1(σ) = 1 +��m
2 +

1−��m
2 = 1 (3.45)

We are now ready to compute the information entropy:

SI [ρ] = −kB
∑
{σ}

ρ(σ) ln ρ(σ) =
(3.42)

−kB
∑
{σ}

Ç
V∏
x=1

ρ1(σx)
å

ln
(

V∏
y=1

ρ1(σy)
)

=

= −kB
∑

σ1=±1
· · ·

∑
σV =±1

V∏
x=1

ρ1(σx)
V∑
y=1

ln ρ1(σy) =

=
(a)
−kB

V∑
y=1

∑
σ1=±1

· · ·
∑

σV =±1

( ∏
x6=y

ρ1(σx)
)
ρ1(σy) ln ρ1(σy) =

=
(b)
−kB

V∑
y=1

∑
σy=±1

ρ1(σy) ln ρ1(σy)
∏
x 6=y

∑
σx=±1

ρ1(σx)︸ ︷︷ ︸
1

=

=
(c)
−kB

V∑
y=1

∑
σy=±1

ρ1(σy) ln ρ1(σy) = −kBV
∑

σy=±1
ρ1(σy) ln ρ1(σy)

(3.46)

In (a) we exchange the sum over cells y with the one over states σ. Then,
we split the product over x (highlighted in blue) in two factors: one with
x 6= y, and the other with x = y. Then, in (b) we exchange the order of
the sums over cell states, bringing the one over σy first, and factoring out
everything that depends only on σy. The remaining term is a product of ρ1,
and thanks to the spin-independence we can bring all the other sum over
states inside it, and then apply normalization (3.45) to reach the result in
(c). Due to translational invariance, the inner sum evaluates to a constant,
and so ∑V

y=1 amounts merely to multiplying by the number of cells V .
Finally, substituting (3.44) in the last step (3.46) and dividing by V leads
back to (3.41):

s =
SI [ρ]
V

= −kB
ï1 +m

2 ln 1 +m

2 +
1−m

2 ln 1−m
2

ò
(3.47)

The grand-canonical pressure is given by:

P =
(3.21)

[−f(T , b) + b− Jd]
∣∣∣
J=0

=
(3.38)
(3.40)

− 1
2β ln 1−m2

4 +
1

2β ln 1 +m

1−m =

=
1

2β

ï
− ln 1−m

2 −
�
��

��ln 1 +m

2 +
�
��

��ln 1 +m

2 − ln 1−m
2

ò
= −β−1 ln 1−m

2 =
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= −β−1 ln 2− 1−m
2 = −β−1 ln

Å
1− m+ 1

2

ã
=

(3.30)
−β−1 ln

(
1− v−1) =

= −β−1 ln
Å

1− 〈N〉
V

ã
−−−−→
v−1→0

−β−1
Å
−〈N〉

V

ã
= kBT

〈N〉
V

So, in the limit of low density v−1 → 0, i.e. of a rarefied gas, we get the
equation of state for an ideal gas in the grand-canonical ensemble.

However, if we consider the full equation, we note a singularity for v−1 → 1
(densest case, where all cells are filled), corresponding to the liquid phase.
A plot of P (v) is shown in fig. 3.7, and compared with the one of a real
gas. In particular, no phase-transition is captured by such free Ising Model:
as we will see, spin-spin interactions are fundamental. However, even with
J = 0, the model is able to describe two phases: that of a rarefied gas and
of a liquid.

Figure (3.6) – Magnetization m as function of h = βb for the Ising Model with decoupled
spins (J = 0). For h→ ±∞, m = tanh h→ ±1. For the negative magnetization, the lattice
is almost “empty”, while for m→ +1 it is almost full.

Figure (3.7) – Isothermal curves P (v) for the lattice gas (left) and a real gas (right), where
v is the average volume per particle (the reciprocal of the density v−1). In the Ising Model
pressure diverges when density approaches its maximum v−1 → 1. However, in the real case
there is a range of temperatures at which, for a range of values of v, the liquid and gas
phases are coexisting (which is where the phase transition is happening). So the model is
able to capture some of the behaviour (the dilute “ideal gas” state and the liquid phase), but
not all.
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�� ��Exercise 3.2.1 (2-point correlation):

Show that:

〈σxσy〉 = (tanh h)2 = 〈σx〉〈σy〉

(Lesson 20 of
23/04/20)
Compiled: January
28, 2021

We have shown that, in the absence of spin-spin interactions, the Ising Model
does not predict any phase transition.

So, let’s study the interacting case J 6= 0 in one dimension d = 1. In this
case, the volume V , which coincides with the number of cells (as we have fixed
the lattice step a to 1 with a choice of units), is more properly a length L ≡ V .

For simplicity, we start from the case of no external field b = 0 and open
boundary conditions (fig. 3.8).

Figure (3.8) – One-dimensional Ising Model with open boundary conditions.

The partition function is given by:

ZL(K) =
(3.23)

∑
{σ}

exp
(
K
∑
〈x,y〉

σxσy

)
=

∑
σ1=±1

· · ·
∑

σL−1=±1

∑
σL=±1

eKσ1σ2eKσ2σ3 · · · eKσL−1σL =

=
(a)

∑
σ1=±1

· · ·
∑

σL−1=±1
eKσ1σ2 · · · eKσL−2σL−12 cosh(KσL−1)

where in (a) we summed over the last spin σL. Note that cosh is even, and so
(thanks to our choice of symmetric spin-like variables):

2 cosh(KσL−1) = 2 cosh(±K) = 2 cosh(K)

and so:

ZL(K) = 2 coshK
∑

σ1=±1
· · ·

∑
σL−1=±1

eKσ1σ2 · · · eKσL−2σL−1

︸ ︷︷ ︸
ZL−1(K)

= 2 cosh(K)ZL−1(K)

Reiterating:

ZL(K) = (2 coshK)L ≡
(3.23)

e−βLf(K) (3.48)

Taking the logarithm of both sides:

L ln(2 coshK) = −βLf(K)⇒ −βf(K) = ln(2 coshK)
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Figure (3.9) – One-dimensional Ising Model with periodic boundary conditions.

If we had chosen periodic boundary conditions instead (fig. 3.9) and h 6= 0,
the partition function would have been:

Z =
(3.23)

∑
{σ}

exp
(
K
∑
〈x,y〉

σxσy + h
∑
x
σx

)
= (3.49)

=
∑
σ1±1
· · ·

∑
σL=±1

eKσ1σ2 · · · eKσL−1σL eKσLσ1 ehσ1 · · · ehσL (3.50)

Note how the last spin σL interacts with the first one σ1. We can rewrite the
spin-spin interactions more compactly as:

eKσ1σ2 · · · eKσL−1σLeKσLσ1 =
L∏
i=1

eKσiσi+1 σL+1 ≡ σ1 (3.51)

With a trick, we can rewrite also the terms ehσi as a product over pairs (σi,σi+1).
Thanks to p.b.c., each cell is connected to exactly 2 neighbouring cells (in d = 1)
and so a product over pairs contains the product of squares of each node -
because each cell is multiplied by itself once for every neighbour:

L∏
i=1

ehσi =
∏
〈i,j〉

exp
Å
h
σi + σj

2

ã
=

L∏
i=1

exp
Å
h
σi + σi+1

2

ã
σL+1 ≡ σ1

(3.52)

Substituting (3.51) and (3.52) back in (3.49) leads to:

Z =
∑
{σ}

L∏
i=1

exp
Å
Kσiσi+1 + h

σi + σi+1
2

ã
(3.53)

Let’s define a matrix T with entries equal to the factors in (3.53):

Tσσ′ ≡ exp
Å
Kσσ′ + h

σ+ σ′

2

ã
(3.54)

As σ,σ′ ∈ {±1}, T is a 2× 2 matrix:

T =

σ′=+1 σ′=−1Å ã
σ=+1 eK+h e−K

σ=−1 e−K eK−h
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T is called the transfer matrix for the d = 1 Ising Model with periodic
boundaries.
Substituting (3.54) in (3.53) leads to:

Z =
∑
{σ}

L∏
i=1

Tσiσi+1 =
∑

σ1=±1

∑
σ2=±1

· · ·
∑

σL−1=±1

∑
σL=±1

Tσ1σ2Tσ2σ3 · · ·TσL−1σLTσLσ1 =

=
(a)

∑
σ1=±1

(T · · · · ·T︸ ︷︷ ︸
L times

)σ1σ1 =
∑

σ1=±1
(TL)σ1σ1 = TrTL

In (a), note that all the sums except the first one lead to a chain of matrix
multiplications: ∑

a
AiaBaj = Cij

So, at the end, Z is the sum of the diagonal elements of TL, i.e. its trace.
T is symmetric, and so it is diagonalizable, and its eigenvalues are real numbers.
Moreover, the trace is basis independent, and so we may compute it in the basis
where T is diagonal. Let P be the invertible matrix needed for diagonalizing
T, then P T P−1 = diag(λ1,λ2), where λ1 and λ2 are the eigenvalues of T.
Raising both sides to the L-th power, we get:

(PTP−1)L = PT����P−1PT����P−1P · · ·TP−1 = PTLP−1 =

(
λL1 0
0 λL2

)
Then:

Tr(PTLP−1) = Tr(P−1 PTL) = Tr(TL) = Tr
(
λL1 0
0 λL2

)
= λL1 + λL2

And so:

Z = TrTL = λL1 + λL2 ≡
(3.23)

e−βLf(K,h)

Taking the logarithm of both sides:

lnZ = −βLf(K,h) = ln
Ä
λL1 + λL2

ä
and dividing by L:

lnZ
L

= −βf(K,h) = 1
L

ln
Ä
λL1 + λL2

ä
Suppose (without loss of generality) that λ1 < λ2. Then:

−βf(K,h) = 1
L

ln
Ç
λL2

[
1 +
Å
λ1
λ2

ãL ]å
=

1
��L
��L ln λ2 +

1
L

ln
ñ
1 +
Å
λ1
λ2

ãLô
In the thermodynamic limit L→∞, the larger eigenvalue λ2 dominates, and
(λ1/λ2)L → 0, so that:

−βf(K,h) = ln λ2 +
1
L

ln
ñ
1 +
Å
λ1
λ2

ãLô
−−−−−→
L→+∞

ln λ2 (3.55)
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The eigenvalues can be computed (as usual) as the roots of the secular (or
characteristic) equation:

0 = det(T− λI) = det

∣∣∣∣∣∣ e
K+h − λ e−K

e−K eK−h − λ

∣∣∣∣∣∣ = (eK+h − λ)(eK−h − λ)− e−2K =

= λ2 − λeK e
h + e−h

2 2 + e2K − e−2K

2 2 = λ2 − λeK cosh h+ 2 sinh 2K

which are:

λ1,2 = eK cosh h∓
√
e2K cosh2 h− 2 sinh 2K =

= eK cosh h∓
√
e2K sinh2 h+ e−2K

The magnetization is given by:

m =
(3.24)

− ∂

∂h
(βf) L→∞

=
(3.55)

∂

∂h
ln λ2 =

∂

∂h
ln
(
eK cosh h+

√
e2K sinh2 h+ e−2K

)
=

=
1

eK cosh h+
√
e2K sinh2 h+ e−2K

Ç
eK sinh h+ �2e2K sinh h cosh h

�2
√
e2K sinh2 h+ e−2K

å
=

=
1

eK cosh h+
√
e2K sinh2 h+ e−2K

eK
√
e2K sinh2 h+ e−2K + e2K cosh h√

e2K sinh2 h+ e−2K
=

=
(a)

1
hhhhhhhhhhhhhhhhhh
eK cosh h+

√
e2K sinh2 h+ e−2K

hhhhhhhhhhhhhhhhhh
eK cosh h+

√
e2K sinh2 h+ e−2K√

sinh2 h+ e−4K
=

=
sinh h√

sinh2 h+ e−4K
=
(b)

tanh h√
1− 1−e−4K

cosh2 h

(3.56)

where in (a) we divided numerator and denominator by eK , and in (b) by cosh h
and applied the identity cosh2 h− sinh2 h = 1⇒ sinh2 h = cosh2 h− 1.
Note that if K = 0, and so J = 0 (non-interacting case), (3.56) leads back
to m = tanh h, the result we already found in (3.34). Moreover, if K > 0
(ferromagnetic interaction), m(K,h) > m(0,h) - meaning that spins align more
easily to the external field if they can interact with their neighbours.
Again, if h = 0, m(K,h = 0) = 0, and so the system is unable to magnetize in
absence of an external field.
In fact, consider any average spin, e.g. 〈σ0〉:

〈σ0〉 =
∑
{σ}

exp
(
K
∑
〈x,y〉

σxσy

)
For any finite system (L < +∞) the sum over all states is a finite sum, meaning
that it evaluates to some finite number. Moreover, it is odd under the change
of variables σx ↔ σ′x = −σx:

〈σ0〉 =
∑
{σ}

exp
(
K
∑
〈x,y〉

σxσy

)
σ0 = −

∑
{σ}

exp
(
K
∑
〈x,y〉

σxσy

)
σ0 = −〈σ0〉

(3.57)
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and so 〈σ0〉 = 0. Clearly, this arguments holds for any spin (by translation
invariance), and so in general 〈σk〉 = 0 ∀k.

3.3 Spontaneous magnetization
To observe the rise of a spontaneous magnetization (which is the experimen-
tal result we wish to model), i.e. a non zero m with no external field (h = 0),
we need to be careful in the order of limits. In (3.57) taking h = 0 first leads
to m = 0 for any finite V - and so also in the thermodynamic limit. The idea
is then to exchange the two limits:

m(T ) = lim
h→0+

lim
V→+∞

〈σ〉V ,h (3.58)

So, first compute the magnetization 〈σ〉 for a finite volume V and in presence of
an external field h 6= 0. Then perform the thermodynamic limit V →∞, and
only then let go the field h → 0+. The m(T ) so defined is the spontaneous
magnetization of the system, and it can be non-zero.
The idea is that the presence of h 6= 0 breaks the symmetry (σ ↔ −σ) of
the system, invalidating argument (3.57) and thus allowing a spontaneous
magnetization.
Equivalently, one can break the symmetry without using h 6= 0, but by imposing
some fixed boundary conditions, for example by setting all spins at the bound-
aries set to +1. In this case, the magnetization for a finite volume V is denoted
with 〈σ〉+V (plus boundary condition). We can then take the thermodynamic
limit:

m(T ) = lim
V→+∞

〈σ〉+V (3.59)

The boundary effect will vanish when V → ∞, but it will always break the
symmetry of the Hamiltonian (σ ↔ −σ).
Intuitively, (3.58) and (3.59) break the symmetry in the “same direction” (the
first with h > 0, and the latter with σi = +1 at the boundaries), and so we
expect them to lead to the same result at the end. For now, no instances in
which (3.58) and (3.59) lead to different results are known.
Clearly, we can also consider the limits from the other direction, i.e. from h < 0,
or with down boundary conditions (σi = −1 at the boundaries). The resulting
magnetization will be the opposite:

lim
h↓0+

m(K,h) = − lim
h↑0−

m(K,h)

For the Ising Model in d = 1, m(T ) = 0. In fact, in computing m in (3.56)
we first considered the thermodynamic limit L→∞ for the free energy (3.55)
with h 6= 0. Then, taking h → 0 (as already observed), leads to m = 0. So, No

phase-transitions in
d = 1

unfortunately, the d = 1 Ising Model does not suffice to capture the effect of
spontaneous magnetization (and thus of a phase-transition), even when spin-spin
interactions are considered.
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To observe a phase-transition, we need to find where the free energy f(K,h)
is non-analytic. In general, it can be shown that ∀d > 1, and ∀h 6= 0, f(K,h)
is analytic everywhere. The only singular points happen at h = 0 for T < Tc,
where Tc is called the critical temperature.

Figure (3.10) – Phase-diagram showing all parameters (h,T ) for which the Ising Model’s
free energy f(K,h) is non-analytic, which lie on the red segment with h = 0 and T = (0,Tc].
Taking the limit h→ 0± when T < Tc will lead to a non-zero magnetization m (positive if
h ↓ 0+, negative if h ↑ 0−) - in other words the system “spontaneously organizes” in absence
of an external field (ordered phase). The same limit when T > Tc leads to m = 0 - here
thermal fluctuations are too high, and the system remains in a random state (disordered
phase).

Figure (3.11) – Magnetization at constant temperature T as function of the field strength
h (i.e. along a vertical line in fig. ??). If T > Tc, as for the red line, the result is the same we
obtained in the non-interacting case (fig. 3.6), or the d = 1 model. On the other hand, for
T < Tc (blue line), a singularity appears at h = 0, with two possible limits for the
magnetization.
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Figure (3.12) – Bifurcation plot for the spontaneous magnetization m(T ), i.e. the
intercept at h = 0 of the curves in fig. 3.11 at various temperatures. For T > Tc, all curves
m(h) cross the origin, and so lead to no spontaneous magnetization m(T ) = 0. Conversely,
for T < Tc, two opposite values of m(T ) are possible, depending on the taken limit h→ 0±.
Note that the region “inside the arc” is not reachable (unphysical region): for example at
T = T2 it is impossible to obtain a magnetization |m| < |m(T2)|.

Figure (3.13) – The analogue of the magnetization m in the lattice gas is the density
ρ = v−1 = 〈N〉/V = (1 +m(T ))/2.

Consider the lattice gas model, with a fraction ρ of occupied cells. Suppose we "This part is still
under revision!want to keep 〈N〉 fixed. This can be done by changing the chemical potential,

which is the conjugate variable to N , and in the lattice gas model takes the role
the external magnetic field had in the ferromagnetic Ising Model (in fact the
magnetic field b is a function of ln z, which contains µ).
Lowering the temperature (moving along the red dashed line), to keep ρ fixed,
µ has to change. When it reaches the blue curve, a phase separation is observed,
and the gas divides in two parts: one of low density ρ2, and one with higher
density ρ1. Graphically, until the blue curve is reached, the gas is “well mixed”:
every region has almost the same density. After, it is divided in mostly empty
regions and very dense regions (fig. 3.14).
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Figure (3.14) – The lattice gas is well-mixed for T > Tρ (left figure), but separates in two
phases with different densities for T < Tρ.

Let fi be the fraction of volume occupied by the fluid with density ρi satisfies:

f1ρ1 + f2ρ2 = ρ

and ρ is fixed and remains constant as we lower the temperature. Also f1 + f2 =
1. Then:

ρ1 =
1 +m(T )

2 ; ρ2 =
1−m(T )

2
leading to:

f1(T ) = 1− f2(T ) = 1
2

Å
1 + 2ρ− 1

m(T )

ã
ρ =

1+m(Tρ)
2 ρ > 1

2
1−m(Tρ)

2 ρ < 1
2

Tρ is defined as the temperature at which the red dashed line intercepts the
blue curve, i.e. at which phase separation occurs. Decreasing the temperature
below Tρ, as shown in 3.15, causes the appearance of the second fluid, with
lower density wrt the first one.

Figure (3.15) – Fluid separation is evident when the temperature decreases below the Trho
threshold.

An interesting example of phase separation is known as spinoidal decomposition.
This happens when one has a high temperature fluid (generally a gas) and
rapidly cools it, entering in the un-physical region very quickly. This causes the
formation of droplets of fluid (higher density) mixed in the "original" gas. The
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transformation is very sudden and clear, and becomes more and more neat as
we continue to lower the temperature. The ultimate limit is that we observe a
total phase separation.

So we have found that the both the non-interacting case and the d = 1 Ising
Model do not present any kind of phase transition. To proceed, we need to
considerate a higher dimensional case. One possible way is through numerical
simulations, or by considering the exact solution of the d = 2 case, for which
the critical temperature turns out to be:

Tc =
2ε0/kB

ln
(
1 +
√

2
)

Often one considers the adimensional critical parameter kc, defined as:

kc ≡
ε0

kBTc
=

1
2 ln
Ä
1 +
√

2
ä
= 0.44 . . .

which is such that sinh(2kc) = 1. For details see [7].
The specific heat at b = 0 is:

cv(b = 0,T ) ∝
T∼Tc

− ln
∣∣∣∣1− T

Tc

∣∣∣∣
The magnetization is 0 above Tc, and for T < Tc is given by:

m(T ) =
ñ
1− 1

sinh4(2K)

ô1/8

θ(Tc − T ) ∝ θ(Tc − T )(Tc − T )1/8

The exponent 1/8 is also called the β exponent (not to be confused with 1/kBT ).
We will study this kind of power laws for criticality in a later chapter. They
are of particular importance because of their universality - i.e. very different
systems sharing certain fundamental symmetries have the same behaviour when
approaching Tc. (As anticipated, criticality is important to model complex
systems).

No rigorous exact result is known for the case h 6= 0.

Another possibility to go on is to study low/high temperatures expansion of
the Ising Model.

3.3.1 Low temperature expansion
Consider the partition function for the Ising Model in d dimensions:

Z =
∑
{σ}

exp
(
K
∑
〈x,y〉

σxσy + h
∑
x
σx

)
= e−βV f(K,h) h=βb

K=βJ (3.60)

The idea is to approximate Z with a truncated sum, considering only the
most relevant states. Suppose h 6= 0 - for instance h > 0. Then, at very
low temperature, we expect almost all spins to be aligned towards h. In this
situation, the most probable configurations σ comprehend the one where all
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spins are aligned (σi ≡ +1), followed by the ones where only a few spins are
flipped. Each of them refines the value of Z - and if a sufficient number of terms
is considered, we can understand the low-temperature behaviour of the system.
In general, however, it is not clear how to find the radius of convergence of
such a series. In practice, the low-temperature approximation works well for
T ∼ 0, and breaks down when approaching Tc, where Z is non-analytic.
So, let’s start computing some terms. In the following we will assume for
simplicity periodic boundary conditions, meaning that every cell has exactly
2d neighbours.
When no spins are flipped σi ≡ +1, the exponential becomes:

N0 = exp
(
K
∑
〈x,y〉

1︸ ︷︷ ︸
A

+h
∑
x

1︸︷︷︸
B

)
=

(3.14)
exp (KV d+ hV ) (3.61)

Let’s fix d = 2 to allow some visualization. Then:

N0 = exp[V (2K + h)] (3.62)

Suppose now we flip one spin σi = −1 (it does not matter which, as the system
is transitionally invariant), and consider how much each of the two sums A and
B in (3.61) changes (fig. 3.16).

Figure (3.16) – Square lattice with one flipped spin (in red). The affected interactions are
represented by the green edges.

B is just the sum over spins. As σi was +1 and now it is −1, the change ∆B is
−1− (+1) = −2, so B = N → N − 2.
On the other hand, changing one spin in A affects all the pairs (σj ,σi) involving
it, which are 2d = 4 in our case (the green edges in fig. 3.16). The total change
will then be ∆A = 4(−1− (+1)) = 4 · (−2) = −8, and so A = 2V → 2V − 8.
So, the exponential after one flipped spin will be:

N1 = exp ((2V − 8)K + (V − 2)h) (3.63)

We can then begin to write Z (3.60) by summing all these terms. Note that
while there is only one possible configuration σ resulting in the term N0, there
are V possibilities for N1 - because we can flip any of the V spins in the system:

Z = N0 + VN1 + . . .
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Things start to become more difficult when considering two flipped spins σi
and σj at once. Now their distance matters - and in particular if they are
neighbouring or not.

Figure (3.17) – Square lattice with two flipped non-neighbouring spins (in red).

Suppose σi and σj are not neighbours - meaning that they are independent
(3.17). Then the change in the sums A and B will just be twice that produced
by flipping only one spin, and the exponential will be:

N2,far = exp [(2V − 16)K + (V − 4)h] (3.64)

How many configurations {σ} generate such term? The first spin to flip σi
may be anyone of the V spins in the system, but the second σj cannot be in
the same position, not in one of the 4 neighbouring cells, leaving available only
V − 5 places. Thus, so far we have V (V − 5) configurations. Exchanging σi
and σj will not alter anything - as they are both −1 - and so we need to divide
by 2 the previous total, leading to V (V − 5)/2:

Z = N0 + VN1 +
V (V − 5)

2 N2,far + . . .

If the two flipped spins are instead neighbours, then B will change the same
(by −4), but for A we need to account only 6 changed interactions, and not
8: one edge is in common between the two spins, contributing with a σiσj =
(−1)(−1) = +1, as if it was never changed, leaving 3 affected edges for each
spin (fig. 3.18).

Figure (3.18) – Square lattice with two flipped neighbouring spins (in red).

So the new exponential term will be:

N2,close = exp[(2V − 12)K + (V − 4)h]

The first spin can go in V places, but the second one must be its neighbour,
leaving only 4 possibilities. Dividing by 2 to account for their permutation
leaves us with 2V configurations forming N2,close:

Z = N0 + VN1 +
V (V − 5)

2 N2,far + 2VN2,close + · · · =
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= e2V K+hV + V e(2V−8)K+(V−2)h +
V (V − 5)

2 e(2V−16)K+(V−4)h + 2V e(2V−12)K+(V−4)h + . . .

Note that substituting σ ↔ −σ is equivalent to changing the sign of h. In fact,
any term of the sum in (3.60) changes by:

exp
(
K
∑
〈x,y〉

σxσy + h
∑
x
σx

)
−−−−→
σ↔−σ

exp
(
K
∑
〈x,y〉

(��−σx)(��−σy)− h
∑
x
σx

)

So, by changing the sign of h in all the terms we already found, we can construct
their reflections - i.e. the ones starting from all spins down and flipping up 1 or
2 of them. Adding them to Z we get:

Z = eV (2K+h)
ï
1 + V e−8K−2h +

V (V − 5)
2 e−16K−4h + 2V e−12K−4h +O(e−16K−6h)

ò
+

+ eV (2K−h)
ï
1 + V e−8K+2h +

V (V − 5)
2 e−16K+4h + 2V e−12K+4h +O(e−16K+6h)

ò
In fact, considering 3 spin-flips leads to new terms of order O(e−16K−6h) (if
they happen to be all neighbouring, as there are 8 affected interactions), or
higher (if they are further apart, for up to 12 affected interactions).

Starting with h > 0 and taking first the thermodynamic limit V →∞ and then
h ↓ 0+ we note that only the first series of terms dominates. In fact, for any
h > 0:

lim
V→∞

eV (2K−h)

eV (2K+h)
= lim

V→∞
e−2h = 0 ∀h > 0

So in the thermodynamic limit we can ignore the terms in the second row.
Taking the logarithm and dividing by V we get the series expansion of the free
energy:

lnZ
V

= −βf(K,h) = 2K + h+
1
V

ln
ï
1 + V e−8K−2h +

V (V − 5)
2 e−16K−4h + 2V e−12K−4h + . . .

ò
For T → 0, β →∞, and so K = βJ →∞, meaning that e−K → 0 and so we
may expand in series the logarithm:

ln(x) ≈ x− x2

2 +O(x3)

leading to:

−βf(K,h) = 2K + h+ e−8K−2h +
��V − 5

2 e−16K−4h + 2e−12K−4h︸ ︷︷ ︸
First term

−
���

���
���1

2V (V e−8k−2h)2 +O(e−16k−6h) =

= 2K + h+ e−8K−2h + 2e−12K−4h − 5
2e
−16K−4h +O(e−16k−6h)
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The spontaneous magnetization is then:

m =
(3.24)
(3.58)

1
V

∂ lnZ
∂h

∣∣∣
h=0

= 1− 2e−8K−2h − 8e−12K−4h + 10e−16K−4h + . . .
∣∣∣
h=0

=

= 1− 2e−8K − 8e−12K + 10e−16K + . . . (3.65)

and is plotted in fig. 3.19.

Figure (3.19) – Plot of the spontaneous magnetization as function of temperature
T ∝ K−1 = 1/(βJ). For T → 0 (K →∞) m goes to 1. From Onsager’s exact solution we
know that m reaches 0 at Tc, but this cannot be observed in this expansion, as the radius of
convergence never includes Tc.

More terms. For more terms of the expansion in (3.65) see [8]. There also next
nearest neighbours interactions are considered, with an interaction strength J2 -
so, to reconstruct our case, let J2 = 0 and thus y = e−4J2β = 1. So, formula
(3) in [8] may be adapted as:

M(x) = 1− 2x2y2 +
∑
m,n

a(m,n)xmyn
∣∣∣
y=1

x = e−4K

Borrowing coefficients from table 1 in [8] we get:

M(K) = 1− 2e−8K − 8e−12K + (−8 + 18− 24− 20)e−16K + . . .

So the first coefficients in (3.65) are correct, but the one for e−16K not. In fact,
to refine it, we should also consider the case of 3 and 4 neighbouring flips, which
add terms of the same order e−16K , but are much more difficult to compute.

Fortunately, there are more sophisticated methods for generating more terms,
as can be seen in [9]

3.3.2 Correlation functions
Until now we analysed the magnetization, i.e. the average local spin alignment:

mx ≡ 〈σx〉

This can be interpreted as a one-point correlation function, measuring how
much a spin σx is “correlated” with itself.
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If we instead compare σx with a different spin σy, we get the two-point
correlation function5:

G(2)
x,y = Cov[σx,σy] = 〈σxσy〉 − 〈σx〉〈σy〉 (3.66)

If σx and σy are independent, then immediately 〈σxσy〉 = 〈σx〉〈σy〉, and so
G

(2)
x,y = 0. In general, however, the converse is not true: if the two-point

correlation is 0, the two spin may still be interacting.
Consider each spin interacting with a local field hx in the Ising Model. The
partition function is then:

Z(h) =
∑
{σ}

exp
Å
−βH(σ) +

∑
x
hxσx

ã
≡ e−βF (h)

with F being the corresponding free energy. This is a generalization of the case
(3.60), where hx ≡ h for all spins. Being able to vary the local field experienced
by a single spin allows us to write correlation functions as derivatives of Z.
For the one-point correlation we get the same formula previously found in (3.24):

mx = −
∂

∂hx
(βF (h)) (3.67)

On the other hand, for the two point correlation we get:

G(2)
xy = − ∂2

∂hx∂hy
= 〈(σx − 〈σx〉)(σy − 〈σy〉)〉 =

(3.67)

∂my

∂hy
(3.68)

Similarly, for a 3-point correlation:

G(3)
xyz = −

∂3

∂hx∂hy∂hz
(βF (h)) = 〈(σx − 〈σx〉)(σy − 〈σy〉)(σz − 〈σz〉)〉

and in general:

G(n)
x1,...,xn = − ∂n

∂hx1 · · · ∂hxn
(βF )

We define the susceptibility as the derivative of the magnetization m with Susceptibility χ
respect to the field h (when hx ≡ h ∀x):

χ ≡ ∂m

∂h

Inserting the definition of the magnetization (3.24) and computing the averages
leads to:

χ ≡ ∂m

∂h
=

∂

∂h
〈
∑
x
σx〉

1
V

=
1
V

∑
x

∂

∂h
〈σx〉 =

1
V

∑
x

∂

∂h

Num︷ ︸︸ ︷∑
{σ}

σx exp
Ç
−βH(σ) +

∑
y
hσy

å
Z(h)︸ ︷︷ ︸
Den

=

5∧Also known as the connected correlation function (or Ursell function), as we are
subtracting the trivial product 〈σx〉〈σy〉
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=
1
V

∑
x

(∂hNum)/Den︷ ︸︸ ︷∑
{σ}

exp
Ç
−βH(σ) +

∑
y
hσy

å∑
y
σy

Z(h) +

− 1
V

∑
x

∑
{σ}

σx exp
Ç
−βH(σ) +

∑
y
hσy

å
Z(h) ·

∑
{σ}

exp
Ç
−βH(σ) +

∑
y
hσy

å∑
y
σy

Z(h)︸ ︷︷ ︸
−(Num ∂hDen)/Den2

=

=
1
V

ñ
〈
∑
x,y

σxσy〉 − 〈
∑
x
σx〉〈

∑
y
σy〉
ô

So, rewriting the last step result in terms of (3.68) we get: Fluctuation
dissipation theorem

χ =
∑
x
Gx,y (3.69)

This the fluctuation dissipation theorem. In other words, the “total” corre-
lation between one spin σx and every other spin σy is equal to the “responsivity”
of mx to a change in h, i.e. how much the alignment of σx varies when the
external field b = h/β is adjusted.

H is translational invariant if it does not change when translating spins:

H(σ) = H(σ′)

with σ′x = σx+x0 for any x and x0 fixed.
In this case, as we previously noted, the magnetization is constant: m = 〈σx〉,
and the two-point correlation depends only on the distance between the two
spins: 〈σxσy〉 = 〈σx−yσ0〉.

Finally, we compute the Legendre transform Γ(m) of βF with respect to h:

Γ(m) = βF (j) +
∑
x
hxmx

where the {hx} have been calculated as a function of the local magnetizations
{mx} by inverting (3.67). By property of the Legendre transform:

∂Γ
∂mx

= hx

Differentiating both sides with respect to hy leads to:

δxy =
∑
z

∂2Γ
∂mxm2

z

∂mz

∂hy
=

(3.66)

∑
z

∂2Γ
∂mx∂mz

Gzy

Thus ∂2Γ
∂mx∂my

is the inverse of the two-point correlation function Gxy.
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�� ��Exercise 3.3.1 (Ising Model):

Consider a 1-dimensional Ising Model with nearest-neighbour ferromagnetic
interaction in an external uniform field with energy function given by:

H(σ) = −J
N∑
x=1

σxσx+1 −B
N∑
x=1

σx J > 0

where periodic boundary conditions are used, i.e. σN+1 ≡ σ1. Define
K = βJ and βB = h.

Part A. Using the transfer matrix T (σ,σ′) = exp(Kσσ′ + h(σ+ σ′)/2) and
its spectral decomposition, determine:

1. The partition function Z(K,h)

2. The free energy per node in the thermodynamic limit and its plot
for h = 0 versus 1/K

3. The entropy per node in the thermodynamic limit and its plot for
h = 0 versus 1/K

4. The mean energy per node in the thermodynamic limit and its plot
for h = 0 versus 1/K

5. The specific heat per node in the thermodynamic limit and its plot
for h = 0 versus 1/K

6. The average magnetization at x, 〈σx〉, in the thermodynamic limit
and its plot for h = 0, 0.1, 0.2, 0.5, 1 versus 1/K and for K = 1 versus
h in the range (−5, 5)

7. The two-point correlation function 〈σxσx+y〉 in the thermody-
namic limit and its plot for h = 0 and K = 1 versus y.

Part B. Consider the same model with open boundary conditions (node 1
is linked only to node 2, and node N only to node N − 1):

H(σ) = −J
N−1∑
x=1

σxσx+1 −B
N∑
x=1

σx

Show that the partition function for this case can be formally written as:

Z(K,h) = vTTNv ≡
∑

σ1=±1
σN=±1

v(σ1)TN (σ1,σN )v(σN )

where v(σ) = ehσ/2. Show that the free energy per node in the thermody-
namic limit is the same as above.

Part C. Same as in part B with fixed boundary conditions σ1 = 1 = σ2,
and v(σ) = eh/2 for both σ = ±1.
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Part D. How would you try to solve the Ising model in 1-dimension with
nearest neighbour and next-to-nearest neighbour interaction and periodic
boundary condition (σN+1 = σ1 and σN+2 = σ2):

H(σ) = −
N∑
x=1

(J1σxσx+1 + J2σxσx+2)−B
N∑
x=1

σx

Solution. WIP
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Chapter 4

Variational methods

Exactly solvable models are rare. For example, the Ising Model, describing in a (Lesson 21 of
27/04/20)
Compiled: January
28, 2021

very simplified manner a discrete set of local interacting binary variables, has
been exactly solved only for d = 1 in general, and for d = 2 only in absence of an
external field (h = 0). The latter, in particular, requires long and sophisticated
derivations.
Even for other models, the trend is the same: whenever we wish to study
emergent phenomena the problem usually becomes analytically intractable.

One possibility is then to resort to numerical simulations. However, these
are often time-consuming, require significant computational power, and can
be hard to interpret - as interesting “high level” characteristics (such as the
conditions for phase transitions) are drowned in lots of irrelevant “low-level”
data.

So we may resort to approximate computations instead. The idea is to find
a simple model that is able to capture, at least qualitatively, features from a
more complex one, while still admitting an exact solution. This can then give
hints on what to look for in a full numerical simulation, thus allowing a deeper
understanding.

One quick way to compute approximations is through variational methods.
In essence, we consider some parametrized pdf fθ(x), and tweak the parameters
θ so that it becomes “closer and closer” to the target pdf f(x) of the full model.
If we choose a sufficiently simple form for fθ, we will be able to perform exact
computations, while still retaining some sort of “correspondance” with the more
complex model.

In the following, we will first introduce a notion of “distance” between pdfs
(relative entropy), giving a mathematical meaning to the notion of “closeness”
between probability distributions. Then we will explicitly state the variational
method as aminimization problem, and, using the Ising Model as an example,
we will see a popular choice for the parametrization of fθ: the mean-field
approximation.
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4.0.1 Relative Entropy
Given two (discrete) probability distributions {pi}i∈D and {qi}i∈D, with pi, qi >
0 and ∑i pi =

∑
i qi = 1, we define the relative entropy (or Kullback–Leibler

divergence) of {pi} with respect to {qi} as follows:

SR({pi}, {qi}) = −
∑
i∈D

pi ln
pi
qi
≤ 0 (4.1)

In a sense, relative entropy measures the closeness between the two distributions
- as it is maximum (SR = 0) when the two coincide, i.e. pi = qi ∀i. Note,
however, that SR is not a distance function in the proper sense, as it does not
satisfy the triangular inequality.

The fact that SR = 0 is the maximum point of SR, i.e. SR ≤ 0, can be proven Proof that SR ≤ 0
as follows. First we define an auxiliary function f(x) over (0,∞):

f(x) = −x ln x x > 0

Such function f(x) is concave. In fact:

f ′(x) = −1− ln x

f ′′(x) = −1
x
< 0 x > 0

So, we may apply Jensen’s inequality. For any choice of a set of non-negative
numbers {λi} summing to 1, the following relation holds:

f

Ç∑
i

λixi

å
≥
∑
i

f(xi)λi
∑
i

λi = 1 ∧ λi ≥ 0

And letting λi = qi and xi = pi/qi completes the proof:

SR =
∑
i

qif

Å
pi
qi

ã
≤ f

Ç∑
i
@@qi
pi

@@qi

å
= f(1) = 0

with the equality holding if and only if pi = qi.

4.0.2 Approximation as an optimization problem
Let’s consider, for simplicity, a system with discrete states {σi}i∈D, each
with energy H(σi), and an associated probability qi given by a Boltzmann
distribution:

ρ(σi) ≡ qi =
e−βH(σi)

Z
= e−β(H(σ)−F ) Z =

∑
{σ}

e−βH(σ) ≡ e−βF

where F is the system’s free energy function.

In general, the {qi} are difficult to explicitly compute, because Z is generally a
sum over a huge number of terms (2V in the case of the Ising Model) with no
analytical form.
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So, the idea is to approximate ρ with another “easier” distribution ρ0, the
variational ansatz, which is parametrized as a Boltzmann distribution with a
different Hamiltonian H0 (and so also a different free energy F0):

ρ0(σi) ≡ pi =
e−βH0(σi)

Z0
= e−β(H0(σ)−F0) Z0 =

∑
{σ}

e−βH0(σ) ≡ e−βF0

(4.2)

The closeness of {pi} to {qi} is given by their relative entropy (4.1):

0 ≤
∑
i

pi ln
pi
qi

=
∑
{σ}

e−βH0(σ)

Z0
ln e
−βH0(σ)

Z0︸︷︷︸
e−βF0

e−βF︷︸︸︷
Z

e−βH(σ) =

=
1
Z0

∑
{σ}

e−βH0(σ)β[H(σ)−H0(σ)− F + F0] =

= β〈H−H0〉0 − β(F − F0) (4.3)

where 〈· · · 〉0 denotes the average according to the ansatz distribution:

〈f(σ)〉0 ≡
1
Z0

∑
{σ}

e−βH0(σ)f(σ)

The expression (4.3) is called the Gibbs-Bogoliubov-Feynman inequality1,
and holds as an equality if and only if ρ = ρ0 ⇔ H = H0.
Rearranging (4.3):

βF ≤ βF0 + β〈H−H0〉0 = β〈H〉0 + β(F0 − 〈H0〉0) (4.4)

Note that F0 does not depend on σ, as it’s ∝ lnZ0, and so we can bring it
inside the average, and expand it:

β(F0 − 〈H0〉0) = β〈F0 −H0〉0 =
∑
{σ}

ρ0(σ) β(F0 −H0(σ))

Then, from (4.2) note that:

ρ0(σ) = e−β(H0(σ)−F0) ⇒ ln ρ0(σ) = β(F0 −H0(σ))

and substituting above:

β(F0 − 〈H0〉0) = − 1
kB

(
−kB

∑
{σ}

ρ0(σ) ln ρ0(σ)
)

︸ ︷︷ ︸
S[ρ0]

= −S[ρ0]
kB

(4.5)

where S[ρ0] is the information entropy of ρ0:

S[ρ0] = −kB
∑
{σ}

ρ0(σ) ln ρ0(σ)

1∧Physically, it is completely equivalent to the second law of thermodynamics.
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Thus, substituting (4.5) back in the inequality (4.4) leads to:

βF ≤ β〈H〉0 −
S[ρ0]
kB

= β〈H〉0 − βTS[ρ0] (4.6)

And dividing by β:

F ≤ FV ≡ 〈H〉0 − TS[ρ0]

where FV is called the Variational Free Energy (VFE).
So, the true free energy F is always less or equal to the variational one FV . An
optimal estimate of F is obtained by minimizing FV with respect to ρ0.
Clearly, if we do not require any constraint on ρ0, thus allowing arbitrary
complexity, then the minimum is obtained when ρ0 = ρ: the most accurate
approximation of a model is the model itself. Realistically ρ is mathematically
intractable, and we need to bound the “complexity” of ρ0, with the effect that
it won’t be able to perfectly replicate ρ, and so the minimum for FV will be
larger than F (but hopefully still somewhat close).
One possible way to constrain the “complexity” of ρ0 is to force it to be
separable:

ρ0(σ) =
∏
x
ρx(σx) (4.7)

In this way, all degrees of freedom of the system become decoupled. In a sense,
correlations and complex behaviours are “averaged” between each component -
and in fact the approximation in (4.7) is known as the mean field ansatz.

4.1 Mean Field Ising Model
Consider a d-dimensional nearest-neighbour Ising Model, where we allow each
spin to interact with a local magnetic field bx, leading to the Hamiltonian:

H(σ) = −J
∑
〈x,y〉

σxσy −
∑
x
bxσx

To understand its behaviour, we use the mean-field approximation (4.7), and
choose a parametrization inspired by the non-interacting Ising Model (3.44, pag.
111):

ρ0(σ) =
∏
x
ρx(σx) ρx(σx) = 1 +mxσx

2 mx ∈ [−1, 1] (4.8)

where the {mx} are the variational parameters that will be tweaked to make
ρ0(σ) closer to the real probability distribution ρ(σ) of the Ising Model, by
minimizing the variational free energy FV . The constraint mx ∈ [−1, 1]
comes from requiring all probabilities to be non-negative ρx(σx) ≥ 0.
Before proceeding, note that (4.8) is already normalized:

∑
σx=±1

ρx(σx) = 1 +mx

2 +
1−mx

2 =
1
2 +

1
2 = 1
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and that each variational parameter mx corresponds to the local magnetiza-
tion of spin σx in the mean-field model:

〈σx〉0 =
∑
{σ}

ρ0(σ)σx =
∑
{σ}

∏
y

1 +myσy
2 σx =

=
(a)

∑
σx=±1

( ∏
y 6=x

∑
σy=±1

1 +myσy
2︸ ︷︷ ︸

1

)
1 +mxσx

2 σx =

=
∑

σx=±1
σx

1 +mxσx
2 =

1 +mx

2 − 1−mx

2 = mx (4.9)

where in (a) we split the product in the case y 6= x and y = x. Also note that
the average is over ρ0 and not the “true” pdf ρ.

Choice of parametrization. The distribution ρx(σx) in (4.8) is the most
general discrete distribution for a binary variable such as σx, just rewritten to
highlight the average mx.
In fact, consider a generic binary variable σ. Its distribution is:

P[σ = +1] = p+ P[σ = −1] = p−

Due to normalization, p+ + p− = 1, and so there is only one free parameter
needed to completely specify the pdf:

P[σ = +1] = p P[σ = −1] = 1− p

If we then rewrite p as function of the average 〈σ〉 = m, we get:

m =
∑
σ=±1

σP[σ] = p− (1− p) = 2p+ 1⇒ p =
1 +m

2

And so:

P[σ = +1] = 1 +m

2 P[σ = −1] = 1−m
2

Which can be rewritten more compactly as:

ρ(σ) = 1 +mσ

2

So we are not making any additional hypothesis other than that of a separable
ρ(σ) (given by the mean field approximation).

For simplicity, we work with βFV , denoting βJ ≡ K and βbx ≡ hx. From the
variational principle (4.6):

βF ≤ min
m

βFV (m,h) = min
m

Å
β〈H〉0 −

S[ρ0]
kB

ã
(4.10)

The average of H according to the ansatz is:

〈H〉0 = 〈−J
∑
〈x,y〉

σxσy −
∑
x
bxσx〉0 = −J

∑
〈x,y〉
〈σxσy〉0 −

∑
x
bx〈σx〉0
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We already computed 〈σx〉0 = mx in (4.9). For the two-point correlation, as ρ0
is separable and thus σx and σy are decoupled, we get:

〈σxσy〉0 = 〈σx〉0〈σy〉0 =
∑
σx

1 +mxσx
2 σx

∑
σy

1 +myσy
2 σy = mxmy

Thus:

〈H(σ)〉0 = −J
∑
〈x,y〉

mxmy −
∑
x
bxmx = H(m) (4.11)

This is valid more in general when applying the mean field approximation to
even more complex Hamiltonians, as it is a consequence of the separability of
ρ0.

On the other hand, the entropy of ρ0 can be directly computed. Noting that
ρx(σx) is exactly the same pdf we used in the non-interacting Ising Model, we
can borrow the results (3.46) and (3.47, pag. 111) from there:

−S[ρ0]
kB

=
∑
{σ}

ρ0(σ) ln ρ0(σ) =
∑
x

∑
σx

1 +mxσx
2 ln 1 +mxσx

2 =

=
∑
x

Å1 +mx

2 ln 1 +mx

2 +
1−mx

2 ln 1−mx

2

ã
≡
∑
x
s0(mx) (4.12)

where we defined a local entropy s0 as:

s0(m) ≡ 1 +m

2 ln 1 +m

2 +
1−m

2 ln 1−m
2 (4.13)

Substituting these results (4.11) and (4.12) back in (4.10) we arrive to:

βFV (m,h) = βH(m) +
∑
x
s0(mx) = (4.14)

= −K
∑
〈x,y〉

mxmy −
∑
x
hxmx +

∑
x

ï1 +mx

2 ln 1 +mx

2 +
1−mx

2 ln 1−mx

2

ò
where the first line holds for a generic Hamiltonian H(σ), and the second is
specific for the Ising Model we are studying.

Then, we minimize FV (m,h) with respect to m, denoting the minimum as
FV (M ,h):

∂

∂mx
βFV

∣∣∣
m=M

!
= 0 (4.15)

0 !
=

∂

∂mx

[
−K

∑
〈x,y〉

mxmy −
∑
x
hxmx +

∑
x

Å1 +mx

2 ln 1 +mx

2 +
1−mx

2 ln 1−mx

2

ã]
m=M

=

= −K
∑

y∈〈x,y〉
My − hx +

1
2 ln 1 +Mx

2 +
���

���
���

�1 +Mx

2
2

1 +Mx

1
2 −

1
2 ln 1−Mx

2 −
��

���
���

�1−Mx

2
2

1−Mx

1
2 =

= −K
∑

y∈〈x,y〉
My − hx +

1
2 ln
Å1 +Mx

�2
�2

1−Mx

ã
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where the sum is over all nodes y neighbouring x, i.e. the ones included in some
pair of neighbours 〈y,x〉 involving x.
Using the identity (3.35, pag. 109)

tanh−1Mx =
1
2 ln 1 +Mx

1−Mx

and rearranging leads to:

Mx(h,K) = tanh
[
K

∑
y∈〈y,x〉

My + hx

]
(4.16)

4.1.1 Physical meaning of the variational parametersMx

It would be interesting to associate some physical meaning to the variational
solution, and in particular understand what the Mx represent.
So, we found that:

min
m

FV (m,h) ≡ FV (M ,h)

with the M given by solving the N equations (4.16), one for each node.
The magnetization given by the variational free energy is:

〈σx〉V =
(3.24)
− ∂

∂hx
[βFV (M ,h)] = −β

[∑
y

∂FV
∂my

(m,h)︸ ︷︷ ︸
0 (4.15)

∂my

∂hx
− ∂FV
∂hx

(m,h)︸ ︷︷ ︸
Mx (4.14)

]
m=M

=

= Mx (4.17)

Note that the variational free energy FV is not the ansatz free energy F0, and
so 〈σx〉V and 〈σx〉0 are different averages, and (4.17) should not be confused
with (4.9).
So, MX is the best estimate of the true magnetization σx, as it is obtained with
the FV closest to the real F .

4.1.2 Uniform case
Suppose the magnetic field is uniform hx ≡ h. In this case, the system is
translationally invariant. So, it is reasonable to consider the ansatz where
also all the local magnetizations are the same: mx ≡ m, and search for a single
value of m.
Given these assumptions, (4.14) becomes:

βFV (m,h) = −Km2 ∑
〈x,y〉

1−mh
∑
x

1 +
ï1 +m

2 ln 1 +m

2 +
1−m

2 ln 1−m
2

ò∑
x

1

Then ∑x 1 is just the number of nodes N , and ∑〈x,y〉 1 is the number of possible
pairs, which is Nd for a d-dimensional cubic lattice (each node contributes with
one pair for every possible direction). Dividing by N :

β
FV (m,K,h)

N
= −Kdm2 +

1 +m

2 ln 1 +m

2 +
1−m

2 ln 1−m
2 − hm (4.18)
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The equation for MX (4.16) becomes:

M(h,K) = tanh
[
KM

∑
y∈〈y,x〉

1 + h

]

The sum is over all neighbours of x, which are 2d for a d-dimensional cubic
lattice (2 for every direction), leading to:

M(h,K) = tanh(2dKM + h) (4.19)

A. No external field

Let’s start with the case of no external field h = 0. In this case, the variational Case 1. h = 0
free energy (4.18) is an even function of m:

FV (m, 0) = FV (−m, 0)

We can then study the solutions of (4.19):

M = tanh(2dKM) M(K, 0) ≡M(K) (4.20)

Clearly M = 0 is always a solution. Depending on 2dK, there can be two more
solutions, as can be seen by plotting each side and looking for intersections
(4.1).

Figure (4.1) – Solutions of (4.19) are intersections of the two curves.

The plots in (4.1) can be obtained by expanding tanh x in Taylor series around
x = 0. The first three derivatives are:

d
dx tanh x = 1− tanh2 x

d2

dx2 tanh x = −2 tanh x(1− tanh2 x)

d3

dx3 tanh x = −2(1− tanh2 x) + 4 tanh2 x(1− tanh2 x)

So:

tanh x = tanh 0 + x
d
dx tanh x

∣∣∣
x=0

+
x2

2
d2

dx2 tanh x
∣∣∣
x=0

+
x3

3!
d3

dx3 tanh x
∣∣∣
x=0

+ · · · =
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= x− 2x3

3 · 2 · 1 +O(x5) = x− x3

3 +O(x5) (4.21)

For small x, tanh x is linear, and in particular tanh(2dKM) is a line passing
through the origin with slope 2dK. If that slope is less than the one of y = M ,
i.e. 1, then the only intersection is at M = 0 (left of fig. 4.1). However, if
2dK > 1, then there will be two other solutions (right of fig. 4.1).
In summary:

• 2dK < 1⇒ K < Kc ≡ 1/2d, (4.20) has only one solution M = 0.

• If 2dK > 1⇒ K > Kc, there are 3 solutions: M = 0,±M(K).

In the case K > Kc, we need to understand which of the three solution leads to
the absolute minimum of FV . So, let’s proceed by expanding βFV (m, 0)/N ≡
f(m) (4.18) for small m. The first four coefficients are:

f(0) = 1
2 ln 1

2 +
1
2 ln 1

2 = −1
2 ln 2− 1

2 ln 2 = − ln 2

f ′(0) = −2Kdm+
��

�
��
�1

2 ln 1 +m

2 +
C
C
C

1
2 −��

�
��
�1

2 ln 1−m
2 − CC

C

1
2

∣∣∣
m=0

= 0

f ′′(0) = −2Kd+ 1
4

2
1 +m

+
1
4

2
1−m

∣∣∣
m=0

= 1− 2Kd

f (3)(0) = − 1
2(1 +m)2 +

1
2(1−m)2

∣∣∣
m=0

= 0

f (4)(0) = −1
2
−2

(1 +m)3 +
1
2(−2) −1

(1−m)3

∣∣∣
m=0

= 2

Clearly all odd terms vanish because FV (m, 0) is even. Then:

βFV (m,h = 0)
N

= f(0) +mf ′(0) + m2

2 f ′′(0) + m3

3!
f (3)(0) + m4

4!
f (4)(0) + · · · =

= − ln 2 + 1− 2Kd
2 m2 +

m4

12 +O(m6) (4.22)

Let’s focus on the highlighted quadratic term. We distinguish three cases:

1. When 2Kd < 1 (K < Kc) the coefficient is positive, meaning that, for
x ∼ 0, FV behaves like a convex parabola (left of fig. 4.2). As K = βJ =
J/kBT , this holds for T > Tc = 2dJ/kB, where Tc is called the system’s
critical temperature.
Note how, in this case, the variational free energy has a single global
minimum at m = 0.

2. Now, if we let 2Kd = 1 (K = Kc = 1/2d, or T = Tc = 2dJ/kB), then the
quadratic coefficient vanishes, and for m ∼ 0 the variational free energy
has the shape of a quartic (m4), meaning that it is close to 0 and “very
flat” for m→ 0. Still, there is only one global minimum at m = 0.

3. However, if 2Kd > 1, then FV is like a concave parabola near the origin.
So m = 0 becomes a local maximum, and m = ±M(K) are two equivalent
local minima.
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Figure (4.2)

Thus, depending on the temperature, the system’s behaviour changes funda-
mentally.
Once we have found the solution M for the minimum, the best estimate of
the exact free energy βF is given by 4.18 evaluated at m = M and h = 0:

β
FV (M ,K, 0)

N
= −KdM +

1 +M

2 ln 1 +M

2 +
1−M

2 ln 1−M
2 (4.23)

Physical meaning of M(K)

When T < Tc, we found that the free energy is best approximated by a function M(K) and the
spontaneous
magnetization

with two local minima at ±M(K) - which we have interpreted as estimates of the
system’s magnetization. So, this mechanism could explain the experimentally
observed phenomenon of spontaneous magnetization.
Explicitly, we defined the spontaneous magnetization per node mS (3.58) as:

− lim
h↓0

1
N

lim
N↑∞

∂

∂h
(βF ) = lim

h↓0
〈
∑
x σx
N
〉 = mS (4.24)

In particular, the thermodynamic limit must be taken before the h→ 0 limit.
We can now use the variational free energy to compute an estimate of mS . Note
that in (4.18), the free energy density does not depend on N , so the limit of
N →∞ is trivial. Then we just need to differentiate with respect to h and set
m = M , the minimum found by solving (4.20). Thus, the variational estimate
of mS is given by:

mS

∣∣∣
var.

= − lim
h↓0

∂

∂h

FV (M ,K,h)
N

= − lim
h↓0

[
∂FV
∂m

(m,K,h)︸ ︷︷ ︸
0 (4.15)

∂M

∂h
+
∂FV
∂h

(m,K,h)︸ ︷︷ ︸
−m (4.18)

]
m=M

=

= lim
h↓0

M(K,h) = M(k) (4.25)

where M(K,h) is the solution of (4.19), which, in the limit h→ 0, becomes one
of the solutions we found in the h = 0 case, since it is an analytic function. So
mS = 0 if 2dK < 1, and 6= 0 otherwise.
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We can then study how the solution M(K) of (4.20) varies as a function of
K−1 = kBT/J . This can be done numerically - but to get some understanding
we consider the case near criticality K ≈ Kc = 1/2d. From fig. 4.1 and fig. 4.2
we expect M ≈ 0 when K ≈ Kc.
So, using the expansion of tanh x (4.21) for small x, (4.20) becomes:

M = 2dKM − (2dK)3M3

3 +O(M5)

One solution is clearly M = 0, ∀K.
For the other solutions, we suppose that K > Kc = 1/2d, e.g. K = Kc + δ M(K) near

criticalitywith δ ≈ 0+, and then divide by M to get:

M2 =
3

(2dK)3 (2dK − 1) +O(M4) =

=
6d

(K/Kc)3 (K −Kc) +O(M4) =

=
6d

[(Kc + δ)/Kc]3
(��Kc + δ−��Kc) +O(M4) =

= 6d δ

(1 + δ/Kc)3 +O(M4) =

= 6dδ +O(δ2)

For δ ≈ 0, δ/(1 + δ/Kc)3 ≈ δ, and so M2 is of order δ, meaning that M4 is of
order δ2.
Taking the square root:

M(K) =
√

6d(K −Kc)β +O(K −Kc) (4.26)

where β = 1/2 is the critical exponent. Note that the behaviour of the
spontaneous magnetization near criticality is given by a power law in the Critical exponent

and universalitydistance to the critical point Kc: this happens more in general, not only for the
Ising Model, and does not depend on the details of the model (universality).
(4.26) also produces a singularity at K = Kc, where M(K) starts rising from
0 in a non-smooth manner (fig. 4.3).

Figure (4.3) – Plot of the spontaneous magnetization M(K) (estimated from the
variational free energy) as function of temperature (K−1 ∝ T ). From fig. 4.2 we know that
M(K) = 0 for K < Kc. The red curve at K ≈ Kc is given by (4.26), while the blue curve at
K →∞ derives from (??) Note the singularity at K = Kc, the critical point.
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The result in (4.26) is an estimate given by the mean field approximation. The validity of the
mean field
approximation

However, the same kind of relation holds in the true model, just with a different
exponent β. For the d = 2 case, β = 1/8 can be exactly determined, while for
d > 2 one resorts to numerical methods, obtaining β ≈ 0.31 at d = 3, and -
surprisingly - β = 1/2 for d > 3. Again, this is not a specific behaviour: the
mean field approximation happens to become exact in d ≥ 4 in many cases, as
we will see later on.

If we instead study the behaviour at low temperatures (K � 1), we expect from
fig. 4.1 to see M ≈ 1, meaning that the argument 2dKM(k) of the tangent in
(4.20) becomes very large. So we expand tanh x accordingly:

tanh x =
ex − e−x

ex + e−x
e−x

e−x
=

1− e−2x

1 + e−2x =
(a)

(1− e−2x)(1− e−2x + e−4x + . . . ) =

= 1− 2e−2x + 2e−4x +O(e−6x)

where in (a) we used the geometric series expansion:

1
1 + x

= 1− x+ x2 − x3 + . . .

And substituting in (4.20) we get:

M(K) = 1− 2e−4dKM(k) +O(e−8KdM(k)) =
(b)

1− 2e−4dK +O(e−12dK) (4.27)

where in (b) we substituted M(k) ≈ 1 in the right side, noticing that all other
terms are of order e−12dK or higher. This result agrees with the low temperature
expansion we did in the d = 2 case in (3.65, pag. 125). So the spontaneous
magnetization quickly approaches 1 when K−1 → 0 (T → 0).

B. External field

If h 6= 0, from (4.18) we have: 2. Case h 6= 0

β
FV (m,K,h)

N
= β

FV (m,K, 0)
N

− hm

So the variational equations (4.15) become:

h =
∂

∂m

ï
β
FV (m,K, 0)

N

ò
m=M

= (tanh−1m− 2dKm)
∣∣∣
m=M

= (4.28)

=
M≈0

M(1− 2dK) + M3

3 +
M5

5 +
M7

7 + . . .

Depending on the sign of 1− 2dK, i.e. if 2dK is lower of higher than 1, the
slope at the origin will be either positive or negative, leading to the plots in fig.
4.4.
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Figure (4.4) – Plot of the right hand side of (4.28), i.e. the variational estimate of
magnetization, as function of m.

So there are two cases:

1. If K < Kc = 1/2d, then the right side of (4.28) is strictly increasing, and
so admits only one intersection with an horizontal line y = h, meaning
that there is only one solution for M(h,K) (in general 6= 0). If we then
let h→ 0, M(K,h)→ 0 smoothly, and so mS = 0, as expected.

2. If K > Kc, instead, the plot is the one on the right of fig. 4.4, and multiple
intersections with y = h are possible if h lies in a certain range:

∂

∂m

βFV (m,K, 0)
N

∣∣∣
m+

< h <
∂

∂m

βFV (m,K, 0)
N

∣∣∣
m−

where m± are the local minima/maxima of the right side of (4.28).

In the K > Kc case, in order to understand which of the possible multiple
solutions {Mi}i=1,2,3 corresponds to the minimum of FV we refer to fig. 4.5.

Figure (4.5)

To simplify notation, let’s denote as fi the free variational energy evaluated at
a solution Mi:

fi =
βFV (Mi,K,h)

N
=
βFV (Mi,K, 0)

N
− hMi
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Then note that differences of fi can be rewritten as integrals, which can be
roughly evaluated by looking at fig. 4.5. Then, for h > 0:

f1 − f2 =
∫ M1

M2

Å
β

N

∂

∂m
FV (m,K, 0)− h

ã
dm = −Area of B < 0⇒ f1 < f2

f2 − f3 =
∫ M2

M3

Å
β

N

∂

∂m
FV (m,K, 0)− h

ã
dm = −Area of A < 0⇒ f2 < f3

f1 − f3 =
∫ M1

M3

Å
β

N

∂

∂m
FV (m,K, 0)− h

ã
dm = Area of A−Area of B < 0⇒ f1 < f3

Summarizing:

1. For h > 0, the area of B is always bigger than that of A. So, at the end,
f1 < f2 < f3.

2. For h = 0, the two areas A and B become equal, and f1 and f3 are two
degenerate minima.

3. On the other hand, if h < 0, all inequalities are reversed, and f3 < f2 < f1.
So, when h changes sign, the system jumps to a different minimum.

Intuitively, a h > 0 leads to a preference for a positive magnetization, and,
conversely, h < 0 for a negative magnetization.

A plot of the solution M(K,h) corresponding to the minimum of FV as a
function of h is shown in fig. 4.6.
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Figure (4.6) – Plot of M(K,h) (variational estimate of magnetization, obtained by
minimizing FV ) as a function of the external field h, which can be obtained by rotating and
reflecting fig. 4.4. If K < Kc (top) the magnetization varies continuously as a function of h.
If K > Kc, instead, (bottom) there is a discontinuity at h = 0, given by the system’s
transition to a different minimum (M3 instead of M1)

All of these results about criticality are summarized in fig. 4.7.
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Figure (4.7) – Phase diagram representing all the singular points of M(K,h) as a dashed
line. Any curve surpassing the dashed part (left of K−1

c ) has a discontinuity (first-order
transition). One such path is the one in the bottom plot of fig. 4.6. On the other hand, a
curve surpassing h = 0 at the right of K−1

c , however, is smooth; and one such example is
given by the top curve of fig. 4.6. So, starting at a point (h,K−1) with h > 0, we can
construct two kinds of paths arriving to the phase with h < 0: one passing through a
high-temperature state and without phase-transitions, and one with a phase-transition at a
low temperature. Something analogous happens for the vapour-liquid transition: it can be
observed as an abrupt change (phase transition) at sufficiently low temperatures, or as a
completely smooth process if pressure is increased such that phase differences are removed
(the “gas looks like a liquid”).

We conclude by stressing that the singularities at h = 0 and K > Kc emerge
from to the variational principle as a consequence of the minimization.

Remarks on the mean-field approximation. The Mean Field (MF) model
predicts a phase transition in all d > 0. However we know that this is not true
in d = 1, where no phase transition is observed (pag. 117). Still, for d > 1 the
MF is at least qualitatively correct. Impressively, such a simple model agrees
exactly with simulation at d ≥ 4, at least for the behaviour of magnetization
near criticality.

Mean Field and symmetry breaking. For h = 0, the Ising Model Hamilto-
nian:

H(σ) = −J
∑
〈x,y〉

σxσy

is symmetric with respect to the transformation σx → −σx ∀x, i.e. H(σ) =
−H(σ). In any finite system (N < ∞), this symmetry implies that 〈σx〉 =
−〈σx〉 ⇒ 〈σx〉 = 0, meaning that no spontaneous magnetization can be observed.
However, in the infinite volume, this symmetry is spontaneously broken
below some critical temperature and 〈σx〉 6= 0.
We have shown how this occurs in the mean field approximation. Specifically,
the symmetry that is broken for the Ising model is Z2.
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If we instead consider the Hamiltonian:

H(σ) = −J
∑
〈x,y〉

σx ·σy

where σx ∈ Rn and ‖σx‖ = 1, then the group symmetry is O(n), the orthogonal
group, and H(Rσ) = H(σ), where R is a n× n matrix such that ‖Rσ‖ =
‖σ‖2 = 1, i.e. a orthogonal (“rotation”) matrix satisfying RTR = RRT = I.
There are rigorous results establishing that discrete symmetries like Z2 cannot
be spontaneously broken in d = 1 (Landau arguments) whereas continuous
symmetries, like O(n), cannot be spontaneously broken in d ≤ 2 (Mermin-
Wagner theorem). In both cases only short-range interactions are assumed.

4.2 Critical Behaviours and Scaling Laws
(Lesson 22 of
29/04/20)
Compiled: January
28, 2021

In the last section, we were able to finally describe a phase-transition , by
analysing the Ising Model in the mean field approximation in d > 1. Mathe-
matically, we observed how the spontaneous magnetization M(K,h), when

Power lawsK is chosen in the proximity of the critical parameter Kc needed for the
phase-transition, is described by a power law (4.26).
This happens to be a very general kind of behaviour, proper of not only
mean field models. Scaling laws such as (4.26) were originally formulated from
empirical evidence, and then given a theoretical foundation in the 1960s by
Widom, Kadanoff and Kenneth Wilson, leading to the field of renormalization
group theory. In this framework, all critical phenomena can be treated on
equal ground, and general results can be mathematically proven.
The importance of scaling laws, and especially the values of their critical
exponents (such as β for the IM) resides in their universality, i.e. in the fact
that they are largely independent on the “model’s details”. In other words,
the very same scaling law can describe two systems that - from the outside -
seem completely different - but that share some fundamental characteristic (e.g.
symmetry).
So, let’s continue using the Ising Model in the mean field approximation as a
concrete example, and let’s focus on deriving and understanding scaling laws
for various quantities of interest.

4.2.1 Spontaneous magnetization
We start with (re)deriving the power law for the spontaneous magnetization.
Recall the expression for the variational free energy (4.18):

β
FV (m,K,h)

N
= −Kdm2 +

1 +m

2 ln 1 +m

2 +
1−m

2 ln 1−m
2 − hm (4.29)

FV is closest to the true “unapproximated” free energy F when it’s minimum:

∂

∂m
FV (m,K,h) !

= 0 ⇒
(4.19)

m(h,K) = tanh(2dKm+ h) (4.30)
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Let’s solve (4.30) for h and expand2 for m ≈ 0, which holds near the critical
temperature T ≈ Tc:

h = −2dKm+ tanh−1m =
(3.35)

−2dKm+
1
2 ln 1 +m

1−m =
(??)
−2dKm+

1
2[ln(1 +m)− ln(1−m)] =

= −2dKm+
1
2

ñ
m−

�
�
�m2

2 +
m3

3 −
S
S
S

m4

4 +
m5

5 + · · · −
Ç
−m−

�
�
�m2

2 −
m3

3 −
S
S
S

m4

4 −
m5

5 + . . .

åô
=

= m(1− 2dK) + m3

3 +
m5

5 + . . . (4.31)

When h = 0 and K ≥ Kc = 1/2d, then3 1− 2dK < 0. We already know that 1. h = 0
the solution m = 0 is a local maximum of FV , and the minima are given by the
other two solutions. Dividing by m and rearranging leads to:

(2dK − 1) = m2

3 +
m4

5 + · · · ⇒ m2 = 3(2dK − 1)− m4

5 + . . .

If (2dK − 1) is of order O(m2), then m4 is of order O[(2dK − 1)2], and so:

m2 = 3(2dK − 1) +O[(2dK − 1)2]

And substituting Kc = 1/2d:

m2 = 3
Å
K

Kc
− 1
ã
+ · · · = 3K −Kc

Kc
+O

Çï
K −Kc

Kc

ò2å
(4.32)

Then, using K = J/kBT and Kc = J/kBTc leads to the equivalent relation in
terms of temperatures:

m2 = 3
J/kBT − J/kBTC

J/kBTC

+ · · · = 3
1/T − 1/Tc

1/Tc

+ · · · = 3
Å
Tc − T
T

ã
T

Tc︸︷︷︸
≈1

+ · · · =

= 3 Tc − T
Tc︸ ︷︷ ︸
−t

+O

Çï
Tc − T
Tc

ò2å
= 3|t|+O(t2) t ≡ T − Tc

Tc

Taking the square root leads to the power law for the magnetization:

m =
√

3|t|βθ(−t) β =
1
2 (4.33)

Here, the Heaviside function θ(−t) ensures that m = 0 for T > Tc.
Let’s now consider (4.31) in the case h 6= 0 . To “see” the phase-transition, we 2. h 6= 0
fix4 any K ≥ Kc, for example (and for simplicity) K = Kc = 1/2d. In this
case, 1− 2dK = 0 and the linear term in (4.31) vanishes:

h =
m3

3 +
m5

5 + . . . =
m∼0

m

3 |m|
δ−1 δ = 3 (4.34)

2∧For notational simplicity, we do not denote with M the value of m that solves (4.30),
as was instead done in the previous section.

3∧Consider fig. 4.7, pag. 145. When h = 0, we are “moving” along a horizontal line,
encountering the singularity at K = Kc.

4∧Referring to fig. 4.7, 145, we are “moving” along a vertical line with K = Kc
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After collecting a m, all the powers are even, and so we can insert a modulus5.
The exponent of the leading order is then δ = 3.

4.2.2 Susceptibility (at h = 0)
Near criticality, also the susceptibility χ, measuring “how much” the system
reacts to a change in the external field, obeys a power law.
Recall that the susceptibility χ is defined as:

χ−1 ≡
(??)

∂h

∂m

Using the expression (4.31) for h and expanding around m = 0 we get:

χ−1 =
∂h

∂m
=

(4.31)
−2dK +

1
1−m2 = 1− 2dK +m2 +O(m4)

And using (4.33) to compute m2 we arrive to:

χ−1
∣∣∣
h=0

=
(4.33)

1− 2dK = Kc−K
Kc

= T−Tc
T = t+O(t2) T > Tc (m = 0)

1− 2dK +m2 = Kc−K
Kc

+ 3K−KcKc
= 2|t|+O(t2) T < Tc

Taking the reciprocal we finally get the power law for χ:

χ = A±|t|−γ γ = 1 (4.35)

with A+ = 1 for t > 0, and A− = 1/2 for t < 0. A plot of χ(T ) is shown in fig.
4.8, and shows how it diverges for T → Tc. In other words, near criticality, a
small change in h produces a infinite change of m - i.e. the system is globally
sensitive to the external field.
This kind of global reaction to small changes is a defining characteristic of
complex systems, such as living organisms - with the difference that they seems
to “always” be near criticality. One example is a bird flock - which can be
hundreds of meters in size - reacting almost instantaneously to a predator (very
small in comparison).

4.2.3 Specific heat (at h = 0)
Another quantity of interest is the specific heat, defined as:

C ≡ ∂〈H〉
∂T

Recalling that:

−〈H〉 = ∂

∂β
lnZ

5∧This is done so that the resulting expression is meaningful for any real δ. Otherwise,
we would have problems when a negative m is elevated to a fractional exponent, such as 1/2,
leading to results that are complex - meaning that we would have to add more specifications.
The notation m|m|δ−1 naturally solves this kind of trouble.
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we get:

C =
∂〈H〉
∂T

= −∂β
∂T

∂2

∂β2 lnZ =
1

kBT 2
∂2

∂β2 (−βF )

The specific heat per node at h = 0 is then:

c =
C

N
=

(4.29)
−kBβ2 ∂

2

∂β2 [−Kdm2 +
1 +m

2 ln 1 +m

2 +
1−m

2 ln 1−m
2 ] =

=
m≈0
(4.22)
−kBβ2 ∂

2

∂β2

Å1− 2dK
2 m2 +

m4

12 +O(m6)
ã
=

= −kBβ2 ∂
2

∂β2

Å
−1

2

Å
K

Kc
− 1
ã
m2 +

m4

12 +O(m6)
ã

For K < Kc (T > Tc), m ≡ 0 (4.33) and so c = 0. Otherwise, for K > Kc

(T < Tc), using (4.32) leads to:

c = −kBβ2 ∂
2

∂β2

Ç
−3

2

Å
K

Kc
− 1
ã2

+
9
12

Å
K

Kc
− 1
ã2

+O

Çï
K

Kc
− 1
ò3åå

=

=��−kBβ2 ∂
2

∂β2

Ç
��−

3
4

ï
K

Kc
− 1
ò2

+ . . .

å
≈ 3

4kBβ
2 ∂

∂β

2J
Kc

Å
K

Kc
− 1
ã
=

3
2kB

K2︷︸︸︷
Jβ2

Kc
=

=
K≈Kc

3
2kB

In summary: "In the slides it is
3/4 instead.

c(T ) =

0 T > Tc

3
2kB T < Tc

∝ |t|−α α = 0 (4.36)

Here we would expect C(T ) to diverge near the critical temperature, with some
exponent α, but this does not happen in the mean-field approximation (and so
we say α = 0). However, in Onsanger’s exact solution for the d = 2 case, c(T )
diverges logarithmically.

Mean field and specific heat. The fact that α = 0 in (??) in the mean-field
approximation can be justified by examining c(T ) on the complex plane - as
a purely abstract function (clearly a complex temperature does not make any
physical sense). See [] for more details.
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Figure (4.8) – Plot of the susceptibility χ (left) and the specific heat per node c (right) as
functions of temperature T . Both quantities diverge for T → Tc in the real case - but this
behaviour is captured by the mean field approximation only for χ, and not for c - for which
only a finite jump discontinuity is predicted. Even in the case of χ, in a real system it
diverges more rapidly than in the mean field model.

4.3 Scaling ansatzs
We can use the power laws we have just found to write an equation of state
connecting the external field h, the magnetization m and distance to criticality
t. We start from (4.31), highlight a t and collect a m3:

h = m3

[
1
3 +

t︷ ︸︸ ︷
Kc −K
Kc

m−2 +O(m2)
]

K ∼ Kc; h ∼ 0

As in the mean-field β = 1/2 (4.33), we can rewrite m−2 = m−1/β . We then use
(4.34) to write m3 = m|m|δ−1, leading to the scaling ansatz, first conjectured
by Widom in 1960:

h = m|m|δ−1hs(t|m|−1/β) t =
T − Tc
Tc

(4.37)

Where hs (the “scaling function”) has the following form in the mean field
approximation:

hs(x) = 1
3 + x (4.38)

Expression (4.37) is certainly a valid relation between h, m and t near criticality
in the mean field approximation - but we suppose6 that it holds in more general
cases, perhaps with different choices of exponents β, δ or scaling function hs. In
particular, we make the hypothesis that hs should be “similar” to (4.38), and
in particular should be non-decreasing and vanishing at a negative point x0
(fig. 4.9).

6∧That is why it is called an ansatz.
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Figure (4.9) – Plot of the scaling function hS for the Mean Field case.

Equation (4.37) summarizes the previous scaling laws, in particular (4.33), (4.34)
and (4.35) in all cases (h = 0 or h 6= 0, T < Tc or T > Tc). So, if we assume
that an equation of state of the form (4.37) holds indeed in a more general case,
and not only in the mean field approximation, we have a way to re-derive all
the scaling laws.

Explicitly, assuming hS monotonically increasing with hS(x0) = 0 and x0 < 0:

1. Magnetization. If h = 0, equation (4.37) becomes:

0 = m|m|δ−1hs(t|m|−1/β)

The possible solutions are m = 0 or t|m|−1/β = x0 < 0. The second one
is acceptable only if t < 0, and in that case:

−|t||m|−1/β = −|x0| ⇒ |m| =
∣∣∣∣ tx0

∣∣∣∣β
However, the second one is present only if t < 0, and so:

m =

0 t > 0

|t|β/|x0|β t < 0
(4.39)

In the mean field, β = 1/2 and x0 = −1/3, and so (4.39) is equivalent to
(4.33).

2. Susceptibility. Differentiating (4.37) with respect to m and evaluating
at h = 0 leads to:

χ−1(h = 0) = ∂h

∂m

∣∣∣
h=0

=
(4.37)

δ|m|δ−1hS(t|m|−1/β︸ ︷︷ ︸
x

) +��m|m|δ−1h′S(t|m|−1/β)t|m|
−1/β

��m

Å
− 1
β

ã
=

= |m|δ−1
ï
δhS(x)− x

β
h′S(x)

ò
h=0

x ≡ t|m|−1/β
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For t < 0, the scaling is given by:

χ−1 ∝ |m|δ−1 ∝
(4.39)

|t|β(δ−1) = |t|γ− γ− ≡ β(δ− 1)

In the mean field, β = 1/2 and δ = 3, and so γ− = 1, and χ ∝ |t|−1,
which is the same result we got in (4.35).

In essence, the scaling ansatz (4.37) comes from the peculiar scaling of m in a
neighbourhood of criticality (fig. 4.10), and in particular:

a) For h = 0 fixed and t = (T − Tc)/Tc ≈ 0 (i.e. varying in the vicinity of
the critical point), m ∝ (−t)β for t . 0 (4.33).

b) For t = 0 fixed and h varying, |m| ∝ |h|1/δ (4.34).

Figure (4.10) – Phase diagram in h and T . Singularities of FV are represented as the black
dots at the left of Tc. The scaling ansatz describes how m changes when approaching the
critical point horizontally (along the red path), i.e. at h = 0 and varying T , or vertically, i.e.
at T = Tc and varying h.

In principle it is natural to say that h should depend on two independent
variables - t and m - but the choice of the form of (4.37) arises from some
non-trivial dimensional analysis arguments. The idea comes from observing
that certain ratios of quantities - due to their scaling behaviour near criticality
(a) and b)) - are “dimensionless”7, in the sense that, near criticality, they do
not depend anymore on the distance from the critical point and are “devoid”
of singularities. Some of them are h/m|m|δ−1, t/|m|1/β and t|h|−1/δβ - and so
(4.37) is written as a function of such arguments.

7∧Not in the sense that being pure numbers, i.e. not having physical dimensions (e.g. kg,
T, K etc.) - which is a matter of the so-called naïve dimensional analysis. The “non-trivial”
dimensional analysis deals with scaling and local behaviours.
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Figure (4.11) – (a): m(h) for different values of K(T ). When T > Tc (hot system), m(h)
passes through the origin (red lines), while if T < Tc (cold system), there is a nonzero
spontaneous magnetization, i.e. m(0) 6= 0. As m(h) is an odd function, only the first
quadrant is shown for simplicity. If we instead plot “dimensionless” variables (b), all these
curves collapse into a single line (at least for K(T ) close to Kc = K(Tc), i.e. t ≈ 0 ≈ m).
This happens in the mean field approximation, and motivates a generalization to more
complex systems giving rise to the scaling ansatz (4.37).

4.3.1 Two-point correlation function
By shining a light on a fluid and measuring its scattering we can estimate how
the density (and thus the refraction index) changes from point to point, and in
particular its correlation between different points. That’s why it is important
to compute correlation functions, especially the two-point correlation one:

g(r) ≡ 〈σxσy〉 − 〈σx〉〈σy〉

Ising Model in d = 1

Before computing g(r) in a generic dimension using the mean field model, we
study a simpler case - namely, the d = 1 IM with h = 0 and open boundary
conditions.
We previously obtained:

〈σx〉 =
(3.57, pag.116)

0 (4.40)

For the correlation, we proceed by explicitly computing the average:

〈σxσy〉 =
∑
σ
σxσy

1
Z

exp
Å
K
∑
z
σzσz+1

ã
=

Factoring the exponential over neighbouring pairs:

=
∑
σ
σxσy

1
Z

∏
z

exp (Kσzσz+1) =

As σzσz+1 is a binary variable (it can be only ±1), we can rewrite it using (3.43,
pag. 110):

=
∑
σ

σxσy
Z

∏
z

(coshK + σzσz+1 sinhK)
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Then we expand Z = (2 coshK)N (3.48, pag. 113) and simplify the coshK:

=
∑
σ
σxσy

∏
z

coshK(1 + σzσz+1 tanhK)

(2 coshK)L =

=
∑
σ
σxσy

��
���

�
(coshK)N

∏
z

(1 + σzσz+1 tanhK)

(2����coshK)N =

=
1

2N
∑
σ
σxσy

∏
z

(1 + σzσz+1 tanhK)

To proceed, let’s denote tanhK ≡ A for simplicity, and expand both the sum
and the product, assuming x < y:

=
1

2N
∑

σ1=±1
· · ·

∑
σN=±1

σxσy(1 + σ1σ2A) · · · (1 + σx−1σxA) · · · (1 + σy−1σyA) · · · (1 + σN−1σNA)

We can factor out all elements except the last, and perform the sum over σN :

=
1

2N

[ ∑
σ1=±1

· · ·
∑

σN−1=±1
σxσy(1 + σ1σ2A) · · · (1 + σN−2σN−1)

][ ∑
σN=±1

(1 + σN−1σNA)
]

Note that: ∑
σN=±1

(1 + σN−1σNA) = 1 +����σN−1A+ 1−����σN−1A = 2

Leading to:

=
1

2N
∑

σ1=±1
· · ·

∑
σN−1=±1

σxσy(1 + σ1σ2A) · · · (1 + σN−2σN−1A) · 2

We can then sum over σN−1, which will result in another factor 2, and reiterate
until we arrive at the sum over σy:

=
1

2N
∑

σ1=±1
· · ·

∑
σy=±1

σx(1 + σ1σ2A) · · ·σy(1 + σy−1σyA) · 2N−y

If we now compute the sum over σy, the result will be different due to the added
factor: ∑

σy=±1
σy(1 + σy−1σyA) = 1 + σy−1A−(1− σy−1A) = 2σy−1A

Beside the usual factor 2, now we have also a factor A and a σy−1:

=
1

2N
∑

σ1=±1
· · ·

∑
σy−1=±1

σx(1 + σ1σ2A) · · · σy−1(1 + σy−2σy−1A) · 2N−y+1A

Due to the added σy−1, also the next sum will produce (beside the 2) also an A
and a σy−2, and so on. This continues until we arrive at the sum over σx:

=
1

2N
∑

σ1=±1
· · ·

∑
σx=±1

(1 + σ1σ2A) · · ·σ2
x(1 + σx−1σxA) · 2N−xAy−x
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Note the σ2
x: one σx was there from the start, the other was produced by

summing over σx+1. However, as σx = ±1, σ2
x ≡ 1 in any case, thus making

the sum “go back to normal”:∑
σx=±1

σ2
x︸︷︷︸

1

(1 + σx−1σxA) = 1 +����σx−1A+ 1−����σx−1A = 2

From now on, all the remaining sums will just produce a factor 2 each, and
nothing more. So, at the end:

〈σxσy〉 =
1
�
�2N
Ay−x��2N = (tanhK)y−x

Here we supposed x < y. If y < x instead, nothing really changes in the
argument apart from the sign of the exponent. So, in general, we may write:

〈σxσy〉 = (tanhK)|y−x| (4.41)

Denoting with r = |y− x| the distance between the two points x and y, we can
finally compute the correlation function g(r), and rewrite it as an exponential:

g(r) = 〈σxσy〉︸ ︷︷ ︸
(4.41)

−〈σx〉〈σy〉︸ ︷︷ ︸
0 (4.40)

= (tanhK)|r| ≡ exp
Å
− |r|
ξ(K)

ã
(4.42)

where ξ(K) is called the correlation length, and measures the decay of
correlations. In other words, spins are significantly correlated only when they
are |r| < ξ(K) positions apart.
Note that:

ξ(K) = − 1
ln tanhK

diverges when K → ∞, i.e. when T → 0. At very low temperature, the one-
dimensional Ising model becomes fixed in a extremely correlated configuration -
as if T = 0 were its the critical temperature. Still, note that this does not
agree with the mean field model, for which Kc = 1/2d = 1/2⇒ Tc = 2J/kB.
The divergence of the correlation length ξ(K) is fundamental for universality:
as all microscopical parts of the system can interact with the whole system,
the “exact specifics” do not matter anymore, but only the most fundamental
characteristics of the system.

General case: the correlation ansatz

The exponential behaviour of the two-point correlation function (4.42) motivates
an ansatz for models in d ≥ 2. More precisely, when t 6= 0 (i.e. T 6= Tc) the
two-point correlation function is hypothesized to have the form:

Correlation ansatz
g(r, t) = r−τ exp

Å
− τ

ξ(t)

ã
r = ‖r‖ (4.43)

with the correlation length diverging near the critical point:

ξ(t) = C±|t|−ν t ≈ 0, h = 0 (4.44)
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for some proper choices of parameters τ , ν and C±. In more general cases, ξ(t)
may also depend (weakly) on the direction of r, meaning that the system is not
isotropous.

At the critical point t = (T − Tc)/Tc = 0, with h = 0, the correlation does not
diverge anymore, but it’s described instead by a power law:

Correlation ansatz
at t = 0g(r, t) ∼ ‖r‖−(d−2+η) (4.45)

where the added exponent η is called the anomalous dimension.

We can combine (4.43) and (4.45) by writing an equation of state for the
correlation length ξ(K), as a function of the only two “dimensionless” scaling
variable r/ξ and t|h|−1/βδ:

ξ(t,h) = |t|−ν ξ̂(t|h|−1/βδ) (4.46)

leading to the complete ansatz for the two-point correlation ansatz:
The “complete”
correlation ansatzg(r, t,h) = r−(d−2+η)g̃

Å
r

ξ
, th−1/βδ

ã
(4.47)

Before proceeding, we note that (4.47) leads to an interesting relation between
γ (the exponent defining the scaling for the susceptibility) and η, δ, i.e. the
exponents appearing in the correlation ansatz.

Recall the fluctuation dissipation theorem (3.69, 127):

χ =
∂

∂h
〈
∑
x σx
N
〉 = 1

N
[〈
∑
xy
σxσy〉 − 〈

∑
x
σx〉2] =

=
1
N

∑
xy

(
〈σxσy〉 − 〈σx〉〈σy〉︸ ︷︷ ︸

g(x−y,t,h)

)
=
∑
r
g(r, t,h)

At h = 0 and t ≈ 0, g̃ varies slowly, because it is defined as a function
of “dimensionless” variables. So we can consider the continuum limit, and
substitute the sum over r with an integral:

χ =
∫

ddr g̃
Å
r

ξ

ã
r−(d−2+η) =

r/ξ=x
ξ2−η

∫
ddx g̃(x)x−(d−2+η)︸ ︷︷ ︸
Constant in h, t

=

= ξ2−η ·Const. ∝
(4.44)

|t|−ν(2−η)

and comparing with (4.35) leads to the following scaling relation:

γ = ν(2− η) (4.48)

4.3.2 Hyperscaling
Finally, we proceed yet further in finding new ansatzs.
In the previous section, we found that the correlation length ξ can be regarded
as new scale length that emerges spontaneously near criticality.

158



So, naïvely we know that the free energy density f scales as L−d, where L
is the physical length scale of the system and d its dimension. However, near
criticality, we may guess that the “most important” length scale becomes instead
ξ, leading to the ansatz:

f(T ,h = 0) = F (T ,h = 0)
N

= ξ−d ·Const.+ Less Singular Terms

As ξ ∼ |t|−ν (4.46), then, near criticality:

f(T ,h = 0) ∼ |t|dν

Differentiating two times with respect to T we can derive a similar relation for
the heat capacity:

C = −T ∂2

∂T 2F (T ,h = 0) = Const · |t|dν−2 + l.s.t

Comparing with (4.36), we find a relation for the exponent α, known as the
hyper-scaling relation :

α = 2− dν (4.49)

The hyper comes from the fact that (4.49) is the only relation thus far that
explicitly involves the dimension d of the system. Moreover, it is known to hold
only below some critical dimension dU (the “upper” dimension), and violated
in d > dU . In case of the Ising Model, dU = 4.

4.3.3 Summary of scaling relations
We have introduced a total of 6 exponents:

1. β, regulating the magnetization m as a function of temperature (4.39)

2. γ, for the susceptibility χ as a function of temperature (4.35)

3. δ, regulating the magnetization m as a function of the magnetic field h
(4.34)

4. α, for the specific heat c versus temperature (4.36)

5. η, dealing with the decay of the two-point correlation function near the
critical point as a function of the distance t from it (4.47)

6. ν, describing the divergence of the correlation length near criticality as a
function of t (4.46)

and 4 scaling relations between them:

β(δ− 1) = γ (4.50a)
ν(2− η) = γ (4.50b)
β(δ + 1) = 2− α (4.50c)
dν − 2 = α (4.50d)

meaning that, at the end, only 2 exponents are independent.
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4.3.4 Correlation function in the Mean Field
(Lesson 27 of
11/05/20)
Compiled: January
28, 2021

We want to verify (4.47) in the case of the mean field approximation.
So, we start with a separable variational ansatz (4.8, pag. 133):

ρ0(σ) =
∏
x
ρx(σx) ρx(σx) = 1 +mxσx

2 mx ∈ [−1, 1] (4.51)

In this case, spins are independent, and so:

〈σxσy〉0 =
∑
{σ}

ρ0(σ)σxσy = 〈σx〉0〈σy〉0 =
(4.9)

mxmy

More in general, the n-point correlator between m distinct x1, . . . ,xm spins is
the product of the local magnetizations mxi :

〈σx1 · · ·σxn〉0 =
n∏
i=1

mxi

This means that the correlation function Gxy is trivial:

Gxy ≡ 〈σxσy〉 − 〈σx〉〈σy〉 = mxmy −mxmy = 0

A more interesting (and accurate) result can be obtained if we start from the
exact partition function:

Z(h) =
∑
{σ}

exp
Å
−βH(σ) +

∑
x
hxσx

ã
The magnetization mxi at position x1 can be obtained by deriving lnZ(h) with
respect to the local field hx1 at that position (3.67):

∂

∂hx1
lnZ(h) =

∑
{σ}

exp
Å
−βH(σ) +

∑
x
hxσx

ã
σx1

Z(h) = 〈σx1〉 = mx1

And if we differentiate once more, with respect to hx2 with x2 6= x1 (see the
steps preceding (3.69) at pag. 127):

∂2

∂hx1∂hx2
lnZ(h) = ∂

∂hx1
〈σx1〉 =

∑
{σ}

exp
Å
−βH(σ) +

∑
x
hxσx

ã
σx1σx2

Z
+

−

∑
{σ}

exp
Å
−βH(σ) +

∑
x
hxσx

ã
σx1

Z
·

∑
{σ}

exp
Å
−βH(σ) +

∑
x
hxσx

ã
σx2

Z
=

= 〈σx1σx2〉 − 〈σx1〉〈σx2〉

And so we get an exact result for the two-point correlation function:

Gx1x2 ≡
∂mx1

∂hx2
= 〈σx1σx2〉 − 〈σx1〉〈σx2〉 (4.52)
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In the mean field, local magnetizations obey equation (4.16):

mx(h,K) = tanh
[
K

∑
y∈〈y,x〉

my + hx

]
(4.53)

where the sum is over all nodes y that are neighbours of x. Solving for hx leads
to:

hx = tanh−1mx −
∑
y
Kxymy Kxy ≡

(a)
Kδ|rx−ry|,a =

K |rx − ry| = a

0 otherwise
(4.54)

Here we denote with rx the position of node x in the lattice, so that |rx − ry|
is the distance between spins x and y. Neighbouring cells are separated only by
the grid step a, and we use this fact to rewrite in (a) the sum over neighbours
of x as a sum over all nodes by adding an appropriate Kronecker delta.
Differentiating both sides of (4.54) with respect to hz leads to:

δxz =
∂hx
∂hz

=
1

1−m2
x

∂mx

∂hz︸ ︷︷ ︸
Gxz (4.52)

−
∑
y
Kxy

∂my

∂hz︸ ︷︷ ︸
Gyz (4.52)

=

=
∑
y

ï
δxy

1−m2
x
−Kxy

ò
︸ ︷︷ ︸

Axy

Gyz

This can be rewritten in matrix form as follows:

1 = AG (4.55)

where the entries of A are:

A =



1
1−m2

1
−���K11 −K12 −K13 · · ·

−K21
1

1−m2
2
−���K22 −K23 · · ·

−K31 −K32
1

1−m2
3
−���K33 · · ·

...
...

...
. . .

 Axy =
δxy

1−m2
x
−Kxy

In the case of a cubic lattice with periodic boundary conditions the
system is translationally invariant, and so it is reasonable to assume a uniform
magnetization, i.e. hx ≡ h and mx ≡ m(h,T ). This leads to:

Axy =
δxy

1−m2 −Kxy =

 1
1−m2 x = y

−K |rx − ry| = a

And from (4.55) we obtain:

G−1 = A⇔ (G−1)xy = Axy =
δxy

1−m2 −Kxy (4.56)
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Note that the entries of G−1 depend only on differences of positions (in Kxy),
meaning that G−1 is translationally invariant. Explicitly, the (reciprocal of the)
correlation between spins that are the same distance apart is the same, and so:

(G−1)xy ≡ G−1(rx, ry) = G−1(rx +na, ry +na) n ∈ Zd

Choosing n so that ry = −na we get:

G−1(rx, ry) = G−1(rx − ry, 0) ≡ G−1(rx − ry) (4.57)

Translational invariance implies that G−1 is diagonalized by the Fourier basis.
This can be quickly shown in the continuum limit, i.e. if we treat rx and ry as Translational

invariance and
Fourier basis

continuous variables. Then, ignoring the normalization constants:

F [G−1](p, q) ∝
∫

Rd
ddrx eip·rx

∫
Rd
eiq·ry G−1(rx, ry) ddry = (4.58)

=
(4.57)

∫
R2d

ddrx ddry eip·rxeiq·ry G−1(rx − ry) =

=
t=rx−ry

∫
R2d

ddt ddry eip·teiry·(p+q)G−1(t) =

=
∫

Rd
ddt eip·tG−1(t)︸ ︷︷ ︸
F [G−1](p)

∫
Rd

ddry eiry·(p+q)︸ ︷︷ ︸
δd(p+q)

= G̃−1(p)δd(p+ q)

And so F [G−1](p, q) can be nonzero only if p = −q, meaning that can be
seen as a (infinite) diagonal matrix8. Then, the inverse of a diagonal matrix is
obtained by replacing each element in the diagonal with its reciprocal:

F [G−1](p, q) = 1
F [G−1](p)δ

d(p+ q)

However, rx and ry are constrained to discrete positions in the cubic lattice
- in other words G−1(rx, ry) should really be a function Zd ×Zd → R. By
adding some Dirac deltas, we can extend the domain to Rd ×Rd, essentially
making the function vanish for all non-integers arguments:

G−1(rx, ry) =
∑

n,m∈Zd

G−1(rx, ry)δd(rx −na)δd(ry −ma) rx, ry ∈ Rd

G−1 has a period of a for all its arguments, and so its Fourier transform will
have9 a period of 2π/a.
With a symmetric choice for the normalization, the Fourier transform becomes:

F [G−1](p, q) =
( a

2π

)d ∫
Rd

ddp e−ip·rx
∫

Rd
ddq e−iq·ry ·

·
∑

n,m∈Zd

G−1(rx, ry)δd(rx −na)δd(ry −ma) =

8∧A discrete matrix MN×N (R) is diagonal if it has entries Axy = Axδxy. Here we
have some sort of “continuous matrix” - which should really be intended as the matrix
representation in the Fourier basis of a linear operator on L2(Rd). So, in a sense, it is a
∞×∞ matrix “centred in 0”. In the d = 1 case, it can be thought as of a plane, with entries
at every point (p, q), and the diagonal being the second-fourth quadrant bisector p = −q.

9∧See https://www.gnu.org/software/gnuastro/manual/html_node/Dirac-delta-
and-comb.html for the proof.
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=
(a)

( a
2π

)d ∑
n∈Zd

∑
m∈Zd

e−iap·ne−iaq·mG−1(na,ma)︸ ︷︷ ︸
G−1([n−m]a)

=

=
t=n−m

( a
2π

)d ∑
t∈Zd

∑
m∈Zd

e−iap·te−iam·(p+q)G−1(ta) =

=
( a

2π

)d ∑
t∈Zd

e−iap·tG−1(ta)︸ ︷︷ ︸
1st

∑
m∈Zd

e−iam·(p+q)

︸ ︷︷ ︸
2nd

where in (a) we used the deltas to collapse the integrals.
For the second sum, recall that10:

(2nd) = 1
F

+∞∑
k=−∞

exp
Å
±i2kπf

F

ã
=

+∞∑
n=−∞

δ(f − nF )

In our case:Å2π
a

a

2π

ãd ∑
m∈Zd

exp
Å
−i2πm · (p+ q)

2π/a

ã
=

Å2π
a

ãd ∑
m∈Zd

δ

Å
p+ q−m2π

a

ã
Regarding the remaining sum, recall that ta = rx − ry:

(1st) = G−1(ta) ≡ G−1(rx − ry) = Axy =
δxy

1−m2 −Kδ|rx−ry|,a

Note that x = y if and only if rx − ry = 0, i.e. t = 0, and so δxy = δdt,0, which
denotes a d-dimensional Kronecker delta:

δdt,0 =

1 t = 0⇔ t1 = · · · = td = 0

0 otherwise

Similarly:

δ|rx−ry|,a = δ‖t‖a,a = δ‖t‖,1

Substituting in the sum:

∑
t∈Zd

e−iap·t
Ç

δdt,0
1−m2 −Kδ‖t‖,1

å
= e−iap·0︸ ︷︷ ︸

1

1
1−m2 −K

∑
t∈Zd

‖t‖=1

e−iap·t

For a integer valued vector t ∈ Zd, a unitary norm can be obtained if and only
if exactly one of its components is ±1. Thus:

∑
t∈Zd

‖t‖=1

e−iap·t =
d∑

µ=1

[
e−iap·t

µ
+ + e−iap·t

µ
−
]
=

(
tµ± = (0

1
, . . . ,±1

µ
, . . . , 0

d
)
)

10∧See equation 4 in http://fourier.eng.hmc.edu/e102/lectures/
ExponentialDelta.pdf for the proof.
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=
d∑

µ=1

[
e−iapµ + e+iapµ

]
=

d∑
µ=1

2 cos(apµ)

And so at the end we get:

F [G−1](p, q) =
(

1
1−m2 − 2K

d∑
µ=1

cos(apµ)
) ∑
m∈Zd

δd
Å
p+ q−m2π

a

ã
which is periodic with period 2π/a in each component of both arguments - and
so p and q vary within11 (−π/a,+π/a)d. This means that:

pµ + qµ ∈
Å
−2π
a

,+2π
a

ã
∀µ = 1, . . . , d

And so: ∑
m∈Zd

δd(p+ q−m2π
a

) = δd(p+ q)

because all other δs with some mµ 6= 0 vanish. Thus F [G−1](p, q) is diagonal,
and its matrix inverse is:

G̃(p, q) = 1

(1−m2)−1 − 2K
d∑

µ=1
cos(apµ)

δd(p+ q)

Symmetric normalization. We are using a symmetric normalization for the
direct and inverse Fourier transforms (here for d = 1 for simplicity):

F [f(x)](p) ≡ f̃(p) =
…

a

2π

+∞∑
x=−∞

eixpf(x)

F−1[f̃(p)](x) =
…

a

2π

∫ +π/a

−π/a
f̃(p)eixp dp

Where the factor is exactly 1/
√
T , with T being the period of f̃(p), which is

2π/a in our case.
This is done so that F is a unitary linear operator mapping elements (i.e.
functions) of L2(R) to elements of L2([−π/a, π/a]). This is necessary to avoid
altering the determinant of the matrix during transformation.
Physically, this is the only way to make both G−1 and G̃−1 adimensional - as
they should be.

To find Gxy we anti-transform. Applying the definition of the inverse transform
of the DTFT (with a symmetric choice for normalization) leads to:

G(rx, ry) =
( a

2π

)d ∫
(−πa ,+π

a )2d ddq ddp eip·rxeiq·ry δd(p+ q)

(1−m2)−1 − 2K
d∑

µ=1
cos(apµ)

=

11∧The extrema are not contained. This can be proved by considering the discrete finite
case, i.e. a lattice with a finite number N of spins, computing the DFT and taking the
thermodynamic limit N →∞.
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=
q=−p

( a
2π

)d ∫
(−πa ,+π

a )d
ddp eip·(rx−ry) 1

(1−m2)−1 − 2K
d∑

µ=1
cos(apµ)︸ ︷︷ ︸

G̃(p)
(4.59)

The integral’s cubic domain is also called the first Brillouin zone12 of the
cubic lattice with grid step a. G̃(p) are then the eigenvalues of the matrix
Gxy (when N →∞), and (a/2π)d/2eip·rx are the (orthonormal) eigenvectors.
Note that for |x− y| � a, i.e. spins that are very far apart, the oscillation
of the complex exponential eip·(rx−ry) is very rapid, i.e. a tiny difference in p
amounts to a high change in phase. Then the integrand will oscillate rapidly
about 0, making the integral vanish. Thus, the only significant contributions
are when p ≈ 0, i.e. the ones with a “stationary phase”13. So, we can expand
G̃(p) in series:

G̃(p) =
[

1
1−m2 − 2K

d∑
µ=1

cos(apµ)
]
=

[
1

1−m2 − 2K
d∑

µ=1

Å
1− (apµ)2

2 +O(p4
µ)
ã]

=

(4.60)

=
[ 1

1−m2 − 2dK︸ ︷︷ ︸
A

+K‖p‖2a2 +O(‖p‖4)
]−1
≈
[
Ka2

(
‖p‖2 + A

Ka2

)]−1
=

=
1

Ka2
1

‖p‖2 +Ka2/A

Recall that a has dimension of length, ([a] = L) and that p of the reciprocal of
length ([‖p‖] = L−1), while the constant A defined in the above expression is a
pure number. Then [A/Ka2] = L−2 and so we denote it ξ−2 = A/ka2, where
now [ξ] = L is the correlation length:

G̃(p) ≈ 1
Ka2

1
‖p‖2 + ξ−2

ξ−2 ≡ A

Ka2 =
a−2

K

[ 1
1−m2 − 2dK

]
(4.61)

In the mean field approximation, m is given by the solution of (4.53), which
near criticality is given by (4.26, pag. 140):

m2(K) =

3K −Kc

Kc
K > Kc

0 K < Kc

with Kc = 1/2d.
12∧Lattices are at the foundation of solid state physics. In particular, the Fourier transform

of a lattice - represented as a “grid of δs” - is still a lattice in the space of frequencies, and
it’s called the reciprocal lattice. The first Brillouin zone is just how the first unit cell of
the lattice appears after the Fourier transform. In the case of a cubic lattice, it is still cubic,
but with a different length.

13∧This is in fact a generalization of the saddle-point approximation to complex integrals
with an oscillating term
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Then, substituting in the definition of ξ, for K < Kc we get:

ξ−2 =
a−2

K2

ï 1
1−m2 −

K

Kc

ò
=

K<Kc

a−2

K

ï
1− K

Kc

ò
=
a−2

K

Å
Kc −K
Kc

ã
=
a−2

K

|K −Kc|
Kc

And for K > Kc, expanding around m ≈ 0:

ξ−2 =
a−2

K2

ï
1 +m2 +O(m4)− K

Kc

ò
≈

K>Kc

a−2

K

ï
1 + 3K −Kc

Kc
− K

Kc

ò
= 2a

−2

K

|K −Kc|
Kc

So, in both cases, we have:

ξ−2 ∝
∣∣∣∣K −Kc

Kc

∣∣∣∣ K ≈ Kc

Meaning that the correlation length diverges near criticality:

ξ ∝
∣∣∣∣ Kc

K −Kc

∣∣∣∣1/2 K ≈ Kc

This is consistent with (4.46, pag. 156):

ξ ∝ |t|−ν

with ν = 1/2 in the mean field approximation.

Substituting back in (4.61) and collecting a ‖p‖2:

G̃(p) ≈ 1
ka2‖p‖2

(
1 + 1

(ξ‖p‖)2

)−1
= ‖p‖−2g̃(‖p‖ξ) (4.62)

All that’s left is to verify that (4.62) is indeed compatible with a correlation
function given by the ansatz (4.47). So, let h = 0 for simplicity, and assume
that:

Gxy = ‖rx − ry‖−(d−2+η)ĝ

Å‖rx − ry‖
ξ

ã
(4.63)

The Fourier transform of (4.63), up to normalization, is given by:

G̃(p) ∝
∫

Rd
ddr ‖r‖−(d−2+η)ĝ

Å‖r‖
ξ

ã
eir·p

By rescaling r = v/‖p‖ we can make ĝ a function of ‖p‖ξ as in (4.62):

G̃(p) ∝
∫

Rd

ddv
‖p‖d

∥∥∥∥∥rp
∥∥∥∥∥
−(d−2+η)

ĝ

Å ‖v‖
‖p‖ξ

ã
exp

(
iv · p
‖p‖︸︷︷︸
p̂

)
=

= ‖p‖−(2−η)
∫

Rd
ddv ‖v‖−(d−2+η)ĝ

Å ‖v‖
‖p‖ξ

ã
eiv·p̂︸ ︷︷ ︸

g̃(‖p‖ξ)

=

= ‖p‖−2+ηg̃(‖p‖ξ)
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And so (4.63) is compatible with (4.62). Moreover, we see that η = 0 in the
mean field approximation (but in general it can be 6= 0).

As a bonus, we see that the scaling relation (4.48, pag. 156) is respected in the
mean field:

γ = ν(2− η)

As we have found γ = 1, ν = 1/2 and η = 0.

Finally, notice that:

∑
y
Gxy = 〈σx

∑
σy〉 − 〈σx〉〈

∑
y
σy〉 =

(a)

∂

∂h
〈σx〉 = χ

where in (a) we used the fluctuation-dissipation theorem (3.69, pag. 127). Then,
the sum over all y is equal to the Fourier transform evaluated at p = 0. First
we rewrite it as:∑

y
Gxy ≡

∑
ry∈Zd

G(rx, ry) =
∑
t∈Zd

G(rx − ry, 0) =
∑
t∈Zd

G(t)

Then, evaluating G̃(0) gives the desired sum:

G̃(0) =
∑
t∈Zd

G(t)e−ip·t
∣∣∣
p=0

=
∑
t∈Zd

G(t) =
(4.59)

( 1
1−m2 − 2Kd

)

4.3.5 Example in a real system
An example of the emergence of scaling laws in real complex systems can be
seen by examining some features of a forest, in which many trees compete for
a set of resources (elements in soil, light, etc.).

We start from the simplifying assumption that each tree of a certain “size” r
(which can be measured as its height, or the diameter of its trunk) mainly
competes with trees of similar or bigger size - as everything much smaller will
have a negligible effect on it.
Then we measure the distance ri between the tree of size r and the closest bigger
tree, which will follow some distribution P(ri|r). In particular, we consider the
accumulated distribution given by:

P>(ri|r) ≡
∫ ∞
ri

P (r′i|r) dr′i

After some sophisticated analysis, a reasonable ansatz for P> is found:

P>(ri|r) = F
( ri

r2/3

)
(4.64)

For each r, P>(ri|r) is plotted in fig. 4.12.
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Figure (4.12) – Plot of the accumulated probabilities for ri for various tree sizes r.

If the ansatz in (4.64) is correct, then by rescaling the x axis to ri/r2/3 we
should see all curves “collapsing” into one. This indeed happens in fig. 4.13.

Figure (4.13) – All curves from fig. 4.12 collapse (approximately) into one when rescaling
the x axis according to ansatz (4.64)

This means that there is some kind of emergent behaviour in the forest: the
distribution of tree sizes is not completely random, but exhibits a scaling
behaviour, which is similar to the one we studied in the Ising model. In a sense,
the forest has “self-tuned” to a state “near criticality”. Yet, it is not clear why
this is the case - for example what is the evolutionary advantage in this kind of
“self tuning”.
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Chapter 5

Beyond Mean Field
and Universality

Many years of study of phase transitions have shown that there are few types
of critical behaviours, meaning that many systems exhibit the same kind of
behaviour near criticality.

As an explicit example, a summary of the critical exponents for several classes
of models is shown in fig. 5.1.

Figure (5.1) – Values of critical exponents for several models. As these exponents do not
depend on all the details of each model, there is no need to fully specify each Hamiltonian.
For example, the IM in d = 2 could have more complex couplings between spins (other than
the nearest neighbour ones we considered until now). Taken from [10]

Here there is no need to fully specify the Hamiltonian of each model: for
instance, when talking about a Ising Model in d = 2, the exponents are the
same no matter how complex the spin couplings may be (for example, not only
nearest neighbours may be interacting).
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Moreover, if we consider higher and higher dimensions , the exponents tend
to the values obtained in the mean field approximation. For example, δ is 15
in d = 2, and 5 in d = 3, which is closer to the MF value of 3.
There is also a dependence on the symmetries of each model. As an example
we may consider the Heisenberg model, a generalization of the IM in which each
spin is a 3-vector. Now the system is globally rotationally symmetric, meaning
that the symmetry group is O(3). In the Ising Model with binary spins, the
spin-flip symmetry is instead described by the Z2 group. So, even if the two
models are studied in the same number of dimension (e.g. d = 3), the scaling
exponents will be different, as can be seen in fig. 5.1.
From this analysis, we find that the critical exponents do not depend on the
specificity of the Hamiltonian, but only on two general characteristics:

• The dimensionality of the model

• The symmetries of the Hamiltonian

In the following, we will try to give some mathematical foundation to these
arguments, mainly motivated by heuristics and intuition. A true formal proof,
while possible (in some cases), would require a level of depth and sophistication
well outside the scope of this course.
In essence, the idea is to start by fixing a specific symmetry - for instance that
of the Ising Model - and consider the most general kind of Hamiltonian with
that symmetry. The goal is to compute the partition function as a power series,
and demonstrate that, at least near criticality, the relevant coefficients are few,
and depend only on the initial symmetry and the model’s dimensionality.
However, this kind of computation is impossible if we are dealing with discrete
variables, such as the binary spins σi = ±1 of the IM, as in general there is no
analytical way to compute the sum in the partition function. A way around this
is to convert the model to continuous variables, i.e. spins σi ∈ R, making the
partition function vanish for values ϕx that are “far” from the discrete ones (±1).
This, along with some reasonable assumptions (such as translational invariance
and short-range interactions) allows to expand Z in series near criticality, and
study its behaviour.
We can then search for the simplest discrete model that is able to recreate the
relevant coefficients in the Z expansion, and thus provide a “minimal description”
for the behaviour of entire classes of systems.

5.1 From discrete to continuous variables
Consider a Ising Model, with a general Hamiltonian including also more complex
spin-spin interactions:

−βH(σ) =
∑
x,y

Kxyσxσy +
∑
x,y,z,t

Kxyztσxσyσzσt + . . . (5.1)

The term Kxy (and similarly the others) could include not only neighbouring
spins, but also next-to-neighbouring spins and so on. One important constraint 1. Symmetry
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is to allow only interaction between an even number of spins, so that the
Hamiltonian has still a spin-flip symmetry:

H(σ) = H(−σ)

which is described by the cyclic group Z2.
The partition function is given by:

Z =
∑
{σ}

e−βH(σ)

This is a function of discrete binary variables σx = ±1. We can write it as a
function of continuous variables ϕx by zeroing all values where ϕx 6= ±1 with a
Dirac delta:

Z =
∫

RN

[∏
x

dϕx δ(ϕ2
x − 1)

]
e−βH(ϕ) (5.2)

The Dirac delta can then be written as the limit in which a smooth function
(e.g. a gaussian) becomes more and more “peaked” (fig. 5.2):

δ(ϕ2
x − 1) = lim

λ→+∞
e−λ(ϕ2

x−1)2
N (λ) (5.3)

where N (λ) is a normalization constant. In fact, the integral of the δ is always
fixed:∫ +∞

−∞
dϕ δ(ϕ2 − 1) =

(a)

∫ +∞

−∞
dϕ δ(ϕ− 1) + δ(ϕ+ 1)

2|ϕ| =
1

2|1| +
1

2| − 1| = 1

(5.4)

where in (a) we used the composition formula for the δ:

δ(g(x)) =
∑
i

δ(x− xi)
|g′(xi)|

with the sum over all (simple) roots xi of g(x).

Figure (5.2) – The δ(ϕ2
x − 1) can be seen as the limit of a smooth function with two peaks

in ±1, which become more and more sharp as λ→ +∞, while maintaining the area under
the curve fixed to 1.

Imposing (5.4) in (5.3) leads to the following expression for the normalization
N (λ):

N (λ) =
[ ∫ +∞

−∞
dϕ e−λ(ϕ2−1)2]−1
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Then, substituting (5.3) into the partition function (5.2) we get:

Z = lim
λ→∞

N (λ)N
∫

RN

[∏
x

dϕx
]

exp
Å
−βH(ϕ)− λ

∑
x

(ϕ2
x − 1)2

ã
(5.5)

Experimentally, we observe that near criticality the details of the system do
not matter for describing its behaviour - and so we expect that the system
with finite λ (e.g. λ ∼ 1) will behave similarly to the one with λ → +∞.
Mathematically, studying the first case allows us to deal with smooth functions.
So, removing the limit from (5.5) is equivalent to study the following Hamilto-
nian:

−βHtot(ϕ) = −βH(ϕ)− λ
∑
x

(ϕ2
x − 1)2

Let’s now assume that all spin-spin interactions are translationally invariant, 2. Translational
invariancemeaning that the interaction terms Kxy, Kxyzt and so on are all functions of

distances.
Explicitly, let’s focus for instance on Kxy. Translational invariance means that
we can write it as:

Kxy = K2(rx − ry)

for some function K2. Then, due to the Z2 symmetry, K2(rx− ry) = K2(ry −
rx). In fact, if the two spins are the same (both +1 or −1), then exchanging
them will not make any difference. If they are different, i.e. one +1 and the
other −1, exchanging them is equivalent to a spin-flip, and so the result will
still be the same.
Thus, if we rewrite r = rx − ry = na, with n ∈ Zd, then K2(r) is an even
function, and depends only on ‖r‖ due to translational invariance.
This means that all averages of only one component of r are zero:∑

r
K2(‖r‖)rα = 0 α = 1, . . . , d (5.6)

because K2 is even, while rα is odd.
We also assume interactions to be short range. This means that the average 3. Short range

interactionsof two components of r is proportional to a2:
∑
r
K2(‖r‖)rαrβ =

δαβ
d

∑
r
K2(‖r‖)‖r‖2 ∝ a2 <∞ (5.7)

The δαβ comes from the fact that we expect different directions to be independent
(isotropy), and the d is just a normalization for the Kronecker delta.
Similar relations are expected to hold for all higher order interaction terms
(Kxyzt and so on).
With all these assumptions, we can simplify the Hamiltonian (5.1). For instance,
the Kxy term becomes: ∑

xy
K2(rx − ry)ϕ(rx)ϕ(ry)
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with ϕ(rx) ≡ ϕx and ϕ(ry) ≡ ϕy. In this notation, x and y are numeric
indices for the spins, and rx, ry ∈ Zda are their positions in the lattice. Then
ϕ(rx) ∈ R refers to the spin of the cell x at position rx.
Changing variables to r = rx − ry leads to:∑

y
ϕ(ry)

∑
r
K2(r)ϕ(ry + r)

Now we use the fact that K2 is short range, and so the dominant contributions
to the sum are the ones with small r. Near criticality, we expect the correlation 4. Criticality
length to diverge, meaning that spins that are far apart can be highly correlated.
Qualitatively, this leads to spin configurations that are “smooth”, in the sense
that neighbouring spins are similarly aligned. Mathematically, this allows us to
treat ϕ(r) as a smooth function of the position r, and in particular to expand
it in series around r = 0:

5. Continuum limit

∑
y
ϕ(ry)

∑
r
K2(r)

[
ϕ(ry) +

d∑
α=1

rα
∂

∂rα
ϕ(r)

∣∣∣
r=ry

+
1
2

d∑
α,β=1

rαrβ
∂2

∂rα∂rβ
ϕ(r)

∣∣∣
r=ry

+ . . .

]
=

We can then exchange some of the sums to use (5.6) and (5.7):

=
∑
y
ϕ(ry)

∑
r
K2(r)︸ ︷︷ ︸
c2

ϕ(ry) +
∑
y
ϕ(ry)

d∑
α=1

(∑
r
K2(r)rα

)
︸ ︷︷ ︸

0 (5.6)

∂ϕ

∂rα
(ry)+

+
∑
y
ϕ(ry)

d∑
α,β=1

(∑
r

rαrβ
2 K2(r)

)
︸ ︷︷ ︸

∝δαβa2 (5.7)

∂2ϕ

∂rα∂rβ
(ry) + · · · =

And inserting a coefficient c3 to account for the proportionality:

= c2
∑
y
ϕ(ry)2 + c3a

2∑
y
ϕ(ry)

d∑
α=1

∂2ϕ

∂r2
α

(ry)︸ ︷︷ ︸
∇2ϕ(ry)

=

= c2
∑
y
ϕ(ry)2 + c3a

2∑
y
ϕ(ry)∇2(ry)

Taking the continuum limit a→ 0 (an “infinitely dense” lattice) the summa-
tion becomes an integral. We then rescale the integration variable from ry = ya,
resulting in an additional a−d factor, so that the integrand is adimensional:

=
a→0

∫
Rd

ddy a−d
[
c2ϕ(ay)2 + c3a

2ϕ(ay)∇2ϕ(ay) + . . .
]
=

Finally, integrating by parts two times the highlighted term, and ignoring the
resulting surface terms, leads to:

=
∫

Rd
ddy a−d

[
c2ϕ

2(ay)− c3a2(∇ϕ(ay))2 + . . .
]

A similar procedure can be done also for the other interaction terms. For
instance, consider the quartic term:∑

x,y,z,t
Kxyztϕ(rx)ϕ(ry)ϕ(rz)ϕ(rt)

173



Translational invariance implies that:

Kxyzt = K4(rx − ry, rz − ry, rt − ry)

And so we can rewrite the term in the Hamiltonian as follows:∑
xyzt

Kxyztϕ(rx)ϕ(ry)ϕ(rz)ϕ(rt) =

=
r1≡rx−ry
r2≡rz−ry
r3≡rt−ry

∑
y
ϕ(ry)

∑
r1,r2,r3

K4(r1, r2, r3)ϕ(ry + r1)ϕ(ry + r2)ϕ(ry + r3)

And then expand around r1, r2, r3 = 0.

After all these manipulations, the Hamiltonian will look like:

−βHtot(ϕ) =
∫

Rd
ddy a−d

[
− c3a

2(∇ϕ)2 + ĉ2ϕ
2 + ĉ4ϕ

4 + . . .

+ d2a
2(∇ϕ)2 + . . .

]
The yellow term comes from the binary interactions, the blue ones from the
quartic interactions, and the green includes contributions from both of them.

As ϕ ∈ R, through a change of variables we can fix one of the coefficients - for
example1 c3 to 1/2. So we consider the transformation ϕ = ζφ, with ζ ∈ R

constant such that:

c3a
2−d(∇ϕ)2 = c3a

2−dζ2(∇φ)2 !
=

1
2(∇φ)2 ⇒ ζ2 =

ad−2

c3

After this, the Hamiltonian becomes:

−βHtot(ϕ) ≡ −βH(φ) = −
∫

Rd
ddy

[1
2(∇φ)2 +

µ

2φ
2 + g4φ

4 + g6φ
6 + · · ·+

(5.8)

+ f2(∇φ)2φ2 + . . .
]

(5.9)

It is not important to specify exactly the dependence of these new coefficients
µ, g4, g6, f2, . . . on the old ones c3, ĉ2, ĉ4, d2, . . . . For now, let’s just observe their
order on a:

µ ∝ a−2; g4 ∝ ad−4; g6 ∝ a2(d−3); g8 ∝ a3d−8; f2 ∝ ad−2

When taking the continuum limit a → 0, µ always diverges, while the other
coefficients either vanish or diverge2 depending on d. For instance:

• d > 4: only µ is diverging

• 3 < d < 4: µ and g4 diverge
1∧The choice of which coefficient to fix is arbitrary. At the end, we will be interested in

the “relative order of magnitude” of the coefficients
2∧In fact, we take the continuum limit in the first place just to quantify the relative

importance of these coefficients
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• 8/3 < d < 3: µ, g4, g6 diverge

In particular, this means that for d > 4, a purely gaussian model can be used
to describe the system, and it’s able to capture all the behaviour of the system
near criticality:

−βHG(φ) = −
∫

Rd
ddxhg(φ, ∂αφ) hG(φ) = 1

2
î
(∇φ)2 +φ2

ó
This is the essence of universality: a critical system can be described with
few parameters, which depend only on the symmetry and the dimensionality
(assuming short-range interactions).

From a physical point of view, we are interested only in the d = 3 (general
systems) and d = 2 cases (interfaces/surfaces of systems). However, all other
possibilities are still relevant theoretically. In particular, the concept of fractional
dimensions enables perturbative expansions. The idea is that for d . 4 we can
write d = 4− ε, with ε ≈ 0. This means that g4 is “less important” than µ,
and can be treated perturbatively starting from a Gaussian model, leading to
results that agree well with experiments. In particular, this has lead to very
powerful renormalization group techniques, which are able to shed light onto
the so-called “universality classes”, i.e. very general “types” of models with
similar critical behaviour.

5.2 Back to the discrete world
In summary, the continuum limit a → 0 has shown to us that only a finite
number of terms in the Hamiltonian are important.
Thus, a discrete model with just the “right complexity” so that its continuum
limit matches just the first terms of (5.8) is enough to describe all the systems
in the same universality class near criticality!

One such example is the Nearest Neighbour Ising Model that we have already
studied. In the same universality class we find the “Next Neighbour” Ising
Model, in which a spin may interact with a neighbour of its neighbours (fig.
5.3). Explicitly, the Hamiltonian is given by:

−βH(σ) = K
∑
〈x,y〉

σxσy + L
∑
〈〈x,y〉〉

σxσy

where the second sum is over all x and y that share a neighbour z (i.e. that are
“neighbours of neighbours”).
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Figure (5.3) – Diagram of the interactions in a Next Neighbour Ising Model. Spins in the
lattice are represented as red dots, the usual nearest neighbour interactions are in blue, and
the next neighbour interactions are in green.

Results from renormalization group theory show that the phase diagram of this
kind of model is that of fig. 5.4.

Figure (5.4) – Phase diagram of the Next Neighbour Ising Model.

When the system is near criticality (i.e. along the red line of fig. 5.4) its
behaviour is described by the same set of critical exponents that appear in
the Nearest Neighbour Ising Model we previously examined.

Let’s add another term to the Hamiltonian, describing quartic interactions:

−βH(σ) = K
∑
〈x,y〉

σxσy + L
∑
〈〈x,y〉〉

σxσy +M
∑

[xyzt]
σxσyσzσt (5.10)

Figure (5.5) – Types of interactions in (5.10)
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In this case, the phase diagram is shown in fig. 5.6. Near the red surface, at which
a second order transition happens, the system’s behaviour is again described by
the same critical exponents that appear in the Nearest Neighbour Ising Model!
They are only different when crossing the green surface (corresponding to a
first order transition, for which there is no universality in principle) and the
boundary between the two surfaces, called the tri-critical line (which belongs
to a different universality class).

Figure (5.6) – Phase diagram for the model (5.10)
(Lesson 28 of
13/05/20)
Compiled: January
28, 2021

So, let’s see the form of the partition function for a lattice model that
is “complex enough” to account for only the first few relevant terms of the
continuum limit expansion.
We start from (5.8):

−βH(φ) = −
∫

Rd
ddy

[ 1
2(∇φ)2 +

µ

2φ
2 + g4φ

4 + g6φ
6 + . . . +

+ f2(∇φ)2φ2 + . . .
]

Setting a = 1 for simplicity, and replacing the integral with a sum over the
lattice sizes leads to:

−βHLattice(φ) = −
∑
〈x,y〉

1
2(φx − φy)2 −

∑
x
V (φx) + . . . (5.11)

V (φ) = µ

2φ
2 + g4φ

4 + . . . (5.12)

The two most important terms are the one with µ coefficient, and the first
gradient term - which accounts for basic binary interactions between spins. All
the others can be neglected for d > 4, or eventually treated perturbatively in
lower dimensions.
Then, the partition function on the lattice is given by:

ZLattice

∫
RN

[∏
x

dφx
]
e−βHLattice(φ)

One quick way to approximate it is through the saddle point method. So we
search for the stationary point φ̄ of the exponent:

0 !
=

∂

∂φλ
HLattice(φ)

∣∣∣
φ=φ̄

=
∑

y∈〈x,y〉
(φx − φy) + V ′(φx) + . . .

∣∣∣
φ=φ̄

(5.13)
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If we look for a uniform solution, i.e. setting all the components of φ̄ to the
same value φ̄, then we recover the results of the mean field approximation.
In particular, (5.13) simplifies to:

0 !
=

∑
y∈〈x,y〉

(φ̄− φ̄) + V ′(φ̄) + . . .︸︷︷︸
0 when φx = φ̄

= V ′(φ̄) = µφ̄+ 4g4φ̄
3 + 6g6φ̄

5

One immediate solution is φ̄ = 0. If µ < 0, another solution is:

φ̄ =

Å
− µ

4g4

ã1/2
+O(µ) µ < 0 (5.14)

Note that µ has the role of t = (T − Tc)/Tc, namely: if µ > 0 (T > Tc) only
φ̄ = 0 is possible, and if µ < 0 (T < Tc) solution (5.14) emerges. Graphically,
the potential V (φ̄) for different values of µ is shown in fig. 5.7.

Figure (5.7) – Graph of V (φ̄) (5.12) near φ̄ = 0 for different values of coefficient µ,
assuming g4, g6 > 0.

So it is reasonable to identify µ with:

µ ∝ T − Tc
Tc

Note that this leads to the same phenomenology given by the mean field
approximation. However, as we started from a much more general expression
(5.11), we can now go beyond it! One way is to (perturbatively) consider
deviations from the saddle point solution, i.e. φx = φ̄+ ϕx. Then the partition
function becomes:

ZLattice = e−NV (φ̄)
∫

RN

[∏
x

dϕx
]

exp
Ç
−1

2
∑
xy

∂2H
∂φx∂φy

∣∣∣
φ=φ̄

ϕxϕy + . . .

å
Note that if we keep only the µ term (Gaussian model), i.e.:

V (φ) = µ

2φ
2

Then the saddle point approximation (with uniform solution) leads to:

0 !
= V ′(φ̄) = µφ̄⇔ φ̄ = 0

So the (mean field) Gaussian model can describe only the paramagnetic phase -
as there is no equivalent of the spontaneous magnetization (5.14).
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5.2.1 The Lattice Gaussian Model
As an example, let’s examine what happens if we keep only the first gradient
term and the µ term in (??):

−βHG,Lattice(φ) = 1
2
∑
〈x,y〉

(φx − φy)2 +
µ

2
∑
x
φ2
x =

=
1
2

[ ∑
〈x,y〉

(φ2
x + φ2

y) + µ
∑
x
φ2
x

]
−
∑
〈x,y〉

φxφy =

=
(a)

1
2

[
2d
∑
x
φ2
x + µ

∑
x
φ2
x

]
−
∑
〈x,y〉

φxφy =

=
1
2
∑
x
φ2
x(µ+ 2d)−

∑
〈x,y〉

φxφy =

=
1
2
∑
xy
φx(µ+ 2d)δxyφy −

∑
xy
φxφyδ|rx−ry|,1 =

=
1
2
∑
xy
φxMxyφy

Mxy = (µ+ 2d)δx,y − δ|rx−ry|,1 (5.15)

where in (a) we used the same reasoning needed for (3.15, pag. 104).
To proceed, note that the matrix Mxy is just the inverse of the covariance
matrix of a multidimensional gaussian, meaning that:

〈φxφy〉 = M−1
xy

Moreover, the form of (5.15) strongly resembles that of the correlation matrix
we computed in the mean field (4.56, pag. 159):

G−1
xy =

1
1−m2 δxy −Kxy =


1

1−m2 x = y

−K |rx − ry| = a

where the corresponding elements are highlighted with the same color. We
already diagonalized Gxy in (4.59, pag. 163):

Gxy =
( a

2π

)d ∫
(−πa ,+π

a )d
ddp eip·(rx−ry) 1

(1−m2)−1 − 2K
d∑

µ=1
cos(apµ)

︸ ︷︷ ︸
G̃(p)

(5.16)

And so by comparing (5.15) with (5.16) we find:

〈φxφy〉 = M−1
xy =

( a
2π

)d ∫
(−πa ,πa )

ddp eip(rx−ry) 1

µ+ 2d − 2
d∑

µ=1
cos(pµa)
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where we also reintroduced a 6= 1. Thus, the eigenvalues M(p) of Mxy are:

M(p) =
[ 1
µ+ 2d− 2∑d

µ=1 cos(pµa)

]−1
= µ+ 2d− 2

d∑
µ=1

cos(pµa)

Then, in the stationary phase approximation, we expand around p = 0 (as we
did in (4.60)):

M(p) = µ+ ‖p‖a2 +O(‖p‖4) = a2
( µ
a2 + ‖p‖2

)
+O(‖p‖4)

Noting that [µ−1a2] = L2, we define the correlation length ξ ≡
√
a2µ−1. As

µ ∝ t, this means:

ξ ≡
√
a2µ−1 ∝

Å
T − Tc
Tc

ã−ν
ν =

1
2

Which is exactly the same result we got in the mean field approximation.

5.3 Conclusions
1. The continuum limit of a generic Ising Model (5.8) suggests that the

lattice Hamiltonian (5.11) with continuous field φ and only a few terms
capture the correct critical behaviour of an infinite class of detailed models
with short-range interactions.

2. The number of significant terms depends on the model’s dimensionality.
In particular:

• When d > 4 ≡ dc (critical dimension) the critical behaviour is the
one captured by the mean field approximation, and the Gaussian
model describes the 2-point correlation.

• When 3 < d ≤ 4, we consider an additional term:

βHLattice(φ) =
∑
〈x,y〉

1
2(φx − φy)2 − µ

2
∑
x
φ2
x + g

∑
x
φ4
x (5.17)

This is known as the φ4-model, and it’s the paradigm for describing
second order phase transitions in the universality class of systems
with Z2 symmetry.

(5.17) can be generalized to other kinds of symmetries. For example,
a generic Hamiltonian with O(n) symmetry is given by:

−βH({s}) = K
∑
〈x,y〉

sx · sy + L
∑
〈〈x,y〉〉

sx · sy +M
∑

[xyzt]
(sx · sy)(sz · st) + . . .

In this case, (5.17) becomes:

βHLattice(φ) =
∑
〈x,y〉

1
2(φx −φy)2 − µ

2
∑
x
‖φx‖

2 + g
∑
x
‖φx‖

4
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Chapter 6

Dynamics

Until now, apart from the chapter on irreversibility, we were only interested in
equilibrium properties. Now we shift our focus to the dynamics of complex
systems.

We will start by introducing Markov Processes, which are the simplest non-trivial
models for describing the evolution of a system.

6.1 Markov Processes
Consider a discrete set of events E, representing the system’s states. For
example, m ∈ E could be a particular configuration of spins σ = (σ1, . . . ,σN )
in the IM, and in this case |E| = 2N with N being the number of spins.

A Markov Process describes a “memoryless evolution”, in which the current
state of the system at a certain time t is the only information needed to compute
the transition probabilities to any other state m′ at a future time t′ > t.
In other words, if a system is at state m at time t, then the probability that it
will move to state m′ at time t′ > t is given by P(m′, t′|m, t), which does not
depend on the previously traversed states at times t̂ < t.

This means that the joint probability of a specific evolution of the system, which
at time ti is in state mi, can be factorized as follows:

Markov PropertyP(mk, tk;mk−1, tk−1; . . . ;m1, t1) = (6.1)
= P(mk, tk|mk−1, tk−1)P(mk−1, tk−1|mk−2, tk−2) · · ·P(m2, t2|m1, t1)P(m1, t1)

where t1 < t2 < · · · < tk are arbitrary instants. (6.1) is indeed the defining
property of a Markov Process.

Markov Processes are the simplest kind of stochastic processes that are non-
trivial, as they incorporate a slight dependence on the past.
A trivial process would be one for which the probability of each state is completely
independent on the previous states, meaning that P(m′, t′|m, t) = P(m′, t′).

Note that, by definition, the “transition probability to the present” is given by:

P(m′, t|m, t) = δm′,m
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We will call P(m, t|m0, t0) the propagator. Starting from an initial distribution
over the states P(m, t0), the probability of each state m being visited at time t
is given by:

P(m, t) =
∑
m0

P(m, t
end
|m0, t0

start
)P(m0, t0) (6.2)

In a sense, P(m, t|m0, t0) “propagates” the initial distribution to the evolved
one.
Clearly, for a Markov Process P(m, t|m0, t0) must be compatible with (6.1).
Our goal is then to derive a differential equation for the propagator, containing
some detail about the specific dynamics of the system.

6.1.1 Chapman-Kolmogorov equation
Let’s start by considering three instants t0 < t′ < t. The conditional probability
for a system to visit state m at t and state m′ at t′, given it started in m0 at t0
is given by:

P(m, t;m′, t′|m0, t0)

Due to the Markov Property (6.1) this can be rewritten as:

P(m, t;m′, t′|m0, t0) = P(m, t|m′, t′)P(m′, t′|m0, t0)

Marginalizing over m′:

P(m, t|m0, t0) =
∑
m′

P(m, t;m′, t′|m0, t0) =
∑
m′

P(m, t|m′, t′)P(m′, t′|m0, t0) ∀t′ ∈ (t0, t)

(6.3)

This is the so-called Chapman-Kolmogorov equation.

6.2 Master Equation
To get a differential equation for the propagator, we choose t′ = t− ∆t, with
∆t ≈ 0. Substituting in (6.3) and separating the terms with m′ 6= m from the
one with m′ = m we get:

P(m, t|m0, t0) =
∑

m′ 6=m

[
P(m, t|m′, t− ∆t)P(m′, t− ∆t|m0, t0)

]
+

+ P(m, t|m, t− ∆t) P(m, t− ∆t|m0, t0) (6.4)

As the system is always in some state, the transition probabilities to all possible
states m′ must sum to 1: ∑

m′
P(m′, t|m, t− ∆t) !

= 1

Splitting the sum over m 6= m′ and m = m′ leads to:[ ∑
m′ 6=m

P(m′, t|m, t− ∆t)
]
+ P(m, t|m, t− ∆t) = 1
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And rearranging:

P(m, t|m, t− ∆t) = 1−
∑

m′ 6=m
P(m′, t|m, t− ∆t)

Which can then be substituted in (6.4):

P(m, t|m0, t0)−P(m, t− ∆t|m0, t0) = (6.5)

=
∑

m′ 6=m

[
P(m, t|m′, t− ∆t)P(m′, t− ∆t|m0, t0)−P(m′, t|m, t− ∆t)P(m, t− ∆t|m0, t0)

]
We now assume that the transition probability per unit time ∆t has a finite limit
for ∆t→ 0:

lim
∆t→0

1
∆t

P(m′, t|m, t− ∆t) ≡ Wt(m′end
| m
start

)

whereWt(m′|m) is the transition rate fromm tom′. Then, for a small ∆t ≈ 0,
the probability of the system jumping from state m to state m′ in the time
interval (t, t+ ∆t) is given by Wt(m′|m)∆t.
Then, taking the limit ∆t→ 0 of both sides of (6.5) leads to:

lim
∆t→0

P(m, t|m0, t0)−P(m, t− ∆t|m0, t0) = ∂tP(m, t|m0, t0)∆t =

=
∑
m′

[ Wt(m|m′) ∆tP(m′, t|m0, t0)− Wt(m′|m) ∆tP(m, t|m0, t0)]

Here the sum can be taken over all m′, as the m = m′ term automatically
cancels out. Note that the yellow term describes jumps to m (an “inward” flow
of probability) and the blue term jumps from m to another state (an “outward”
flow of probability).

Figure (6.1) – Wt(m|m′) measures the probability flow entering m (left), while Wt(m′|m)
is the one exiting m (right).

Then, dividing everything by ∆t:

Master Equation∂tP(m, t|m0, t0) =
∑
m′

[
Wt(m|m′)P(m′, t|m0, t0)−Wt(m′|m)P(m, t|m0, t0)

]
(6.6)

which is known as the Master Equation.
If we multiply both sides by P(m0, t0) and sum over m0, using (6.2) leads to:

∂tP(m, t) =
∑
m′

[
Wt(m|m′)P(m′, t)−Wt(m′|m)P(m, t)

]
(6.7)
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If transition rates Wt(m|m′) do not depend on t, the Markov Process is said to
be homogeneous. In this case (6.7) reduces to:

Time evolution of
the pdf

∂tP(m, t) =
∑
m′

[
W (m|m′)P(m′, t)−W (m′|m)P(m, t)

]
(6.8)

In a sense this is analogous to the Fokker-Planck equation for Brownian Motion,
with the right hand side representing a probability current.
By equating ∂tP(m, t) = 0 we can find a stationary state P0(m), which is
the solution (if it exists) of:

Stationary states
∑
m′

[
W (m|m′)P0(m′)−W (m′|m)P0(m)

]
= 0 (6.9)

P0(m) is a stationary equilibrium state if each single term in the sum (6.9)
is zero:

Detailed Balance
and Equilibrium
State

W (m|m′)Peq(m′) = W (m′|m)Peq(m) (6.10)

This is the so-called detailed balance condition. An equilibrium state is such
that the probability flows between each pair of states are perfectly balanced,
meaning that there is no net “motion of probability” anywhere.

Figure (6.2) – If detailed balance (6.10) holds, the probability flow W (m|m′)Peq(m) from
m′ to m is exactly equal to the one W (m′|m)Peq(m) from m to m′.

As probabilities are always positive, we can write Peq as a Boltzmann probability
for a certain energy function E(m):

Peq(m) = 1
Z
e−βE(m) Z ≡

∑
m
e−βE(m)

Then (6.10) implies:

Freedom in the
transition rates
choice

W (m|m′)
W (m′|m) = e−β[E(m)−E(m′)] (6.11)

There are infinite possible choices for the transition rates W (i, j) that satisfy
(6.11). In fact, if W (m|m′) is such that (6.11) holds, then we can construct a
new W ′(m|m′) as follows:

W ′(m|m′) = W (m|m′)C(m,m′)

For some function C(m,m′) of the states. If we choose C(m,m′) = C(m′,m)
(i.e. it is a symmetric function) then W ′(m|m′) satisfies (6.11) too.
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This means that if we arbitrarily choose some form for the transition rates, as
long as they do satisfy (6.10), we are sure that the stationary state corresponds
to the system’s equilibrium.

However, it is not clear if the system dynamics will lead to a stationary state for
any initial condition. This is really not a trivial matter - nonetheless fortunately,
if (6.10) holds, it can be shown (see sec. 6.5) that the equilibrium state will be
eventually reached.

If we sum over m both sides of the Master Equation (6.6), the right hand side
vanishes, leading to:

∂

∂t

∑
m

P(m, t) = 0⇔
∑
m

P(m, t) = Independent of t

This means that the total probability never changes, i.e. it is conserved:
Conservation of
Probability

∑
m

P(m, t) =
∑
m

P(m, 0) = 1 (6.12)

Using the Master Equation we can also compute the evolution of the average of
a generic function f of the state:

Evolution of
averages〈f〉t ≡

∑
m

P(m, t)f(m)

Differentiating with respect to t:

∂t〈f〉t =
∑
m
∂tP(m, t)f(m) =

(6.8)

∑
m,m′

f(m)
[
W (m|m′)P(m′, t)−W (m′|m)P(m, t)

]
=

=
∑
m,m′

f(m′)W (m′|m)P(m′, t)−
∑
m,m′

f(m)W (m′|m)P(m, t) =

Exchanging m↔ m′ in the first sum (which is allowed since we are summing
over both m and m′, and so it just amounts to a reordering of addends) allows
us to collect a P(m, t) factor:

=
∑
m,m′

f(m)W (m|m′)P(m, t)−
∑
m,m′

f(m)W (m′|m)P(m, t) =

=
∑
m

P(m, t)
∑
m′

[
f(m′)W (m′|m)− f(m)W (m′|m)

]
(6.13)

In this way, the last expression can be interpreted as the average of the quantity
in the square brackets.

The same result can be obtained by using a more synthetic notation. First,
we rewrite (6.8) as a matrix product. Let P (t) be the vector of probabilities
(P(m, t) : m ∈ E). Our target is an expression as the following:

Evolution of a pdf:
matrix formṖ (t) = TP (t) (6.14)

for some matrix T. To find it, we need to convert (6.8) to the form:

∂tP(m, t) =
∑
m′
Tm,m′P(m′, t)
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Note that the first term in (6.8) is already in the correct form:

∂tP(m, t) =
∑
m′

[
W (m|m′)P(m′, t)−W (m′|m)P(m, t)

]
(6.15)

To “adapt” also the second one, we first rename m′ to m′′, and then insert a
sum with a Kronecker delta to “convert” the m to m′:∑
m′
W (m′|m)P(m, t) =

∑
m′′

W (m′′|m)P(m, t) =
∑
m

∑
m′′

W (m′′|m′)P(m′, t)δm,m′

Substituting in (6.15) and collecting a P(m′, t):

∂tP(m, t) =
∑
m′

[
W (m|m′)− δm,m′

∑
m′′

W (m′′|m′)
]

︸ ︷︷ ︸
T (m,m′)

P(m′, t) (6.16)

And so we find:

T (m,m′) ≡ W (m|m′)− δm,m′
∑
m′′

W (m′′|m′) (6.17)

Let’s define the (symmetric) scalar product of two functions f , g : E → R as
follows:

〈f |g〉 =
∑
m
f(m)g(m) = 〈g|f〉

Then, the average of f at time t can be written as:

〈f〉t = 〈f |P (t)〉

And differentiating with respect to t:

∂t〈f〉t = 〈f |∂tP (t)〉 =
(6.14)

〈f |TP (t)〉 = 〈TT f |P (t)〉 = 〈TT f〉 (6.18)

However T (6.17) is symmetric:

TT (m,m′) = T(m′,m) (6.19)

And so:

〈TT f〉 =
∑
m′

TT (m,m′)f(m′) =
(6.19)

∑
m′
f(m′)T(m′,m) =

(6.17)

∑
m′

[f(m′)W (m′|m)− f(m)W (m′|m)]

which is exactly the result we found in (6.13).
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�� ��Example 4 (Homogeneous Poisson Process):

Consider a store, and denote with P(n, t) the probability that n ∈ N

customers have visited it after a time t.
If clients arrive with a fixed rate λ (arrivals per unit time), then the transition
rate from a state with n− 1 clients to one with n clients is exactly λ:

W (n|n− 1) = λ

Supposing that no more than one customer can enter the shop at the same
time, all the other rates are null:

W (n|n′) = 0 ∀n′ 6= n− 1

Then (6.8) becomes:

∂tP(n, t) = λ(P(n− 1, t)−P(n, t)) =
∑
n′
T (n,n′)P(n′, t)

T (n,n′) =
(6.17)

(δn′,n−1 − δn,n′)λ · 1n′≥0 1n′≥0 =

1 n′ ≥ 0

0 otherwise

The average number of clients evolve as:

∂t〈n〉t =
+∞∑
n=0

Ṗ(n, t)n = λ
+∞∑
n=0

[P(n− 1, t)−P(n, t)]n

Note that the n = 0 term vanishes, and so the first nonzero term is the one
with n = 1. Shifting the sum leads to:

= λ

ñ
+∞∑
n=0

P(n, t)(n+ 1)−
+∞∑
n=0

P(n, t)n
ô
=

= λ
+∞∑
n=0

P(n, t)︸ ︷︷ ︸
1 (6.12)

= λ

Integrating over t we get:

〈n〉t = 〈n〉0 + λt (6.20)

As expected, the number of clients that have visited the shop increases
linearly, with a speed equal to the rate λ.
We can then compute the variance Var(n)t. To do so, we use the moment-
generating properties of the probability generating function:

G(z, t) = 〈g〉t =
+∞∑
n=0

znP(n, t) g(n) ≡ zn (6.21)

As g(n) is a function of the state, the evolution of its average is given by
(6.18):

∂tG(z, t) = 〈TT g〉t
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which evaluates to:

(TT g)(n) =
∑
n′
T (n′,n)g(n′) = λ

∑
n′

(δn,n′−1 − δ(n,n′)1n≥0)zn
′
=

= λzn(z − 1) = λ(z − 1)g(n)

And so:

∂tG(z, t) = λ(z − 1)G(z, t) (6.22)

Notice that if z = 1:

G(1, t) =
∑
n≥0

P(n, t) = 1

And (6.22) with z = 1 is just the probability conservation (6.12):

∂tG(1, t) = 0

We can then integrate (6.22) with initial condition P(n, 0) = δn,0:∂tG(z, t) = λ(z − 1)G(z, t)

G(z, 0) = ∑
n z

nP(n, 0) = 1

⇒ G(z, t) = eλ(z−1)t = e−λt
+∞∑
n=0

zn
(λt)n
n!

⇒
(6.21)

P(n, t) = e−λt
(λt)n
n!

And so P(n, t) is a Poisson distribution with rate λ.
Finally, recalling the generating properties of (6.21) we can compute the
average of n, finding again (6.20) with 〈n〉0 = 0:

〈n〉t = z
∂

∂z
G(z, t)

∣∣∣
z=1

= λt

On the other hand, the fluctuation of n is given by:

σ2
t ≡ 〈n2〉t − 〈n〉2t =

Å
z
∂

∂z

ã2
G(z, t)

∣∣∣
z=1
− (λt)2 =

= z∂z[λtzG(z, t)]
∣∣∣
z=1
− (λt)2 = λt⇒ σt =

√
λt
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�� ��Exercise 6.2.1 (Radioactive Decay):

Solve the case of the decay process of radioactive nuclei. Let λ be the decay
rate, meaning that the transition rates are:

W (n− 1|n) = λ W (n′|n) = 0 ∀n′ 6= n− 1

Find the law of decay (i.e. the distribution of n(t)) given the initial condition
P(n, 0) ≡ δN ,n.

6.2.1 Limiting distribution and equilibrium

6.3 Dynamics of the Ising Model
(Lesson 29 of
14/05/20)
Compiled: January
28, 2021

We are now ready to study the dynamics of the Ising Model.
Each state σ = (σ1, . . . ,σN ) is the spin configuration of all N spins, with an
associated energy given by:

−βH(σ) = K
∑
〈x,y〉

σxσy + h
∑
x
σx

As the spins are binary variables, the transition rate from a state σ to any
configuration σ′ can be written as a sum of spin-flip rates:

W (σ′|σ) =
∑
x flips

Wx(σ′|σ)

For example, if N = 3 and we consider the transition σ1 → σ2 with:

σ1 = (+1,+1,+1) σ2 = (−1,−1,+1)

Then the transition rate is a sum of two spin-flip terms:

W (σ2|σ1) = W2[(+1,−1,+1)|(+1,+1,+1)] +W3[(+1,+1,−1)|(+1,+1,+1)]

Formally, Wx(σ′|σ) is the rate of the transition that flips the x-th spin in the
σ configuration. If we define it in the following form:

Wx(σ′|σ) ∝
[ ∏
y 6=x

δσy,σy′

]
δσx,−σ′x (6.23)

then it is automatically 0 when the spin-flip is not needed (i.e. if σx = σ′x), and
so we can write:

W (σ′|σ) =
∑
x
Wx(σ′|σ)

with the sum extended over all N spins.
We definitely know that the Ising Model has an equilibrium state - which
was characterized in the previous chapters. So, we want the Wx(σ|σ′) to satisfy
the detailed balance condition (6.10):

Wx(σ|σ′)e−βH(σ′) = Wx(σ′|σ)e−βH(σ) (6.24)
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As we are considering a single spin-flip transition at position x (6.23), H(σ′)
differs from H(σ) only for the different value of σx, and its interactions with
the neighbouring spins y ∈ 〈x, y〉:

−βH(σ′) = −βH(σ)− 2Kσx
∑

y∈〈x,y〉
σy − 2hσx

Substituting in (6.24) and rearranging leads to:

Wx(σ|σ′) exp
(
���

��−βH(σ)− 2Kσx
∑

y∈〈x,y〉
σy − 2hσx

)
= Wx(σ′|σ)����

�
e−βH(σ)

⇒ Wx(σ′|σ)
Wx(σ|σ′) = exp

(
−2Kσx

∑
y∈〈x,y〉

σy − 2hσx

)
=

exp
(
−
[
K
∑

y∈〈x,y〉
σy + h

]
σx

)

exp
([

K
∑

y∈〈x,y〉
σy + h

]
︸ ︷︷ ︸

Hx

σx

) =

=
(3.43)
pag.110

XXXXcosh Hx(1− σx tanh Hx)
XXXXcosh Hx(1 + σx tanh Hx) =

1− σx tanh Hx
1 + σx tanh Hx

(6.25)

We can then choose any form for Wx(σ′|σ) that satisfies (6.25) and it will lead
at the end to the same equilibrium state. The simplest possibility is to just
equate both sides numerators and denominators:

Wx(σ′|σ) = 1
2τm

[ ∏
z 6=x

δσz ,σ′z

]
δσ′x,−σx

wx(σx,σ̂x)︷ ︸︸ ︷[
1− σx tanh

(
h+K

∑
y∈〈x,y〉

σy

)]
(6.26)

Wx(σ|σ′) = 1
2τm

[ ∏
z 6=x

δσz ,σ′z

]
δσ′x,−σx

wx(−σx,σ̂x)︷ ︸︸ ︷[
1 + σx tanh

(
h+K

∑
y∈〈x,y〉

σy

)]
=

=
(a)

1
2τm

[ ∏
z 6=x

δσz ,σ′z

]
δσ′x,−σx

[
1− σ′x tanh

(
h+K

∑
y∈〈x,y〉

σ′y

)]
=

The symmetric factor 1/2τm (independent of spin configuration) is added to fix
the dimensions of Wx, which must be of T−1 as it is a transition rate. Finally,
in (a) we used the Kronecker δs to rewrite σx → −σ′x and σy → σ′y for y 6= x.
We denote with σ̂x = {σy : y 6= x} all spins that do not change during the spin
flip. Then flipping the x-th spin amounts to the transition (σx, σ̂x)→ (−σx, σ̂x),
and we denote its rate with wx(σx, σ̂x). Similarly, the reverse transition, i.e.
(−σx, σ̂x)→ (σx, σ̂x) is denoted by wx(−σx, σ̂x).

We can then write the Master Equation (6.6) as follows:
Master Equation
for the Ising ModelṖ(σ, t) =

∑
x

[wx(−σx, σ̂x)P(−σx, σ̂x; t)−wx(σx, σ̂x)P(σx, σ̂x; t)] (6.27)
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Note that the positive term is the inward flux of probability, i.e. the one that
goes from −σx to the current state σx (maintaining σ̂x the same), while the
negative term is the outward flux from σx to −σx.
We can now compute the evolution of the average magnetization 〈σz〉t of the
z-th spin:

d
dt〈σz〉t =

∑
{σ}

P(σ, t)σz =
(6.27)

∑
x

∑
{σ}

[σzwx(−σx, σ̂x)P(−σx, σ̂x)− σzwx(σx, σ̂x)P(σx, σ̂x)] =

We split the sum between the terms with x 6= z and the one with x = z:
=
∑
x 6=z

∑
{σ}

[σzwx(−σx, σ̂x)P(−σx, σ̂x)− σxwx(σx, σ̂x)P(σx, σ̂x)]+

+
∑
{σ}

[σzwz(−σz, σ̂z)P(−σz, σ̂z)− σzwz(σz, σ̂z)P(σz, σ̂z)]

(6.28)

In the first sum, note that:∑
{σ}

σxwx(−σx, σ̂x)P(−σx, σ̂x) =
∑
{σ}

σzwx(σx, σ̂x)P(σx, σ̂x)

since we are summing over all possible configuration σ. In general, for any
function of the spins σ:∑

{σ}
f(σx, σ̂x) =

∑
{σ}

f(−σx, σ̂x) ∀f

In fact, changing the sign of σx merely amounts to a reordering of the addends.
So, if we make this change in the first term of the first sum, we get a cancellation:∑

x 6=z

∑
{σ}

[σzwx(σx, σ̂x)P(σx, σ̂x)− σxwx(σx, σ̂x)P(σx, σ̂x)] = 0 (6.29)

Doing the same trick in the second sum, however, does not lead to a cancellation:∑
{σ}

[−σzwz(σz, σ̂z)P(σz, σ̂z)− σzwz(σz, σ̂z)P(σz, σ̂z)] =

= −2
∑
{σ}

σzwz(σz, σ̂z)P(σz, σ̂z) = −2〈σzwz(σz, σ̂z)〉t (6.30)

Substituting (6.29) and (6.30) back in (6.28) leads to:

∂t〈σz〉t = −2〈σzwz(σz, σ̂z)〉t =

=
(6.26)
− �2
�2τm
〈σz
[
1− σz tanh

(
h+K

∑
y∈〈x,y〉

σy

)]
〉

⇒ τm〈σz〉t = −〈σz〉t + 〈 σ2
x︸︷︷︸

1

tanh
(
h+K

∑
y∈〈x,y〉

σy

)
〉t (6.31)

The second term can be expanded, taking into account that σy = ±1 is a binary
variable. For example, in d = 1, the spin neighbouring z are z − 1 and z + 1:

tanh
(
h+K(σz+1 + σz−1)

)
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Since σz±1 = ±1, this function can assume only 3 possible values: one when
σz±1 = +1, another when σz±1 = −1, and the third one when σz+1 = +1 and
σz−1 = −1 (or viceversa). A second order polynomial can be used to fit these
three points:

tanh(h+K(σz+1 + σz−1)) !
= â+ b̂(σz+1 + σz−1) + ĉ(σz+1 + σz−1)2

By expanding the square, note that σ2
z±1 ≡ 1. So, changing the coefficients

accordingly, we have:

tanh(h+K(σz+1 + σz−1)) !
= a+ b(σz+1 + σz−1) + cσz+1σz−1 (6.32)

To find a, b and c, note that if we sum over σz±1 = ±1 we get:
∑

σz±1=±1

[
a+ b(σz+1 + σz−1) + cσz+1σz−1

]
= 4a+ (2b− 2b) + (2c− 2c) = 4a

And so:

4a !
=

∑
σz±1=±1

tanh(h+K(σz+1 + σz−1)) = 2 tanh h+ tanh(h+ 2K) + tanh(h− 2K)

Note that if h = 0, the right side vanishes, and so a = 0.

For the b term, we first multiply by σz+1 and then sum over all possibilities:

4b =
∑

σz±1=±1
σz+1

[
a+ b(σz+1 + σz−1) + cσz+1σz−1

]
=

=
∑

σz±1=±1
σz+1 tanh(h+K(σz+1 + σz−1)) = tanh(h+ 2K)− tanh(h− 2K)

And finally, for the c term we first multiply by σz+1σz−1:

4c =
∑

σz±1=±1
σz+1σz−1

[
a+ b(σz+1 + σz−1) + cσz+1σz−1

]
=

=
∑

σz±1=±1
σz+1σz−1 tanh(h+K(σz+1 + σz−1)) = −2 tanh h+ tanh(h+ 2K) + tanh(h− 2K)

And again, if h = 0 then c = 0.

Substituting (6.32) back in (6.31) we arrive to:

τm
d
dt〈σz〉t = −〈σz〉t + a+ b(〈σz+1〉t + 〈σz−1〉t) + c〈σz+1σz−1〉t (6.33)

which cannot be solved unless we know 〈σz+1σz−1〉t. However, if we compute
∂t〈σz+1σz−1〉, the resulting expression will involve other correlations, leading
to many coupled equations.
However, if h = 0 we know that a = c = 0. This, at least in d = 1 case,
allows to write a closed-form solution of (6.33), which was found by Glauber in
1961. For d > 1, (6.33) contains also higher order correlations, that cannot be
neglected when h = 0, making the problem unsolvable in general.
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6.4 Mean Field Dynamics
Solving the dynamics of the Ising Model is hard task already in d = 1, and it is
effectively intractable in d > 1.
So, to proceed, we make use of the mean field approximation. We start
from (6.31):

τm∂t 〈σz〉t︸ ︷︷ ︸
mz(t)

= −〈σz〉t + 〈tanh
(
h+K

∑
y∈〈x,y〉

σy

)
〉t

and take the average inside the tanh:

τm∂tmz(t) = −mz(t) + tanh
(
h+K

∑
y∈〈x,y〉

my(t)
)

(6.34)

In this way, we get a closed equation for the magnetization!
At stationarity (e.g. at equilibrium), ∂tmz(t) ≡ 0, meaning that mz(t) ≡Mz is
constant, and satisfies:

Mz = tanh
(
h+K

∑
y∈〈x,y〉

My

)
which is exactly the equation we got by using the variational principle and the
mean field approximation (4.16, pag. 136).

6.4.1 Uniform solution
Returning to the full equation (6.34), note that if we choose a uniform initial
condition mz(t = 0) ≡ m(t = 0) independent of z, then the symmetry cannot
be broken - as all spins evolve in the same way - and so mz(t) ≡ m(t) ∀t > 0,
leading to:

τmṁ(t) = −m(t) + tanh(h+ 2dKm(t)) (6.35)

where 2d is the number of neighbours of any spin in a d-dimensional cubic
lattice (with p.b.c.).
Equation (6.35) can be solved numerically. To get some insight, we take h = 0
and m(0) ≈ 0 near the critical point 2dK ≈ 1⇒ K ≈ Kc = 1/2d. Expanding
the tanh in series:

τmṁ = −m+ 2dKm− 1
3(2dK)3m3 + · · · = −km− ηm3 + . . . (6.36)

with:
k = 1− 2dK = 1− K

Kc
=
Kc −K
Kc

; η =
1
3
K

Kc
=

K≈Kc

1
3 +O(k)

Let’s see what happens in the various regimes T > Tc, T = Tc and T < Tc:

• T > Tc ⇔ K < Kc ⇒ k > 0. We then make a change of variables m→ x,
with:

m(t) = exp
Å
− kt
τm

ã
x(t)
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In this way, when substituting in (6.36) we get a cancellation:

−
��
���

���
��kτm

τm
exp
Å
− kt
τm

ã
x+ τm exp

Å
− kt
τm

ã
ẋ = −

���
���

���
k exp

Å
− kt
τm

ã
x− ηx3 exp

Å
−3kt
τm

ã
⇒ τmẋ(t) = −ηx(t)3 exp

Å
−2kt
τm

ã
which can be solved by separation of variables:

dx
x3 = −η exp

Å
−2kt
τm

ã dt
τm

leading to:

m(t) =
√
k

ï
exp
Å2kt
τm

ãÅ
k

m2(0) + η

ã
− η
ò−1/2

∼
t�τm/k≡τ+

√
k exp

Å
− kt
τm

ã
When t → +∞, as k > 0, the exponential term diverges, meaning that
the magnetization vanishes with a characteristic timescale τ+:

τ+ ≡ τmk
−1 =

Å
T − Tc
Tc

ã−1
(6.37)

which diverges when T → T+
c . This behaviour is similar to that of the

correlation length ξ(T ):

ξ(T ) ∝
∣∣∣∣T − TcTc

∣∣∣∣−1/2
(6.38)

In fact, in general it can be shown that these tow scalings are related:

τ+ = ξz (6.39)

where z is called the dynamical exponent. Comparing (6.37) to (6.38)
we see that, in the mean field approximation, z = 2.

• T = Tc ⇔ K = Kc ⇒ k = 0. Equation (6.36) becomes (neglecting higher
order terms):

τmṁ = −ηm3

and can be immediately solved by separation of variables:

dm
m3 = −η dt

τm
⇒ m(t) = m(0)√

1 +m2(0)ηt/τm
∼

t� τm
2m2(0)η

Å
t

τm

ã− 1
2

Note that while for T > Tc we found that m(t) decays exponentially, for
T = Tc it decays following a power law - i.e. much more slowly (see fig.
6.3). This is the so-called critical slowing down.
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• If T < Tc (K > Kc and k < 0), (6.36) becomes:

τmṁ = |k|m− ηm3

The positive linear term will make m grow exponentially at the start,
and then stabilize to some value (depending on the initial condition) due
to the negative cubic term.
In fact, at stationarity ṁ = 0, and two solutions are possible: m = 0 and
m =

√
|k|/η ≡ m∞, which describes the spontaneous magnetization.

Changing variables:

m(t) = exp
Å |k|t
τm

ã
x(t)

leads to:

m(t) = m∞

ï
1 + exp

Å
−2|k|t

τm

ãÅ
m2
∞

m2(0) − 1
ãò− 1

2

∼
t�τm/|k|

m∞

ï
1− 1

2 exp
Å
−2|k|t

τm

ãÅ
m2
∞

m2(0) − 1
ãò

Again we find an emerging characteristic timescale:

τ− ≡
τm
2|k| =

τm
2

∣∣∣∣T − TcTc

∣∣∣∣−1
∝ ξz z = 2

Thus τ± ∝ ξz for both T > Tc and T < Tc.

Figure (6.3) – The evolution of the magnetization m(t) in the mean field approximation
with a uniform starting condition and near criticality.

6.4.2 Non-uniform case
Let’s return to (6.34), this time assuming a magnetization that is everywhere
“small”, but non-uniform.
Let h = 0 and t > Tc (high temperature phase). If we expand the tanh in series:

tanh
(
K
∑

y∈〈x,y〉
my

)
= K

∑
y∈〈x,y〉

my +O(m3)
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equation (6.34) becomes:

τmṁx = −mx +K
∑

y∈〈x,y〉
my + · · · =

= −mx +K
d∑

µ=1
(mrx+aµ̂ +mrx−aµ̂) (6.40)

where rx is the position of the x-th spin, and µ̂ is a unit vector pointing along
the d-th dimension. For every direction d, the two neighbour of x are at positions
rx ± aµ̂ in the cubic lattice.

Since we are near criticality, we expect the magnetization to change smoothly
in space1, justifying the following expansion:

mrx±aµ̂ = mx ± a∂µmx +
a2

2 ∂
2
µmx + . . . (6.41)

Then the sum in (6.40) becomes:

d∑
µ=1

(mrx+aµ̂ +mrx−aµ̂) = 2dmx +
a2

2 ∇
2mx + . . .

and the full equation is:

τmṁx = (2dK − 1)︸ ︷︷ ︸
K−Kc
Kc

=−k; k>0

mx +
a2

2 K∇
2mx

Dividing by τm, the τ+ term defined in (6.37) reappears:

ṁx = −
1
τ+
mx +D∇2mx D ≡ a2k

2τm
; τ+ ≡

τm
k

(6.42)

which looks like the diffusion equation, with a diffusion constant D of dimensions
L2T−1.
If the highlighted term were 0, then the magnetization would be “conserved”,
in the sense that the integral of mx over x is constant in time.

Equation (6.42) can be solved by using a Fourier transform:

mrx(t) =
∫

Rd
m̃q(t)eiq·rx

ddq
(2π)d m̃q =

∫
Rd
e−iq·rxmrx ddrx

Differentiating with respect to t:

∂tm̃q(t) =
(6.42)

−
Å 1
τ+

+D‖q‖2
ã
m̃q(t) (6.43)

Note that all the coordinates of q are independent from each other, i.e. there
isn’t any mixed term qiqj with i 6= j. On the other hand, this was not the

1∧Or, in other words, the correlation length ξ is much higher than the lattice spacing a
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case in (6.42), as due to the laplacian, each mx had some dependence on the
neighbouring spins.

So, (6.43) is much simpler than (6.42), and in fact it can be solved by separation
of variables, leading to:

m̃q(t) = exp
Å
−
ï 1
τ+

+D‖q‖2
ò
t

ã
m̃q(0) (6.44)

where m̃q(0) is the Fourier transform of the initial condition mrx(0):

m̃q(0) =
∫
Rd

ddry e−iq·rymry(0)

All that’s left is to anti-transform (6.44):

mrx(t) =
∫

Rd

ñ∫
Rd

exp
Å
−
ï 1
τ+

+D‖q‖2
ò
t+ iq · (rx − ry)

ã ddq
(2π)d

ô
mry(0) ddry =

which is a gaussian integral and evaluates to:

=
e−t/τ+

(4πDt)d/2
∫

Rd
exp
Ç
−‖rx − ry‖

2

4Dt

å
mry(0) ddry (6.45)

We were able to compute this solution only because T > Tc, meaning that we
can neglect the m3 term of the tanh expansion (6.36). That non-linear term
is important only for T < Tc, where it stops the diverging growth of the now
positive linear term. Also, we need to be close to criticality (T → T+

c ) in order
to justify the expansion in (6.41).�� ��Example 5 (Single magnetized spin):

Consider the initial condition where only the spin at the origin has a M 6= 0
magneitzation:

mry(t = 0) = Mδd(ry)

Then (6.45) becomes:

mrx(t) = e−t/τ+

(4πDt)d(2) exp
Ç
−‖rx‖

2

4Dt

å
M

Graphically, the magnetization decays in time by “spreading” to the neigh-
bouring spins in a gaussian way (fig. 6.4).

If we integrate over all positions, we find that the magnetization is not
conserved: ∫

Rd
ddrxmrx(t) = Me−t/τ+ (6.46)

For t→ +∞ we will have mx ≡ 0 ∀x.

It can be shown that (6.46) is independent of the specific initial condition -
meaning that for T > Tc, the magnetization will always decay.
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Figure (6.4) – Time evolution of the average magnetization in a d = 1 system, with only
the spin at the origin initially magnetized.

�� ��Exercise 6.4.1 (Evolution of a gaussian magnetization):

Consider the following initial condition:

mry(t = 0) = M

(σ
√

2π)d
exp
Ç
−‖ry‖

2

2σ2

å ∫
Rd

ddrymry(0) = M

Compute its evolution mrx(t) according to equation (6.45).

Solution.�� ��Exercise 6.4.2 (Magnetization’s decay):

Show that (6.42) implies that:

M(t) ≡
∫

Rd
ddrxmrx(t) = e−t/τ+M(0)

Solution.�� ��Exercise 6.4.3 (Chemical reaction):

Consider the chemical reaction X � A where the number of A is kept fixed
at a. The reaction X ← A occurs at a rate k2 per particle of kind A whereas
the reaction X → A occurs at a rate k1 per particle of kind X. Determine:

1. the transition rates W (x± 1|x);

2. the master equation for P(x, t), the probability that at time t there
are x particles of kind X;

3. the stationary state, P∗(x);

4. the equation obeyed by d〈f(x)〉 / dt for a generic function f ;

5. the time dependence of 〈x〉 and its infinite time limit;

6. the equation obeyed by dG(s, t) / dt where:

G(s, t) =
∑
x≥0

sxP(x, t)

is the generating function;
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7. the solution of G(s, t) if the initial condition is P(x, t = 0) = δx,N ;

8. the solution of P(x, t) if N = 0

6.5 Proof that P(m, t)→ Peq.(m)
(Lesson 30 of
18/05/20)
Compiled: January
28, 2021

Hypotheses. Assume that:

1. Detailed balance (6.10) holds:

W (m|m′)Peq(m′) = W (m′|m)Peq(m) (6.47)

2. For any pairs of states (m,m′), there is a path {m0 = m,m1,m2, . . . ,mK =
m′} with non-zero transition rate:

W (mK |mK−1)W (mK−1|mK−2) · · ·W (m1|m0) > 0 (6.48)

In other words, there is a way to go from every state m to any other state
m′ in a finite number of steps.

Figure (6.5) – Any pair of states of (m,m′) must have a possible path that connects them.

Thesis. Then, we want to show that:

lim
t→+∞

P(m, t) = Peq(m)

Moreover, we are interested in finding a way to compute how fast P(m, t) goes
to Peq.

Sketch of proof. The idea of the proof is to solve the evolution differential
equation in matrix form (6.14):

Ṗ (t) = TP (t) T(m,m′) ≡ W (m|m′)− δm,m′
∑
m′′

W (m′′|m′) (6.49)
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This is a system of first order differential equations. To solve it, we make use of
the spectral decomposition of T.
Let {wn} be a orthonormal basis of RN , with wn being the eigenvectors of T Idea of the proof
with eigenvalues λn ∈ R:

Twn = λnwn 〈wn,wm〉 = δn,m (6.50)

Then we can write any vector P ∈ RN as a linear combination of {wn}:

P (t) = c1(t)w1 + · · ·+ cN (t)wN =
∑
n
cn(t)wn (6.51)

Differentiating:

Ṗ (t) =
∑
n
ċn(t)wn =

(6.49)
T
∑
n
cn(t)wn =

(6.50)

∑
n
λncn(t)wn

If we then take the scalar product of both sides with wm and apply the
orthonormality property (6.50) we get:

ċm(t) = λmcm(t) ∀m = 1, . . . ,N

which can immediately be solved by separation of variables:

cm(t) = cm(0)eλmt

And substituting back in (6.51) we find the solution:

P (t) =
∑
n
cn(0)eλntwn

To proceed, we will show that Peq is an eigenvector of T with eigenvalue λ0 = 0,
and that all other eigenvectors have λn < 0. This means that, for any initial
condition:

P (t) =
∑
n
cn(0)eλntwn = c0(0)Peq +

∑
n>0

cn(0)e−|λn|twn −−−→
t→∞

c0(0)Peq

Due to the conservation of probability c(0) = 1. Moreover, if λ1 is the eigenvalue
nearest to 0, it describes the dominant timescale for reaching Peq.

So, to complete the proof we will proceed as follows:

1. First we show that a orthonormal eigenbasis of T (6.50) exists, and that
the eigenvalues λn are real. This is done by showing that, by just rescaling
T 7→ T̂ (which does not alter the eigenvalues), it becomes a symmetric
matrix.

2. Then we show explicitly that Peq is the eigenvector with 0 eigenvalue,
and that all the other λn are negative.

3. We will adapt the previous arguments to the newly defined matrix T̂ .

Proof.
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1. To “symmetrize” T, we first symmetrize W , starting by dividing both
sides of (6.47) by

√
Peq(m)Peq(m′) (assuming Peq(m) 6= 0 ∀m):

W (m|m′)
 

Peq(m′)
Peq(m) = W (m′|m)

 
Peq(m)
Peq(m′) (6.52)

For simplicity of notation, let’s define:

Ŵ (m|m′) ≡ W (m|m′)
 

Peq(m′)
Peq(m) (6.53)

Then (6.52) can be written as:

Ŵ (m|m′) = Ŵ (m′|m)

meaning that the matrix Ŵm,m′ ≡ Ŵ (m|m′) is symmetric.

We apply the same transformation (6.53) to the matrix T defined in (6.17):

T̂ (m,m′) ≡ T (m,m′)
 

Peq(m′)
Peq(m) = (6.54)

= W (m|m′)
 

Peq(m′)
Peq(m)︸ ︷︷ ︸

Ŵ (m,m′)

−δm,m′
∑
m′′

 
Peq(m′)
Peq(m)W (m′′|m′) =

=
(a)
Ŵ (m,m′)− δm,m′

∑
m′′

 
Peq(m)
Peq(m)W (m′′|m′) =

= Ŵ (m,m′) − δm,m′
∑
m′′

W (m′′|m′)

where in (a) we note that the second term can be non-zero only if m = m′

(due to the δ) and in this case the two Peq factors cancel out.
The matrix T̂ is the sum of a symmetric matrix Ŵ (yellow term) and a
diagonal matrix (blue term), so it is symmetric:

T̂(m,m′) = T̂(m′,m)

Since T̂ is symmetric, its eigenvectors {vn} form a basis of RN , and may
be chosen to be orthonormal:

T̂vn = λnvn 〈vn,vm〉 = δn,m

Moreover, the eigenvalues of T̂ are real numbers (since T̂ has real entries),
and are the same of the eigenvalues of T, since the trasnformation T 7→ T̂
is a similitude transformation, i.e. (6.54) may be written as:

T̂ = S−1TS Sm,m′ = δm,m′
»

Peq(m)
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The eigenvectors of T and T̂, on the other hand, are different. In fact, if
vn is an eigenvector of T̂ with eigenvalue λn then:

T̂vn = λnvn

⇒ S−1TSvn = λnvn

⇒ T Svn︸︷︷︸
wR

n

= λn Svn︸︷︷︸
wR

n

⇒ TwRn = λnw
R
n (6.55)

where wRn = Svn is the right eigenvector of T corresponding to the
eigenvector vn of T̂.

Transposing the eigenvalue equation we obtain also an expression for the
left eigenvectors of T:

vTnT̂ = λnv
T
n

⇒ vTnS
−1TS = λnv

T
n (6.56)

⇒ vTnS
−1T = λnv

T
nS
−1

⇒ [(S−1)Tvn]TT = λn[(S−1)Tvn︸ ︷︷ ︸
wL

n

]T

⇒ [wLn]TT = λn[wLn]T (6.57)

2. We know that Peq is a stationary state, and so Ṗeq = 0. Substituting
this in (6.14) we get:

TPeq = 0 (6.58)

And so wR0 = Peq is a right eigenvector of T. This means that:

v0 =
(6.55)

S−1Peq = (1/
»

P
(k)
eq : k = 1, . . . ,N)T

is a right eigenvector of T̂, with eigenvalue 0.

We now prove that all the other λn are negative. Starting from the
eigenvalue equation for T̂ and taking the scalar product of both sides by
vn we get:

〈vn, T̂vn〉 = λ 〈vn,vn〉︸ ︷︷ ︸
1

So λn < 0 (n > 0) if and only if 〈v, T̂v〉 < 0 ∀v ∈ RN \ {0}. Let’s write
this scalar product in full:

〈v, T̂v〉 =
∑
m,n

vmT̂mnvn =
(6.54)

∑
mn

vmvn

 
Peq(n)
Peq(m)

ñ
W (m|n)− δmn

∑
k

W (k|m)
ô
=

=
∑
mn

vmvn

 
Peq(n)
Peq(m)W (m|n)−

∑
kn

v2
nW (k|n)
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In the last term we used the δmn to remove the sum over m by setting
m = n. Then, if we rename k ↔ m we can merge the two sums:

=
∑
mn

ñ
vmvn

 
Peq(n)
Peq(m)W (m|n)− v2

nW (m|n)
ô

(6.59)

Since the sum is over both m and n, note that:∑
mn

v2
nW (m|n) =

∑
mn

v2
mW (n|m)

This allows to symmetrize the last term in (6.59):
∑
mn

v2
nW (m|n) = 1

2

ï∑
mn

v2
nW (m|n) +

∑
mn

v2
mW (n|m)

ò
(6.60)

In this way we can use (6.47) to express W (n|m) in terms of W (m|n) and
Peq:

W (n|m) = W (m|n) Peq(n)
Peq(m) (6.61)

Substituting (6.60) and (6.61) in (6.59) we can finally recognize a square:

〈v, T̂v〉 = 1
2
∑
mn

W (m|n)Peq(n)
[

2 vm√
Peq(m)

vn√
Peq(n)

−
Ç

vn√
Peq(n)

å2

−
Ç

vm√
Peq(m)

å2]
=

= −1
2
∑
mn

W (m|n)Peq(n)
Ç

vn√
Peq(n)

− vm√
Peq(m)

å2

≤ 0

(6.62)

In particular the equality is reached if:
vn√

Peq(n)
=

vm√
Peq(m)

∀n,m : W (m|n) > 0 (6.63)

However, by hypothesis there is always a path connecting any pair of
states (m,n), meaning that W (m|n) > 0 always. So (6.63) must hold for
every pair (m,n), which is only possible if it’s constant:

vn√
Peq(n)

= Constant independent of n ≡ c

So v0 ∈ RN with entries given by:

vn = c
»

Peq(n)

is the only eigenvector of T̂ with eigenvalue 0. If we choose c = 1, the
corresponding eigenvector of T is exactly Peq:

∑
n

T̂(m,n)
»

Peq(n) =
∑
n
T (m,n)

 
Peq(n)
Peq(m)

»
Peq(n) =

=
1√

Peq(m)
∑
n
T (m,n)Peq(n) =

(6.58)
0

Then, all the other eigenvalues λn (n > 1) are negative.
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3. Finally, let’s wrap up the demonstration. Since T̂ is symmetric, we can
choose an orthonormal basis {vn} made by eigenvectors of T̂. Let’s denote
with {wL

n} and {wRn } the corresponding left and right eigenvectors of T.
Each of the two sets still form a (non-orthonormal) basis of RN .
We have:

δn,m = 〈vn,vm〉 = 〈wLnS,S−1wRn 〉 = 〈wLn,wRn 〉 (6.64)

We can write P (t) as a linear combination of {wRn }:

P (t) =
∑
k

ck(t)wRk ck(t) = 〈wLk ,P (t)〉 (6.65)

Differentiating:

∂tP (t) =
∑
k

ċk(t)wRk = TP (t) =
∑
k

ck(t)TwRk =
∑
k

ck(t)λkwRk

And taking the scalar product of both sides with wLj and applying (6.64)
leads to:

ċj(t) = λjcj(t)⇒ cj(t) = cj(0)eλjt

Substituting back in (6.65):

P (t) =
∑
k

ck(0)eλktwRk −−−−→t→+∞
c0(0) wR0︸︷︷︸

Peq

In particular:

c0(0) = 〈wL0 ,P (t = 0)〉

And wL0 = (1, . . . , 1)T because:

(1, . . . , 1)TT =
∑
m

Tmn =
(6.17)

∑
m
W (m|n)−

∑
m
δmn

∑
k

W (k|n) =

=
∑
m
W (m|n)−

∑
k

W (k|n) =
k↔m

∑
m
���

��W (m|n)−
∑
m
���

��W (m|n) = 0

Thus, as P is a vector of probabilities that must sum to 1:

c0(0) = 〈1,P (t = 0)〉 =
∑
n
Pn(0) !

= 1

This proves indeed that:

P (t) −−−−→
t→+∞

Peq

Alternative proof. The same result can be deduced on the basis of the time
behaviour of the relative entropy (4.1). Recall that the relative entropy can
be regarded as measuring a sort of “distance” between different probabilities
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distributions. In particular, if we compar P (t) with the equilibrium distribution
Peq, the relative entropy is given by:

SR(t) ≡ −
∑
m

P(m, t) ln P(m, t)
Peq(m)

Recall that SR(t) ≤ 0, with the equality reached only if P(m, t) = Peq(m) ∀m.

Differentiating both sides:

∂tSR(t) = −
∑
m

ñ
Ṗ(m, t) ln P(m, t)

Peq(m) + P(m, t)Ṗ(m, t)
P(m, t)

ô
=

=
(6.6)
−
∑
mn

[W (m|n)P(n, t)−W (n|m)P(m, t)] ln P(m, t)
Peq(m) −

∑
m
���

�
Ṗ(m, t)︸ ︷︷ ︸

0 (Prob. conserv.)

In the first term, as we are summing over both m and n, we can use again the
trick of summing the same expression with m↔ n and then dividing by 2:

∂tSR(t) = −1
2
∑
mn

[W (m|n)P(n, t)−W (n|m)P(m, t)]
ï
ln P(m, t)

Peq(m) − ln P(n, t)
Peq(n)

ò
We can rewrite the logarithms as follows:

ln P(m, t)
Peq(m) − ln P(m, t)

Peq(m) = ln
ï

P(m, t)
P(n, t)

Peq(n)
Peq(m)

ò
and then use the detailed balance condition:

Peq(n)
Peq(m) =

W (n|m)
W (m|n)

so that:

∂tSR(t) = 1
2
∑
mn

W (m|n)P(n, t)︸ ︷︷ ︸
x

−W (n|m)P(m, t)︸ ︷︷ ︸
y

 ln W (m|n)P(n, t)
W (n|m)P(m, t) =

=
1
2(x− y) ln x

y
= y

Å
x

y
− 1
ã

ln x

y︸︷︷︸
z

= y(z − 1) ln z

Note that y > 0 and z > 0 (as they are a product/ratio of positive quantities).
So (z − 1) ln z ≥ 0, with the equality reached only if z = 1. Thus:

∂tSR(t) ≥ 0

In particular:

∂tSR(t) = 0⇔ W (m|n)P(n, t)
W (n|m)P(m, t) = 1⇔ P(m, t) = Peq(m)P(n, t)

Peq(n) ∀m,n

since we have assumed that all pairs of states are joined by a path of non-zero
transition rates W (i|j).
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Summing over m:

∑
m

P(m, t) = 1 =
P(n, t)
Peq(n)

∑
m

Peq(m)︸ ︷︷ ︸
1

⇒ P(n, t)
Peq(n) = 1

Thus:

∂tSR(t) = 0⇔ P(m, t) = Peq(m)

Summarizing, we know that SR(t) is bounded (SR(t) ≤ 0), and for every initial
condition different from the equilibrium (P(m, 0) 6= Peq(m)) it increases with
time (∂tSR(t) > 0). Since SR(t) is monotonous and bounded, it admits a limit
for t→ +∞, that we denote with S∗R:

lim
t→+∞

SR(t) ≡ S∗R

This limit must be S∗R = 0, meaning that P(m, t) −−−→
t→∞

Peq(m). In fact, if we
assume by absurd that P(m, t) −−−→

t→∞
P∗(m) 6= Peq(m), then S∗R < 0 and the

time derivative would be positive in the limit:

∂tSR(t) −−−→
t→∞

1
2
∑
mn

[W (m|n)P∗(n)−W (n|m)P∗(m)] ln W (m|n)P∗(n)
W (n|m)P∗(m) > 0

which is absurd, since SR(t) is bounded, and so it cannot increase indefinitely.
So, this proves that:

lim
t→+∞

P(m, t) = Peq(m) ∀m

However, differently from the previous proof, we do not have any information
on the rate of convergence (which we know to be exponential).
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Chapter 7

Population Dynamics

Population dynamics is the branch of life sciences that studies the size and
composition of populations as dynamical systems. In particular, it aims
to model the growth and disappearence of species in ecosystems, allowing to
understand the impact of changes in the environment on biodiversity - a topic
of utmost importance in the current times, more than ever.
In this chapter, population dynamics will serve us as a “test range” to appreciate
the power and generality of statistical mechanics.
After a brief introduction, we will focus on several historical models, and see
how the techniques we developed in the previous chapters (e.g. variational
principle, mean field approximation, scaling laws) can be effectively used to
solve problems. As we will show, often just trying to simplify complex systems
in terms of paradigmatic models of statistical mechanics, such as the Ising
Model, can reveal deep similarities between very different subjects - developing
insight on important physical phenomena.

7.1 Historical notes
At its most basic, population dynamics models how the number of individuals
of a given species changes with time.
One of the first attempt to describe a population was made by Fibonacci back Fibonacci sequence
in the 13th century, resulting in the popular Fibonacci sequence.
The main focus was to describe the unchecked growth of a idealized colony of
rabbits, with the following assumptions:

• Each pair of adult rabbits mates after one month, generating a new pair.

• Newly born rabbits grow to adulthood in just one month.

• The environment resources are abundant, and so rabbits may breed forever

If we start with a single pair of rabbits (N0 = 1), the total population N will
grow as follows:

1. In the first month, the only pair of rabbits just grows to adulthood,
without generating a new pair, so N1 = 1.
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2. In the second month, the pair of adult rabbits will produce a new pair,
leading to N2 = 2.

3. In the third month, the original pair of rabbits will produce a new pair,
but the second pair needs still some time to grow. So we have N3 = 3.

4. In the fourth month, two pairs of rabbits reproduce, and so N4 = 5

It can be shown that:

Nn = Nn−1 +Nn−2

with N0 = 0 and N1 = 1. This is the recurrence relation of the so-called
Fibonacci sequence, which is now so famous to have gained an exclusive
mathematical journal1.

The Fibonacci sequence is one of the first description of exponential growth. A Euler
more detailed account on the same concept was given several years later by
Euler in a treaty about the infinite [euler_population].

One of the most influential works on population dynamics was the “Essay on the Malthus
Principle of Population” written by Malthus in 1798. Its main observation was
that human population increased geometrically, while resources only linearly
(Malthusian Law of Population). Without any active control on birth rates, this
would have lead to overpopulation and famine.
Malthus book motivated the Census Act in the 1800 Britain, starting a detailed
account of all population every 10 years.

All of these models, however, focused heavily on describing the exponential Verhulst
growth of population. It was Verhulst, in 1838, to consider quantitatively
the environmental limiting effects. He modelled the population p(t) with a
differential equation as follows:

dp
dt = mp− φ(p)

Here m is is a constant describing fertility, i.e. the rate of growth of population,
while φ(p) is a (non-linear) unknown function acting as a limiter. In this way,
population grows exponentially only at the start, and then stabilizes at a certain
point, due to mortality and lack of resources - both of which scale on p (more
population means, for instance, a higher probability for epidemics and famine).
This is the first example of a logistic growth.

The interaction between different species was initially examined in a landmark Lotka-Volterra
work of the 1920s, where the dynamics of two populations - predator and prey -
was described by two coupled differential equations by Lotka and Volterra:dN1

dt = (ε1 − γ1(h1N1 + h2N2))N1

dN2
dt = (ε2 − γ2(h1N1 + h2N2))N2

1∧https://www.fq.math.ca/
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Both populations tend to increase exponentially with a rate ε1,2, but they
are limited by a Verhulst non-linear term (N2

1,2) and also by the size of the
other population. The result is that N1(t) and N2(t) both oscillate with the
same period, but with a slight offset in their phase. If the prey increases,
than predators will have more food and increase, reducing the number of prey,
meaning that now predators will find more difficult to find nourishment, and so
on. A behaviour of this kind was effectively observed in nature, by studying
the population of fish.

While Lotka-Volterra approach involved deterministic differential equations,
the same behaviour can be modelled using stochastic processes, and in
particular the so-called birth-death processes. The main results are the
same, but the stochastic case exhibits some interesting consequences due to
its inherent randomness, such ast the phenomenon of stochastic amplification,
where significant oscillations in the population are produced by fluctuations
and amplified by interaction. We will dedicate one of the following sections to
introducing some simple birth-death processes.

In modern times, population dynamics is fueled by an increasingly available
ecological data. For example there are 5-year census of entire tree populations
in the Amazon, registering many features of interest.

One of the first to try to understand biodiversity and biogeography in a math-
ematical way is Stephen Hubbel, who wrote “The Unified Neutral Theory
of Biodiversity and Biogeography” in 2001. He proposed that the complexity
of biodiversity could be unsterstood with very simple models, and tried to
simplify complex models of the past so that they can be more maneageable.

7.2 Features of interest
In the rest of the chapter, we will present several models of population dynamics,
finding interesting application to statistical mechanics techniques. Before doing
that, however, let’s examine what exactly are we trying to describe.

The main focus of population dynamics has always been the counting of indi-
viduals belonging to a population (e.g. a certain species).
The distribution of species sizes in an ecosystem, i.e. the probability that a given α-diversity
species picked at random has exactly n individuals, is called the α-diversity
of that ecosystem. It is inherently a measure of biodiversity, giving us some
information abouth the health of a certain population - for example trees in an
Amazon rainforest.
We know that the existence of many different species is important to maintain
a sort of “stable equilibrium” in nature, i.e. ecosystems with less variety are
more prone to extinction, and more sensitive to external perturbations. This is
particularly relevant when studying the distribution of bacteria species in the
human gut, since here changes can lead to disease.

α-diversity can be studied as a function of time, i.e. in the evolution of
ecosystems; or space, i.e. how it scales with area. In the latter case, it is
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unsurprising to find that the number of individuals usually scales linearly with
the considered area, as if any species had a fixed spatial density (fig. 7.1).

Figure (7.1) – Population size of trees in the Barro Colorado Island (BCI) forest as a
function of the sample area.

In terms of frequency, α-diversity gives us information about the Relative
Species Abundance (RSA), i.e. how many individuals of a given species are
present in a certain sample of population.
To measure the interaction between different species, we can consider the β-diversity
two-point correlation function, i.e. the probability of finding a certain
species i at a fixed distance r from a species j. This is the so-called β-diversity.
It is also an example of inherently spatial feature.
α, β-diversity and other spatial features can be determined by available empirical
data. The challenge is then to find a understandable model that, given some
“simple assumptions”, is able to fit that data and predict how it evolves in time.
In particular, we already know that real systems exhibit scaling laws similar to
those of physical systems at criticality - so we will pay additional attention to
finding them.

7.3 Neutral theory
At first, the problem of studying many different species, each one with unique
quirks and interactions, can seem intractable with relatively simple models. It is
reasonable that the complex biodiversity of an Amazon rainforest would require
hundreds of parameters to be tackled - which would quickly destroy any hope
of some real understanding.
Fortunately, this is not the case. Complex ecosystems are surprisingly simple
at their core: to the eye of population dynamics, all species “look the same”,
and almost do not interact with each other. This is the main argument of the
neutral theory by Stephen Hubbell: all species which share the same level
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in the food chain can be considered equivalent, in the sense that differences
between them are “neutral”, i.e. irrelevant to the success of their individuals.

From a physical point of view, this is great news: it means that we can create
models with few parameters, borrowing ideas from the paradigmatic models of
statistical mechanics, and achieve our target. Still, the extraordinary nature of
such a claim requires a strong foundation.

In this introduction, we will consider just an example at the root of the neutral
theory. Let’s consider an Amazon rainforest, inhabited by many different species
of trees. If the assumptions of neutral theory are adequate, we expect all trees to
be placed “at random”, i.e. without any correlation to other physical quantities.
Let’s consider, for example, the distribution of nutrients in an area (fig. 7.2).
This is done by dividing the area in small quadrants, and measuring in each of
them the relative concentration of certain soil elements.

Figure (7.2) – Relative distribution of plant nutrients in the BCI forest

We then consider all the quadrants with a given concentration of nutrients, and
measure in them the relative abundance of tree species, i.e. the fraction of all
individuals in these quadrants that belong to a given species. For example,
suppose that a species A is specialized in consuming phosphorus, and a species
C instead prefers nitrogen. Then we would expect to find a lot of trees of species
A in quadrants where the ratio nitrogen/phosphorus is low, and a lot of trees
of species C where it is high, giving rise to a plot similar to fig. 7.3.
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Figure (7.3) – Relative abundance of nutrient-specialized species

However, when plotting real data, we do not see this kind of pattern. Instead,
species seem to be agnostic to the relative concentration of nutrients - they
simply occupy all available space (fig. 7.4).

Figure (7.4) – The distribution of hybanthus as a function of soil nutrients concentration.
There is no clear bias towards a certain element.

The same result holds for different combinations of nutrients and different
species, contributing evidence for the neutral assumption.

(Lesson 31 of
20/05/20)
Compiled: January
28, 2021

Moreover, different species seem to interact weakly with each other. Let’s see
how we can understand this from empirical data.

Suppose we have S species with population n1, . . . ,nS . We consider the joint
probability for a certain configuration n, i.e. P(n1, . . . ,nS). If the species are
non-interacting, then the probability factorizes:

P(n1, . . . ,nS) = p1(n1)p2(n2) · · · pS(nS)
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And taking the ln of both sides would lead to:

ln P(n1,n2, . . . ,nS) =
∑
i

ln pi(ni) (7.1)

However, if there is some kind of interaction between different species, then
(7.1) would contain other terms:

ln P(n1,n2, . . . ,nS) =
∑
i

ln pi(ni) +
∑
i<j

ci,j(ni,nj) + . . .

We can infer a specific form of P(n1, . . . ,nS) just using the empirical information
we have, without adding any other assumption, by using the MaxEnt principle.
Let S(P ) be the information entropy of the joint distribution, defined as:

S(P ) = −
∑
n
P (n) lnP (n)

We choose the P that maximizes S(P ) subject to certain observational con-
straints. For example, the average total population may be fixed:

N = 〈
∑
i

ni〉 =
∑
n
P (n)

∑
i

ni

If we use only this constraint, the MaxEnt distribution will be an exponential:

P (n) = K exp
Ç
−β

∑
i

ni

å
which corresponds to the case of non-interacting species.

To quantify interaction, we need to measure correlations between the populations
of different species (β-diversity). For example, let’s consider the Barro Col-
orado Island (BCI) forest. The dataset describes a region of size 1000× 500 m,
recording the position and species of each tree. We can divide this area in Q
small quadrants (let’s say of size 20× 20 m). In each quadrant a, we measure
the population n(a)

i of species i, and compute:

〈ni〉 =
1
Q

∑
j=1,...,Q

n
(Q)
i (7.2)

〈ninj〉 =
1
Q

∑
i=1,...,Q

n
(Q)
i n

(Q)
j

To get useful results, it is convenient to consider only the most common species
(e.g. the first 20 “most frequent” ones), such that n(Q)

i are almost all far from 0.

213



Figure (7.5) – Location of trees of the 20 most abundant species in the BCI dataset.

Using (7.2) as constraints in a MaxEnt model, treating the ni as continuous
variables for simplicity, the final distribution will be given by:

lnP (n) = K − 1
2
∑
i,j

(ni − 〈ni〉)Mij(ni − 〈ni〉)

M−1
ij = 〈ninj〉 − 〈ni〉〈nj〉

where K is the normalization constant, and M acts as a correlation matrix.

If the species are non-interacting, then M is diagonal:

〈ninj〉 = 〈(ni)2〉δij

So, we can see how much interactions are important by examining the size of
the non-diagonal elements of M. The empirical results for the BCI forest are
shown in fig. 7.6.
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Figure (7.6) – Correlation matrix for the top 20 species in the BCI forest.

The non-diagonal terms seem small - but it is not exactly clear if it is right to
say so, since we do not have any element to compare them to.
A trick is then to destroy all correlations and examine the size of random
fluctuations. To do this we can just relabel each species inside each quadrant.
In other words, inside each quadrant we permutate all species names at random,
and we repeat this (with different independent relabelling) for every quadrant.
The result is a matrix with no real meaning, which elements are the product of
random chance (fig. 7.7).
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Figure (7.7) – Correlation matrix after random relabelling of all species in each quadrant.

From this experiment we see that, if species were really distributed at random,
we would expect some relatively strong interactions to arise from pure chance.
This means that the matrix elements of fig. 7.6 are indeed small, indicating that
in nature, species that coexist do not interact much. A possible explanation
is that, for an ecosystem to be stable, the interactions between its parts must
be either neutral or cooperative - otherwise several species would get extinct,
destroying the equilibrium. However, the latter case is much more difficult
to realize than the form, as it requires a more precise “order”, i.e. a lower
information entropy. In nature, evolution optimizes species for survival through
a series of random mutations. A system of weakly interacting individuals is
more likely to arise from chance alone than a perfectly cooperative system, and
still guarantees a low probability of extinction.

7.4 Models
Following a semi-historical approach, we will now describe several models of
population dynamics.

1. Birth-death processes are one of the simplest way to stochastically
model the growth and decline of populations. In section 7.5, we will
see how including a Malthusian growth and a death rate proportional
to population leads, at stationarity, to the Fisher Log-Series, one of
the first function proposed to fit empirical data. However, more modern
datasets accounting also for rarer species lead to a population distribution
that seems to follow a log-normal function - which can not be naturally
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produced by tweaking the parameters of a birth-death process. Fortunately,
assuming birth/death rates that depend on the population itself (density
dependence) can give similarly good results, while maintaining the
overall model simple.

In section 7.5.5 we will then take the continuum limit of the birth-death
process, obtaining a deterministic differential equation for the system’s
evolution. This can be used to predict the stationary distribution, and
also to compute the Species Turnover Distribution (STD) - a sort of
α-diversity as a function of time. The latter is particularly useful to find
the characteristic timescale of an ecosystem, i.e. the time needed for a
population to recover from some sufficiently small external perturbation,
such as human action. Alarmingly, that interval appears to be in the
order of millennia in the case of Amazon rainforests.

2. While birth-death processes are really useful to compute both α-diversity
and the STD, they miss entirely on the spatial nature of ecosystems. The
voter model is perhaps the most paradigmatic spatial model that is able
to capture relevant features in the data. It is introduced in section 7.6,
where we state (just as an example) several key analytical results, and
compare them with empirical evidence, with the aim of understanding
the β-diversity of Amazon rainforests.

Then, in section 7.7 we show some full derivations in a simplified case, with
the aim of understanding if, at equilibrium, several species will coexist
(biodiversity), or only one will dominate (monodominance). As we will
show, while the voter model can fit really well real data, it cannot explain
how high biodiversity can be stable in nature - which is still one of the
important unsolved problem in environmental statistical mechanics.

7.5 Birth-Death processes
We want now to construct a model based on the empirical observations we
made regarding the distribution of species in forests. We make the following
assumptions:

1. Species in the same trophic level (number of steps from the start of the
food chain) behave similarly.
For example, plants are all primary producers, lying at trophic level 1,
and so we treat them all the same, without adding any specific details.

2. Species interactions are taken into account only in the effective birth
and death rates. In other words, in this model different species interact
only when a new organism is born, or dies.

3. Different species are considered as independent realizations of the same
process. For example, all species in a forest are like “different runs” of
tossing the same coin - the ones that are most successfull are simply
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the “lucky” cases which have won many subsequent tosses. They aren’t,
however, inherently different from the others - the coin that is tossed is
always the same, the game is fair.

4. Species behave as if they are independent. Let ni be the population of
the i-th species. The joint probability of all S species having populations
n1, . . . ,nS at time t factorizes:

P(n1,n2, . . . ,nS ; t) =
S∏
i=1

pni(t)

Note that, because of 3, pni(t) depends only on the population ni, and
not on the particular species i.

At each timestep ∆t (which can be of order ∼ 1 y for trees) a new individual
is born with probability bn∆t, or one existing organism dies with probability
dn∆t.

Figure (7.8)

We can then write the Master Equation for a birth-death process as follows:

Ṗn = bn−1Pn−1(t) + dn+1Pn+1(t) − ( bn + dn )Pn(t) n ≥ 0 (7.3)

The state with n individuals gains probability when one organism is born in the
state with population n− 1, or one dies from the state n+ 1. It instead loses
probability if either one individual is born or dies at the current state n. bn and
dn are respectively the probabilities per unit time that a population of size n
increases/decreases by one unit. We take by convention b−1 = 0.

Let Jn be the net flux of probability going from n to n+ 1:

Jn ≡ bnPn − dn+1Pn+1 (7.4)
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Then we can rewrite (7.3) as a difference of fluxes:

Ṗn = Jn−1 − Jn d0 ≡ 0; b−1 ≡ 0

The stationary state is given by:

Ṗn = 0 ∀n⇔ Jn = Jn−1 = Jn−2 = · · · = Const.

As ∑n Pn = 1, we expect Pn −−−→n→∞ 0, meaning that Jn −−−→n→∞ 0. Thus the
stationary state can be reached if:

Jn = · · · = J1 = 0

And from (7.4):

0 !
= bnPn − dn+1Pn+1

∣∣∣
P=Pstat

⇒ bnPstat
n = dn+1Pstat

n+1 ⇔
Pstat
n+1

Pstat
n

=
bn
dn+1

(7.5)

which is exactly the detailed balance condition.
Reiterating (7.5):

Pstat
n = Pstat

n−1
bn−1
dn

=
n−1∏
i=0

bi
di+1

Pstat
0 (7.6)

However we expect that b0 = 0, as no birth can occur in absence of individuals.
So:

Pstat
n = 0 n ≥ 1

or equivalently:

Pstat
n = δn,0

So the only stationary state is the trivial one where there is no population.
We say that the state n = 0 is absorbing, as once reached cannot ever be left.
Moreover, we know it will be reached for sure:

Pn(t) −−−−→
t→+∞

δn,0

It is then interesting to compute how much time on average is needed to reach
it, i.e. the expected lifetime of every species before going extinct - this will be
indeed the target of section 7.5.4.
For now, let’s introduce a modification. Suppose the system is open. We know
that species may “disappear” due to extinction or to migration, but we also
expect species to arrive from outside at a certain rate. Then b0 > 0 represents
the probability per unit time that a individual of a new species enters in the
system. With this interpretation, Pn(t) is not anymore the probability that
a given species has n individuals, but rather the probability of observing a
“random” species with n individuals at time t in the whole system.
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Equation (7.6) holds also if b0 > 0, but now n = 0 is not anymore an absorbing
state, nor the system’s stationary state.
Imposing normalization:

1 !
=

+∞∑
n=0

Pstat
n =

ñ
1 +

+∞∑
n=1

n−1∏
i=0

bi
di+1

ô
Pstat

0

From this we can compute Pstat
0 , and then use (7.6) to find every Pstat

n :

Pstat
n =


1

1 +∑∞
k=1

∏k−1
i=1

bi
di+1

n = 0

∏n−1
i=0

bi
di+1

1 +∑∞
k=1

∏k−1
i=1

bi
di+1

n ≥ 1

Alternatively, we can neglect the species with 0 population in the normalization:

+∞∑
n=1

Pstat
n

!
= 1

This leads to the same expression for every n:

Pstat
n =

n−1∏
i=0

bi
di+1

∞∑
k=1

k−1∏
i=1

bi
di+1

(7.7)

7.5.1 Fisher Log Series
Let’s choose the birth-death rates as proportional to the population, except b0
which is constant:

bn =

b0 n = 0

nb n ≥ 1
dn = n · d

The proportionality constants b and d are respectively the per-capita birth/death
rate.

We can then compute the product at the numerator/denominator of (7.7):

n−1∏
i=0

bi
di+1

=
b0
d

n−1∏
i=1

ib

(i+ 1)d =
b0
d

ï
b

�2d
· �2b
A3d
· · ·�

���(n− 1)b
nd

ò
=

=
b0

��d

��d

b

Å
b

d

ãn−1 1
n

b

d
=
b0
b

Å
b

d

ãn 1
n

This does not diverge, allowing to normalize the probability, if b < d:

+∞∑
n=1

b0
d

Å
b

d

ãn 1
n
= −b0

d
ln
Å

1− b

d

ã
b < d
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Substituting in (7.7):

Pstat
n =

xn/n

| ln(1− x)| x ≡ b

d
< 1 (7.8)

which is known as the Fisher Log-Series. It was derived in the 1940s by Fisher,
an ecologist studying the population of butterflies. Its original construction was
however a bit strange, and filled with ad hoc hypothesis. The link between the
Fisher Log-Series and birth-death processes that we just showed is a much more
recent development.

7.5.2 Data Binning and Preston Plots
One problem when dealing with population data, is that Pn goes quickly to 0
for n� 1, i.e. it is difficult to find samples with a high number of individuals all
from the same species. This is because collecting a large sample requires huge
efforts, and also because there are many species sharing the same environment.

So, to better visualize population distributions, binning scheme is required. One
example is Preston’s logarithmic binning, were instead of plotting Pn directly,
we plot P̃i defined as follows:

P̃i ≡
2i+1∑
n=2i

Pstat
n αn αi =

1
2 ∃j ∈N : i = 2j

1 otherwise

Explicitly:

Bin(1) = Pstat
1 +

1
2Pstat

2

Bin(2) = 1
2Pstat

2 + Pstat
3 +

1
2Pstat

4

If Pstat
n changes smoothly (true if n is sufficiently large), then we can approximate

the P in an interval [2i, 2i+1] with the value at the left side:

P̃i ≈ (2i+1 − 2i)Pstat
2i = 2iPstat

2i

So, approximately:

P̃n ≈ nPstat
n (7.9)

Preston’s binning is just a trick to approximately change variables to a logarith-
mic scale. In fact, if we treat n as a continuous variable (an approximation
not bad if n� 1), and perform the change of random variables2 z = lnn we
get:

P̃(z) dz = Pstat
n dn⇒ P̃(z) = Pstat

n

∣∣∣∣dndz
∣∣∣∣︸︷︷︸

n

= Pstat
n n (7.10)

2∧Here we use ln instead of log2.
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which is exactly (7.9).

For example, (7.10) applied to (7.8) leads to:

P̃(lnn) =
�nx

n

�n

| ln(1− x)| =
xn

| ln(1− x)|

which is just an exponential distribution.

7.5.3 Log-Normal distribution
While the data collected by Fisher agrees with his Log-Series model (fig. 7.9), a
new analysis with more data and using Preston’s binning method clearly shows
a deviation (fig. 7.10).

Figure (7.9) – Histogram of butterfly population sizes observed by Fisher, and compared
with the Fisher Log-Series (7.8).

Figure (7.10) – Histogram (with Preston’s logarithmic binning) of butterfly population
sizes, comparing Fisher observations (darkest bars) with data collected over a much longer
timespan. The black line corresponds to a log-normal fit.

Preston proposed a normal distribution for Pn:

P̃ (i) ∝ exp
Å
−(i− i0)2

2σ2

ã
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Since i in a Preston’s plot is just log2 n - or lnn in our notation - this leads to
a log-normal distribution:

P̃ (lnn) = 1√
2πσ2

exp

Ñ
−

Ä
ln n

n0

ä2

2σ2

é
(7.11)

which agrees with the newer and larger datasets (fig. 7.10).

To observe the full log-normal distribution, accurate measurements over a long
period of time are required - while Fisher observed only the most frequent
species, corresponding to a single tail of the distribution (fig. 7.11).

Figure (7.11) – A small sample will contain only the most abundant species, corresponding
to the rightmost tail of the log-normal distribution. Everything else is hidden behind a
“veil-line”, which can be “pushed further” only by increasing the sample size and the duration
of the measurements.

We now try to obtain a log-normal distribution as the stationary state of a
birth-death process, by choosing accordingly {bn} and {dn}:

Pstat(n) !
=

1
n

1√
2πσ2

exp

Ñ
−

Ä
ln n

n0

ä2

2σ2

é
(7.12)

From (7.5) we must have:

bn
dn+1

=
Pstat(n+ 1)

Pstat(n) =
(7.12)

n

n+ 1 exp
Ç
− 1

2σ2

ñÅ
ln n+ 1

n0

ã2
−
Å

ln n

n0

ã2ôå
=

≈
n�1

n

n+ 1 exp
Ç
− 1

2σ2
d

dn

ï
ln n

n0

ò2å
=

n

n+ 1 exp
Å
− 1

2σ2
2
n

ln n

n0

ã
=

=
n

n+ 1 exp
Å
− 1

2nσ2 ln n

n0

ã
which is a quite strange function - it is not easy to understand why a birth-death
process should have this kind of parameters.

An alternative is to assume that the per-capita birth and death rates have some
dependence on the population itself (density dependence):

bn
n

= b+
b̃

n
+O

Å 1
n2

ã
(7.13)

223



dn
n

= d+
d̃

n
+O

Å 1
n2

ã
It is empirically known that small species have a likelier chance of birth - for
example because they interact less with possible predators, and thus survive
longer and have better chance for breeding.
Let’s assume that b̃ and d̃ are both proportional to (respectively) b and d with
the same constant c:

b̃ = bc d̃ = dc

Then, neglecting higher order terms in (7.13):

bn = b(n+ c) d̃ = d(n+ c) n ≥ 1

and b0 > 0 (we do not need to specify d0).
We can then compute Pstat

n (7.7). First note that the ratio of bi to di+1 allows
some simplification:

bi
di+1

=
b

d

i+ c

i+ 1 + c

Thus:

Pstat
n = Pstat

0

n−1∏
i=0

bi
di+1

= Pstat
0

b0
d︸ ︷︷ ︸

≡α·c

Å
b

d

ãn 1
n+ c

= α

Å
b

d

ãn c

n+ c
(7.14)

Imposing normalization:
+∞∑
n=1

Pstat
n

!
= 1⇒ α−1 =

∞∑
n=0

Å
b

d

ãn c

n+ c
= F (1, c, c+ 1, b/d) b < d

where F is the Gauss hypergeometric series
Note that when c→ 0+ we get back the Fisher Log-Series:

Pstat
n =

1
n

Å
b

d

ãn 1
− ln(1− b/d)

Figure (7.12) – Preston plots of (7.14). For c = 0 we obtain the Fisher Log-Series, while
for c > 0 we get a log-normal distribution.
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Empirically, c = 0 is appropriate for very large sample sizes (e.g. forests at a
continental scale), since the correction (7.13) vanishes for n→ +∞. For smaller
sample sizes we use c > 0 instead (e.g. forests of 1− 100hs).
n0 may be determined as the maximum point:

n0 :
∂

∂n
ln
(
nPstat

n

)
= 0⇒ n0 ≈

(a)

…
c

ln b/d ≈
…

c

1− b/d

The approximation in (a) is motivated by fits of real data, where |b/d− 1| . 10−3

(tab. ??). Interestingly, this means that in real systems b ≈ d, meaning that -
in a sense - they are “near criticality”.
When b ≈ d, the average population size 〈n〉 diverges - as if taking the role of
the correlation length in the critical Ising Model. If c = 0:

〈n〉 =
+∞∑
n=1

nPstat
n =

+∞∑
n=1

n

Å
b

d

ãn 1
| ln(1− b/d)| =

b

(d− b)| ln(1− b/d)| =

=
b

δ| ln δ/d| δ ≡ d− b > 0

Note that 〈n〉 −−−→
δ→0

∞.

Plot S J θ α β x χ2 p

Panama (BCI) 225 21457 0.09642 2.8751 2.9745 0.99815 4.0935 0.9051
Yasuni, Ecuador 821 17546 0.1857 6.1356 7.2429 0.99887 5.5337 0.7855
Pasoh, Malaysia 678 26554 0.1581 1.4716 1.3855 0.99187 7.1739 0.4110
Korup, Cameroon 300 24564 0.1381 4.0573 4.5751 0.99951 4.4298 0.9259

Table (7.1) – Maximum likelihood estimates for parameters in the density dependent model
(7.14), with bn = (α+ n)b, dn = (β + n)d, x = b/d. S is the number of species, J the total
population and θ is a biodiversity parameter. Note how x ≈ 1 for all forests.

The model (7.14) seems to fit well real data (fig. 7.13). However, the simple
form of density dependence for bn and dn in (7.13) is not much realistic, as can
be seen by comparing the theoretical prediction (7.14) with the actual data
(7.15).
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Figure (7.13) – Preston plot of the Relative Species Abundance (RSA) of the BCI forest.
The black line is a log-normal fit, while the green one is a fit with the density-dependent
model (7.14). Both curves fit the data really well, but (7.14) comes from a well-defined
model, not an ad-hoc function.

Figure (7.14) – Plot of rn = Pstat(n+1)
Pstat(n)

n+1
n = x 1+c/n

1+c/(n+1) . For x = b/d ∼ 1, if c = 0
(Fisher Log-Series), then rn ≡ 1 (black continuous line). Otherwise, if c > 0, rn depends on
n, and is slightly > 1 for small n (blue and black points). Physically, this measures the
survival advantage of rare species (since they interact less with possible threats).

226



Figure (7.15) – Birth/death ratios for all species in the BCI forest. Note how bn/dn does
not tend to a constnat for n→∞, nor has any precise trend for n small.

7.5.4 Extinction time distribution
(Lesson 32 of
21/05/20)
Compiled: January
28, 2021

Let’s return to the simplest case, with no density dependence (d̃ = b̃ = 0),
closed boundaries (b0 = 0) and per-capita birth-death rates proportional to
population (bn = nb and dn = nd for n ≥ 1).
In this scenario, when a certain species reaches the n = 0 state, it becomes
extinct. Let P(t|n0) dt be the probability that a species starting with n0
individuals gets extinct at a time in (t, t+ dt). To compute P(t|n0) we have to
solve the Master Equation (7.3):

Ṗn = (n− 1)bPn−1(t) + (n+ 1)dPn+1(t)− n(b+ d)Pn(t) n ≥ 0 (7.15)

with P−1 ≡ 0.
To do this, we use the probability generating function G(z, t) of Pn(t):

G(z, t) =
+∞∑
n=0

Pn(t)zn

Recall that G(1, t) ≡ 1 ∀t due to normalization.
So, if we multiply both sides of (7.15) by zn and sum over z we get:
+∞∑
n=0

Ṗn(t)zn︸ ︷︷ ︸
Ġ(z,t)

= b
+∞∑
n=0

(n− 1)Pn−1(t)zn + d
+∞∑
n=0

(n+ 1)Pn+1(t)zn − (b+ d)
+∞∑
n=0

nPn(t)zn

Note that, by shifting the indeces of summation:
+∞∑
n=0

nPn(t)zn = z∂zG(z, t)
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+∞∑
n=0

zn(n− 1)Pn−1(t) =
+∞∑
n=1

zn+1nPn(t) = z
+∞∑
n=0

nznPn = z2∂zG(z, t)

+∞∑
n=0

zn(n+ 1)Pn+1(t) =
+∞∑
n=0

zn−1nPn(t) = ∂zG(z, t)

Substituting back:

∂tG(z, t) = bz2∂zG(z, t) + d∂zG(z, t)− (b+ d)z∂zG(z, t) =
= [bz2 − (b+ d)z + d]∂zG(z, t) = (bz − d)(z − 1)∂zG(z, t)

So at the end we have to solve:

∂tG(z, t) = (bz − d)(z − 1)∂zG(z, t) (7.16)

Note that for z = 1, ∂tG(1, t) ≡ 0, which is consistent with G(1, t) = 1 ∀t.
This equation may be solved with the method of characteristics. We start by
parametrizing z : [0, t] 3 τ 7→ z(τ) as follows:

ż(τ) = −(bz(τ)− d)(z(τ)− 1) (7.17)

which is just −∂tG(z(τ), t).
Now, if we compute the total derivative of G(z, t) along the curve z(τ) we get:

d
dτ G(z(τ), τ) = [∂τG(z, τ) + ż(τ)∂zG(z, τ)]z=z(τ) =

=

ï
∂

∂τ
G(z, τ)− (bz − d)(z − 1) ∂

∂z
G(z, τ)

ò
z=z(τ)

=
(7.16)

0

Thus:

G(z(τ), τ) = Constant = G(z(0), 0) ∀τ (7.18)

Let’s fix the initial population to n0, meaning that Pn(t = 0) = δn,n0 . Then:

G(z, t = 0) =
+∞∑
n=0

δn,n0z
n = zn0

and in particular G(z(0), 0) = z(0)n0 .

As we want to compute G(z, t), we fix the endpoint of z(τ) to be z(t) !
= z. Then

(7.18) evaluated at t reads:

G(z(τ), τ)
∣∣∣
τ=t

= G(z(t), t) = G(z, t) = G(z(0), 0) = z(0)n0 (7.19)

The starting point z0(0) will depend in general on both z and t, and can be
determined by solving the differential equation (7.17), which is an ordinary
differential equation that may be solved by separation of variables:

ż(τ) = −(z(τ)− 1)(bz(τ)− d)

dz
Å 1

1− z +
b

bz − d

ã
= dτ (b− d)
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∫ z

z(0)

Å 1
1− z +

b

bz − d

ã
dz = −t(d− b)

Notice that bz− d < 0 since we are interested to z ∈ [0, 1] and b < d. Computing
the integral leads to:

ln
∣∣∣∣d− bz1− z

1− z(0)
d− bz(0)

∣∣∣∣ = −(d− b)t

which can be solved for z(0), resulting in:

z(0) = 1− dA
1− bA A ≡ 1− z

d− bz
e−(d−b)t

Substituting back in (7.19) we obtain the solution:

G(z, t) =
Å1− dA

1− bA

ãn0

(7.20)

Notice that when z = 1, A = 0 and so G(1, t) = 1 as expected.

Recall that:

G(z, t) = P0(t) + zP1(t) + z2P2(t) + . . .

In particular, P0(t) is the probability that a certain species has a population 0
at time t, meaning that it became extinct at a time t0 ≤ t. Note that:

G(0, t) = P0(t)

Conversely, the probability P>(t|n0) that a species is still alive at time t, i.e.
that it will become extinct at a time t0 > t is given by:

P>(t|n0) = 1−P0(t)

Using (7.20), we have:

A
∣∣∣
z=0

=
1
d
e−δt; δ = d− b > 0⇒ G(0, t) =

ñ
1− e−δt

1− (b/d)e−δt

ôn0

=

ñ
1 + δ

d

e−δt

1− e−δt

ô−n0

Thus:

P>(t|n0) = 1−P0(t) = 1−G(0, t) = 1−
ñ
1− δ

d

e−δt

1− e−δt

ô−n0

(7.21)

We can finally compute the extinction time distribution. Let P(t|n0) dt be
the probability that a species with n0 individuals becomes extinct at time in
(t, t+ dt). This is merely the probability of surviving until t, but not after
t+ dt:

P(t|n0) dt = P>(t|n0)−P>(t+ dt |n0) = − dt ∂
∂t
P>(t|n0) (7.22)
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Dividing by dt we get:

P(t|n0) = − ∂

∂t
P>(t|n0) (7.23)

Before computing (7.23), let’s try to simplify a bit more (7.21). In particular,
we are interested in its scaling behaviour near the “critical point” δ ≈ 0.

From empirical observations, δ � 1 y−1 for forests. Its reciprocal defines an
emergent timescale τc:

τc ≡
1
δ
� 1 y (7.24)

In particular, τc ∼ 103 y. Physically, τc represents the relaxation time needed
by a forest to recover from a small perturbation.

If we take δ · t fixed and let δ → 0, then (7.21) becomes:

P>(t|n0) = 1−
ñ
1 + δ

d

e−δt

1− e−δt

ô−n0

=
n0δ

d

e−δt

1− e−δt =

=
n0δ

d
(eδt − 1)−1 ≡ n0

d · t
F (δ · t)

F (x) = x

ex − 1 →

1 x→ 0

0 x→∞

So for δ → 0:

P>(t|n0) ∼

t−1 t · δ � 1 i.e. t� τc

e−t/τc t� τc

This implies that the lifetime distribution (7.23) has the following scaling:

P(t|n0) = 1
t2
f(t/τc)

n0
d

(7.25)

f(x) = F (x)− xF ′(x) = x2ex

(ex − 1)2 →

1 x→ 0

0 x→∞

⇒ P(t|n0) ∼

t−2 t� τc

e−t/τc t� τc

A plot of P(t|n0) is shown in fig. 7.16.
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Figure (7.16) – Log-log plot of the extinction time (or lifetime) distribution P(t|n0).

This can be compared with real data - with some difficulties given that fossil
records are not very accurate, and good records have usually a duration of
less than 50 y. For example, if we consider birds species, we can see different
scenarios (top of fig. 7.17):

1. A species emerges and disappears entirely within the span of observations
(blue plot).

2. A species is initially present from a un unknown time, then disappears
from that region, only to return and disappear again after some time
(orange plot).

3. A species is already present at the start of observations, and never disap-
pears.

In the first two cases we can estimate the lifetimes τ ′ of these two species, but
in the third we can only give a lower bound τ ′′ for it. With some manipulations,
we can use (7.25) to produce theoretical predictions, which fit well the available
data (fig. 7.17).
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Figure (7.17) – The window available for observations has a limited duration, meaning that
we cannot measure directly lifetimes of species τ . What we can know are only the lifetimes
that happen within the window (τ ′), or lower bounds for lifetimes larger than the window
(τ ′′). So, we cannot use directly (7.25) for a fit, but need to account for these limitations -
leading to the blue and green lines. Still, the model follows well the real data (blue and green
points).

7.5.5 Continuum limit
Recall the Master Equation (7.15) and let x = n and Pn = px:

∂px(t)
∂t

= b(x− 1)px−1(t) + d(x+ 1)px+1(t)− [b(x) + d(x)]px(t)

If we treat x as a continuous variable (in the limit of a large population) we
can expand px±1, leading to:

∂p(x, t)
∂t

=
∂

∂x
[d(x)− b(x)]p(x, t) + 1

2
∂2

∂x2 [d(x) + b(x)]p(x, t) (7.26)

which looks like a Fokker-Planck equation with diffusion coefficient D = [d(x)+
b(x)]/2.
Then, if we take:

b(x) = b1x+ b0 d(x) = d1x− b0
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Equation (7.26) may be rewritten as:

ṗ = ∂x[(x/τ − b)p] +D∂2
x(xp)


D = d1+b1

2

τ = 1
d1−b1

> 0

b = 2b0 > 0

(7.27)

which is equivalent to the following Langevin equation:

ẋ(t) = b− x(t)/τ +
√
Dx(t)ξ(t)

The term b quantifies the immigration rate, x(t)/τ is the rate of population
decay (since d1 is slighty over b1) and ξ(t) represents the stochastic fluctuations
with amplitude

√
Dx(τ).

Equation (7.27) may be solved by using standard techniques for PDEs, resulting
in:

p(x, t|x0, 0) =
Å 1
Dτ

ã b
D

x
b
D−1e−

x
Dτ

î( 1
Dτ

)2
x0xe−t/τ

ó 1
2−

b
2D

1− e−t/τ
×

× exp
ñ
−

1
Dτ (x+ x0) e−t/τ

1− e−t/τ

ô
I b
D−1

ñ
2 1
Dτ

√
x0xe−t/τ

1− e−t/τ

ô
Here we used reflecting boundary conditions at x = 0.

The stationary state is given by a Γ distribution:

p(x, t|x0, 0) −−−→
t→∞

p0(x) = (Dτ)−b/DΓ(b/D)−1x
b
D−1e−

x
Dτ

and agrees well with data (fig. 7.18).

Figure (7.18) – Fit of RSA data with a Γ distribution.

We can also compute the species turnover distribution, i.e. the probability of a
certain species having a population x at time t such that x/x0 = λ for a given
λ:
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PSTD(λ, t) = 〈δ (λ− x/x0)〉

=
∫ ∞

0
dx0

∫ ∞
0

dx p (x, t|x0, 0) p0 (x0) δ (λ− x/x0)

=
2 b
D−1
√
π

Γ
Ä
b
D + 1

2

ä
Γ
Ä
b
D

ä (λ+ 1)
λ

(et/τ )e b
2D

1− e−t/τ

Ç
sinh

(
t

2τ
)

λ

å b
D+1

×
Å 4λ2

(λ+ 1)2et/τ − 4λ

ã( bD+ 1
2)

(7.28)

By fitting the stationary state distribution we can determine 2 parameters out
of 3: b and D, but not τ . Then τ can then be determined by fitting the species
turnover distribution (fig. 7.19)

Figure (7.19) – Fit of (7.28) to determine τ ∼ 3400 y for a tropical forest.

7.6 Spatial models
Until now we completely neglected spatial effects in the data, i.e. the physical
distribution of species in the environment.
One of the main models that includes these kinds of features is the voter model,
originally created to understand elections and influences between different voters.
The main idea is the following:

• Consider, for simplicity, a square lattice. Each individual (e.g. tree)
occupies one node in the lattice, meaning that the density of individuals
is fixed (as it is empirically known).

• At each timestep, a node x is chosen at random and removed. Then:

– With probability 1− ν a randomly chosen neighbour of x gives birth
to a new individual replacing the removed one.
This mimics the fact that, when a tree dies, its place will be colonized
by one of the neighbouring trees.
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– With probability ν, the place of x will be taken instead by a individual
of a new species. This represents the effect of random mutations.

A simulation of this kind of process will look like this:

Figure (7.20) – Voter model simulation on a exagonal grid. Each color represents a
different species.

We can then measure the β-diversity, i.e. the probability Fr that two individuals
at a distance (r, r+ dr) belong to the same species. Empirical data shows that
Fr follows two different scaling regimes depending on r (fig. 7.21). Our goal is
then to replicate this behaviour with a voter model.

Figure (7.21) – Probability that two individuals at distance r belong to the same species.
The black dots are real data from the Yasuni forest. Our target is to find a model able to
predict the fitting black line.

Explicitly, two trees that are separated by a vector x are of the same species at
step n with probability Fnx , which evolves in a basic voter model according to:

Fn+1
x = Fnx

Å
1− 2

N

ã
+

1− ν
dN

d∑
µ=1

(Fnx+µ̂ + Fnx−µ̂) (7.29)
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At stationarity:

Fx =

Ç∫
−π<qi<+π

ddq
(2π)d

1
l(q)

å−1 ∫
−π<pi<+π

ddp
(2π)d e

ip·x 1
l(p)

l(p) = − 2
N

+ 21− ν
dN

d∑
µ=1

cos(pµ)

In d = 1, the stationary solution has a purely exponential decay (fig. 7.22):

Fr = e−r/ξ

ξ =

Ç
ln 1− ν

1−
√
ν(2− ν)

å−1

≈
ν→0

ν−1/2

This is clearly not the behaviour we need to fit fig. 7.21.

Figure (7.22) – The decay of Fr at stationarity in d = 1 is purely exponential.

Let’s try again in a higher dimension. In d = 2 a solution can be found by
taking the continuum limit of (7.29):

Ḟ (x, t) = ∇2F (x, t)− γ2F (x, t) + sδd(x)

where γ2 = 2dν/a2, a is the lattice spacing (∼ density−1/2), and s is a free
parameter. At stationarity this leads to:

F0(r) = sγ2

2π K0(γr) ≈

−sγ
2

2π ln(γr) γr � 1
sγ2

2

»
1

2πγre
−γr γr � 1

(7.30)

where Kp is the modified Bessel K function of order p.
A plot of F0(r) in d = 2 is shown in fig. 7.23 and compared from results from
simulations. Again, the results are different from fig. 7.21, and in particular
there is only one regime.
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Figure (7.23) – Plot of the β-diversity F0(r) in d = 2 (7.30) for various values of the
mutation rate ν (black continuous lines). The points are results from numerical simulations.

These results indicate that a basic voter model is not able to explain by itself
the two regimes seen in fig. 7.21. Thus, we need to introduce “by hand” a
strong negative density-dependence. This is the so-called Jenzen-Connell effect,
stating that:

• A young tree near an adult of the same species is more likely to die than
a isolated one

• A seedling near an adult tree of the same species is more likely not to
germinate than an isolated one

Possible explanations involve the fact that trees of the same species are vulner-
able from the same pests - meaning that an “infected” adult tree can negatively
affect neighbouring young trees of the same species. Another possibility is that
trees emit waste products that are toxic for other conspecific trees.

So, let pd(x) be the probability that a newborn tree dies out when there is an
adult tree at distance x. This leads to the following modification for the voter
model:

Ḟ (x, t) = 2
Å
D∇2F (x, t)− α

1− pd(x)F (x, t)
ã
+ 2 b

1− pd(x)δ
d(x)

αe ≡
α

1− pd(x) =

α0 ‖x‖ < R

α1 ‖x‖ > R
α0 > α1

At stationarity:

F0(r) =

sγ2
0

2π K0(γ0r) + c1I0(γ0r) r < R

c2K0(γ1r) r > R

And this finally allows to replicate the behaviour of fig. 7.21.
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7.6.1 Extinction time for a random walk
Consider a particle moving on a d = 1 integer lattice. At every position m, it
may take a step to the right (m → m+ 1) or to the left (m → m− 1) with
equal rates w (fig. 7.24). However, when m = 0 is reached, the particle stops
moving forever, i.e. m = 0 is an absorbing state for the system.

Figure (7.24) – Random walk on a d = 1 integer lattice.

The Master Equation can be written as:

Ṗ(m; t) = w[P(m− 1; t) + P(m+ 1; t)− 2P(m; t)] m ≥ 2 (7.31)
Ṗ(1; t) = w[P(2; t)− 2P(1; t)]
Ṗ(0, t) = wP(1; t)

In fact, every state m ≥ 2 has exactly 2 inward transitions (with a positive rate),
and 2 outward transitions (with a negative rate). m = 1 has only 1 inward and
2 outward, and m = 0, being absorbing, has only inward transitions (just the
one from m = 1).
Since the particle never escapes the system, probability is conserved:

+∞∑
m=0

P(m, t) = 1 ∀t ≥ 0 (7.32)

Indeed, if we assume that (7.32) holds for m = 0, then using (7.31) we can
prove it will hold for all m > 0.
Note also that (7.32) do not depend on P(0; t) when m ≥ 1.
We can merge the m ≥ 2 case with m = 1 by defining:

P̂(m; t) ≡

P(m; t) m > 0

0 m = 0

Then:
˙̂P(m; t) = w[P̂(m− 1; t) + P̂(m+ 1, t)− 2P̂(m; t)] m ≥ 1 (7.33)

since when m = 1, the m− 1 term vanishes.
We can then use (7.32) to determine the absorption probability P(0; t) from a
solution of (7.33) as follows:

P(0; t) = 1−
∞∑
m=1

P̂(m; t) (7.34)
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Suppose the particle starts in m0 at t = 0, i.e. P(m, t = 0) = δm,m0 . If m0 = 0,
the evolution is trivial: the particle will always remain in the absorbing state.
Otherwise we have:

P̂(m, t = 0) = δm,m0 m0 ≥ 1

To solve (7.33), we first consider its extension to the whole line Z:
˙̃P(m; t) = w[P̃(m− 1; t) + P̃(m+ 1; t)− 2P̃(m; t)] m ∈ Z (7.35)

The idea is that, on the whole line, we can use Fourier transforms to solve the
differential equation.
To relate a solution of (7.35) to one of (7.33) we use an argument of symmetry.
By definition, we need P̂(0; t) = 0 - which is a condition that is automatically
satisfied by odd functions.
So, let’s take a solution P̃(m; t) of (7.35) and make it odd:

P̃odd(m; t) ≡ P̃(m; t)− P̃(−m; t) (7.36)

This function satisfies (7.33) for all m ≥ 1:

˙̃Podd(m; t) = ˙̃P(m; t)− ˙̃P(−m; t) =
(7.35)

w
[
P̃(m+ 1; t) + P̃(m− 1, t)− 2P̃(m, t)+

− P̃(−m− 1; t)− P̃(−m+ 1; t) + 2P̃(−m; t)
]
=

= w[P̃odd(m+ 1; t) + P̃odd(m− 1; t)− 2P̃odd(m; t)]

and also:

P̃odd(0; t) = P̃(0; t)− P̃(0; t) ≡ 0

If we choose for P̃(m; t) the same initial condition δm,m0 we use for P̂(m; t),
then:

P̃odd(m; t = 0) = δm,m0 − δ−m,m0 ≡ δm,m0 ∀m ≥ 1,m0 ≥ 1

This means that given a solution of (7.35) on the whole line, we can construct
another solution P̃odd(m; t) according to (7.36) that, when restricted to m ≥ 1,
satisfies the equation (7.33) we are interested to solve.
Thus, all we need to solve is (7.35) with P̃(m, 0) = δm,m0 with m0 > 0 as initial
condition, and m ∈ Z. This can be done exactly in d = 1 by using the Fourier
series.
For simplicity, we first take the continuum limit, and then solve. We start by
constructing a pdf P̃(x, t) with x ∈ R as follows:

P̃(x, t) = 1
a

P̃(m, t) x ∈ [ma, (m+ 1)a)

Graphically, P̃(m, t) is the area of the m-th bin, which has a width of a, and so
an height (probability density) of P̃(m, t)/a. In the continuum limit a→ 0+,
P̃(x, t) becomes a smooth function, that can be expanded. In particular:

P̃(m± 1, t) = P̃(x± a, t)a = a
[
P̃(x, t)± aP̃′(x, t) + a2

2 P̃′′(x, t) + . . .
]
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Substituting in (7.35) and ignoring O(a4) terms we get:

˙̃P(x, t) = DP̃′′(x, t) P̃(x, t = 0) = δ(x− x0)

where D = wa2 is fixed in the continuum limit (a→ 0, w →∞), and x0 = m0a.
This is just the diffusion equation, in its most basic case. By Fourier transforming
both sides, we can find the solution on the whole line:

P̃(x, t) = 1√
4πDt

exp
Å
−(x− x0)2

4Dt

ã
To find the solution on the half line we use (7.36):

P̂(x, t) ≡ P̃odd(x, t) = P̃(x, t)− P̃(−x, t) =

=
1√

4πDt

[
exp
Å
−(x− x0)2

4Dt

ã
− exp

Å
−(x+ x0)2

4Dt

ã ]
We can then verify the required properties:

1. Initial condition:

P̂(x, 0+) = δ(x− x0)− δ(x+ x0) = δ(x− x0) ∀x,x0 > 0

2. Boundary condition:

P̂(0, t) ≡ 0 ∀t

3. Probability conservation:∫ ∞
0

P̂(x, t) dx = erf
Å

x0√
4Dt

ã
< 1 ∀t

erf(x) ≡ 2√
π

∫ x

0
e−y

2
dy

So, apparently, probability is not conserved. However, recall that the
original probability conservation (7.32) involves P(m, t), not P̂(m, t). The
integral we just computed is rather the survival probability, i.e. the
probability that the particle is not absorbed in m = 0 at time t.
This can be shown by taking the continuum limit of (7.34):

P(0, t) = 1−
∑
m≥1

P̂(m, t) −−−→
a→0

1−
∫ ∞

0
P̂(x, t) dx ≡ 1−P>(t|m0)

where P>(t|m0) is the survival probability at time t for a particle withi
initial position m0. Thus:

P>(t|x0) = erf
Å

x0√
4Dt

ã
(7.37)

Recall that, for a random walk, the mean square displacement after time
t is:

ξ2(t) ≡ 〈x2〉t = 2Dt
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This defines a characteristic length scale for the random walk, and so we
can rewrite (7.37) as a scaling law depending only on the dimensionless
variable x0/ξ(t):

P>(t|x0) ≡ f

Å
x0
ξ(t)

ã
∼

t−1/2 t� x2
0

2D ≡ τc

1 t� x2
0

2D ≡ τc

where we have used the MacLaurin expansion of the erf function:

erf(x) =
x≈0

2√
π

Å
x− x3

3 +O(x5)
ã

Then using (7.22, pag. 227) we obtain the lifetime distribution (i.e. the
distribution of the time interval required to reach m = 0 for the first time
for a particle starting in x0):

P(t|x0) = − ∂

∂t
P>(t|x0) = − ∂

∂t

2√
π

∫ x0√
4Dt

0
e−x

2
dx =

=
1
t
F

Å
x0
ξ(t)

ã
∼ t−3/2 t� τc

F (x) = 1√
4π
x exp

Å
−x

2

2

ã
�� ��Exercise 7.6.1 (Lifetime distribution with Fisher Log-Series):

(a) Use the exact result (7.21, pag. 227) to determine the lifetime distribu-
tion of species in a system whose stationary distribution is the Fisher
Log-Series, i.e. the probability to find a species with population n0 is
given by:

Pstat
n0 =

α

n0

Å
b

d

ãn0

b < 1, d− b = δ =
1
τc

with α−1 = | ln(1− b/d)|.

(b) Use the result from (a) to determine if there is scaling in the regime
δ → 0+ and t→ +∞ with δ · t fixed. If so, determine the exponents
in the t� τc, and draw a plot of the relevant behaviour.

7.7 The Voter Model
(Lesson 33 of
25/05/20)
Compiled: January
28, 2021

The voter model was originally created in 1975 by Richard A. Holley and
Thomas M. Liggett to describe the evolution of people’s opinions on polytical
parties as consequence of peer pressure.

In its most basic form, each “voter” may choose between two possibilities 0 or Basic voter model
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1, and their beliefs are influenced by their neighbours - meaning that someone
voting 1 that happens to be amongst a group where everyone votes 0 is likely
to change opinion after some time, simply because they hear a lot about 0.
The voter model can be generalized to describe a ecosystem with S species Voter model for

ecosystems(the parties), where each node (person) belongs to one of them, and sits at a
position in a d dimensional lattice. Then a “person changing ideas” corresponds
to a individual of a certain species dying and being replaced by a new organism
of the neighbouring species - or eventually with an individual of an entirely new
species.
To simplify things, let’s focus on only one specific species A. Then we define Spin-like States
the state σx of node x as a spin-like variable:

σx =

+1 if node x is occupied by species A

−1 otherwise

At each timestep n a random node x is selected, and the value of σx is replaced by Dynamics
σy, where y is a randomly chosen nearest neighbour (n.n.) of x (y ∈ 〈x, y〉).
Let wx(σ) be the probability per unit time (i.e. the rate) that spin σx in state
σ is flipped, i.e. that the transition σx → −σx occurs (leaving all other spins
unchanged).
If all the neighbours of x are equal to −σx, then the transition rate is maximum,
and we fix it as wx(σ) !

= 2w, where w is proportional to the system’s “reaction
speed”, i.e. the reciprocal of its characteristic time τc. Conversely, if all
neighbours of x are in the same state σx, then no flip will ever occur: wx(σ) = 0.
For all the in-between cases, we use a linear interpolation, making the spin-flip
rate proportional to the fraction of neighbours of x that disagree with σx. Since
each node in a d-dimensional cubic lattice has 2d neighbours, we arrive to the
following expression for wx(σ):

wx(σ) =
ï
1− 1

2d(nσx − n−σx)
ò
w =

n−σx
d

w (7.38)

where n±σx is the number of n.n. of x with state ±σx.
Note that if σy = σx, then σyσx = +1, and otherwise we have σyσx = −1. So:

n±σx = ±
∑

y∈〈x,y〉
σxσy

And substituting back in (7.38) leads to:

wx(σ) =
[

1− 1
2dσx

∑
y∈〈x,y〉

σy

]
·w (7.39)

Then, similarly to what we did in sec. 6.3, the transition rate from state σ′
to any other state σ can be written as the sum over the necessary spin-flip
transitions:

W (σ|σ′) =
∑
x
wx(σ)δσx,−σ′x

[ ∏
z 6=x

δσ′z ,σz

]
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Figure (7.25) – Example of spin-flip transitions on a d = 2 lattice. The red +1 spin has 1
neighbour agreeing with it (n+1 = 1) and 3 that disagree with it (n−1 = 3). The maximum
possible flip rate is 2w, but since only 3/4 of neighbours disagree, the final rate will be 3w/2,
leading to a transition probability of 3w dt /2. Conversely, the transition probabilities with
no spin-flip will be 1− 3w dt /2.

Let σ be a spin configuration, and denote with σ(x) the configuration resulting
from flipping only spin x of σ, i.e. such that:

σ(x)
x = −σx; σ(x)

y = σy ∀y 6= x

We can then write the system’s Master Equation:

Master EquationṖ (σ; t) =
∑
x

[wx(σ(x))P(σ(x); t)︸ ︷︷ ︸
“Inward” flux

−wx(σ)P(σ; t)︸ ︷︷ ︸
“Outward” flux

] (7.40)

7.7.1 Correlation functions
In order to get some insight on the dynamics, we compute the evolution of the
1 and 2-point correlation functions.

1-point correlation

First, consider the following change of variables, from spin-like (±1) to binary
({0, 1}):

1 + σz
2 =

1 if the chosen species is occupying node z

0 otherwise
(7.41)

The probability that a given species is present at x at time t is given by averaging
the indicator binary variable of “presence” over all nodes:

〈1 + σz
2 〉t =

1 + 〈σz〉t
2
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(Lesson 34 of
27/05/20)
Compiled: January
28, 2021

And its evolution is obtained by differentiating:

d
dt〈σz〉t =

∑
{σ}

Ṗ(σ; t)σz =
(7.40)

∑
{σ}

∑
x
σz[wx(σ(x))P(σ(x); t)−wx(σ)P(σ; t)]

In the first term we exchange σ ↔ σ(x), which is just a reordering of addends
since we are summing over all possible configurations:

=
∑
{σ}

∑
x
wx(σ)P(σ; t)(σ(x)

z − σz) (7.42)

where σ(x)
z is the state of the z-th spin in σ after having flipped the x-th spin.

Clearly, ∀z 6= x we have that σ(x)
z = σz, and for x = z, σ(z)

z = −σz, meaning
that σ(x)

z − σz = −2δx,zσz and so:

= −2
∑
{σ}

P(σ; t)wz(σ)σz = −2〈wz(σ)σz〉t =

=
(7.39)
− �2w
�2d

[
〈σz〉t2d−

∑
y∈〈x,y〉
〈σy〉t

]
︸ ︷︷ ︸

−4rz 〈σz〉t

(7.43)

The term in the square brackets is equal to minus the discrete laplacian of
the “magnetization” 4rz〈σz〉t. For any function f on a discrete d-dimensional
lattice, 4rxf(rx) is defined as follows:

4rxf(rx) ≡
d∑

µ=1
[f(rx + µ̂) + f(rx − µ̂)− 2f(rx)] (7.44)

µ̂ = (0, 0, . . . , 0, 1︸︷︷︸
µ-th entry

, 0, . . . , 0)

where µ̂ are the unit vectors along the d dimensions, and rx is the position of
the x-th spin in the lattice.
Equation (7.43) then becomes:

d
dt〈σz〉t = −

w

d
4rz 〈σz〉t

By suitably rescaling the size of time intervals, we can make w = d/4, leading
to:

4 d
dt〈σz〉t = 4rz〈σz〉t (7.45)

This can be solved by using discrete Fourier transforms.
Let’s consider a hypercubic lattice of size L× · · · ×L and fix the lattice spacing
a ≡ 1. Then the position of spin x is given by a vector rx of integers:

rx = (n1, . . . ,nd)T nµ = 0, 1, . . . ,L− 1 µ = 1, . . . , d

Let’s consider periodic boundary conditions (p.b.c.) so that the system is
fully translation invariant.

244



We then define the transform of a function f on the lattice as follows:

f̃q ≡
∑
rx

frxe
iq·rx q = (q1, . . . , qd)T (7.46)

We want eiq·rx to obey the p.b.c.:

eiq·(rx+µ̂L) = eiq·rxeiqµL
!
= eiq·rx ∀rx,∀µ̂

This is only satisfied if:

eiqµL
!
= 1⇔ qµ =

2π
L
kµ; kµ = 0, 1, . . . ,L− 1 (7.47)

Then note that: ∑
rx

eiq·rx = Ldδdq,0
∑
q
eiq·rx = Ldδdrx,0 (7.48)

which form a sort of orthogonality relation. Thus, multiplying (??) by e−iq·r′
x ,

then summing over q and using (7.48) allows to invert it:

frx =
1
Ld

∑
q
e−iq·rx f̃q (7.49)

Each q is the center of an hypercube of volume (2π/L)d due to (7.47). So, if
we take the thermodynamic limit L→ +∞, q becomes a continuous variable,
and the summation can be replaced by an integral:

1
Ld

∑
q
e−iq·rx f̃q =

1
(2π)d

∑
q

Å2π
L

ãd
e−iq·rx f̃q −−−−−→

L→+∞

∫
B

ddq
(2π)d e

−iq·rx f̃q B = [0, 2π]d

So, if we multiply both sides of equation (7.45) by eiq·rz , sum over rz and use
(??) we get:

d
dtmq(t) = −

λ(q)
2 mq(t)

mq(t) ≡
∑
rz

eiq·rz〈σz〉t

λ(q) ≡ 1
2

d∑
µ=1

(1− cos qµ) =

0 q = 0

> 0 otherwise
(7.50)

which can be solved by separation of variables, leading to:

mq(t) = e−λ(q)tmq(0) (7.51)
mq(t = 0) =

∑
rz

eiq·rz〈σz〉t=0 (7.52)

Finally we invert the Fourier transform with (7.49):

〈σz〉t =
1
Ld

∑
q
e−iq·rzmq(t) =

1
Ld

∑
q
e−iq·rz−λ(q)tmq(0) =

245



=
(7.52)

∑
ry

〈σy〉t=0
1
Ld

∑
q
eiq·(ry−rz)−λ(q)t

︸ ︷︷ ︸
FL(rz−ry)

(7.53)

So we find that 〈σz〉t is obtained by evolving the initial condition 〈σy〉t=0 with
the propagator FL(rx − ry).
In the thermodynamic limit L→ +∞ we get:

lim
L→+∞

FL(x) = lim
L→+∞

1
Ld

∑
q
e−iq·x−λ(q)t =

=
∫
B

ddq
(2π)d exp

(
−iq ·x+

t

2

d∑
µ=1

cos qµ −
d · t
2

)
=

= e−dt/2
∏
µ

∫ 2π

0

dqµ
2π exp

Å
−iqµxµ +

t

2 cos qµ
ã

︸ ︷︷ ︸
Ixµ(t/2)

=

= exp
Å
−dt2

ã d∏
µ=1

Ixµ

Å
t

2

ã
where Ixµ is a modified Bessel function.
Suppose the initial spins σin

y are i.i.d. random variables with the following
statistics:

P(σin
y = +1) = p; P(σin

y = −1) = 1− p (7.54)

Then the initial average is:

〈σy〉t=0 = (+1) · p+ (−1) · (1− p) = 2p− 1

And so (7.52) becomes:

mq(t = 0) = Ldδdq,0(2p− 1)

This makes (7.53) much easier to perform:

〈σz〉t = 2p− 1 ∀t (7.55)

since λ(0) = 0 (7.50). This means that the “magnetization” is conserved on
average: if we repeat the dynamics many times over different configuration
with the same statistics (7.54), then for every t, the average of σz over all these
replicas will be exactly 2p− 1.
This can happen in 3 possible scenarios:

1. In all cases the system reaches an absorbing state, where all spins are
+1 with probability p, and −1 with probability 1− p. In other words, one
species will dominate over the others.

2. The system never reaches an absorbing state, but has at any time a
fraction p of nodes in state +1, and a fraction 1− p of nodes in state −1.
This means that biodiversity is conserved.

3. A mix of the previous two cases.
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2-point correlation

In order to understand which scenario is the right one, we examine the 2-point
correlation function, which for a fully translational invariant system (p.b.c. +
translational invariant initial condition) is always a function of only the distance:

〈σxσy〉t ≡ Gt(rx − ry)

Note that 1 + 〈σxσy〉 is the probability that two nodes at distance rx − ry
belong to the same species, i.e. it is the ecosystem’s β-diversity.
Also, the following holds:

〈σxσx〉 = Gt(0) ≡ 1 ∀x, t

To understand the limiting scenario we can focus just on the limit of the 2-point
correlation function evaluated for nearest neighbours nodes, i.e. for pairs (x, y)
such that ‖rx − ry‖ = 1. In fact, suppose this limit is some constant g:

Gt(rx − ry)
∣∣∣
‖rx−ry‖=1

−−−−→
t→+∞

g

If all nearest neighbours are always occupied by the same species, which happens
in scenario 1, we will have g ≡ 1. Otherwise (scenario 2), g < 1.
We expect (isotropy) that all directions are treated the same, meaning that
Gt(rx − ry = ±µ̂) is independent of µ̂. So, we define:

Dynamics criterionCt ≡ 1−Gt(±µ̂)︸ ︷︷ ︸
Gt(rx−ry=±µ̂)

−−−−→
t→+∞

1− g > 0 scenario 2 (biodiversity)

0 scenario 1 (monodominance)
(7.56)

Before getting lost in technical details in search of an exact solution, let’s develop Heuristics
some intuitive picture of what to expect.
First, note that (7.45) looks like a diffusion equation. In fact, any spin +1 that
is near a opposite spin −1 has a chance to propagate, converting the −1 to a
+1. We can imagine this as a signal that is moving inside the lattice, following
a path that is essentially a random walk. In general, at any given time, there
will be many different “branching paths” in all parts of the lattice.
Let’s focus on only one of them. After t timesteps, the random walk will have a
“length” of t, but a range (st.dev) of

√
t, since it often backtracks. So the entire

explored volume will be (
√
t)d, and in it approximately t nodes are traversed by

that path, meaning that the path density ρ scales as:

ρ ∼ t

(
√
t)d

= t
2−d

2 −−−−→
t→+∞

0 d > 2

∞ d < 2

Thus, at least according this heuristic argument, we can expect that in d > 2 a
species will expand so that its density becomes vanishingly small - meaning that
it interacts weakly with all other species and may survive. In d < 2, however,
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the density increases with time (but clearly can never be infinite), meaning that
species interact strongly and have a high probability of extinction, leading to
cases where only one species dominates over the entire lattice.

The boundary case d = 2 is particular. A more careful argument can be used
to show that ρ −−−→

t→∞
0 also in the d = 2 case. However, as we will show, this

can still lead to monodominance. It can be said that in d ≤ 2 the random walk
is recurrent - in the sense that it visits many times the same nodes - while
in d > 2 it is transient, and has a chance to never come back to the starting
nodes.

The key difference between the two regimes is that in d ≤ 2 different species
tend to segregate (fig. 7.26), interacting only at their boundaries. In d > 2,
instead, species “mix together” and become dispersed (fig. 7.27).

Figure (7.26) – In d ≤ 2, different species are segregated in regions with a high volume, and
all interaction happens at their boundaries. Each of them has a high probability of getting
extinct, and biodiversity is at risk. Note that, in reality, in d = 2 we observe high
biodiversity - the contrary of what the voter model would predict.
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Figure (7.27) – In d > 2, species are “well mixed”, extinction events are rare and
biodiversity is conserved.

So, let’s proceed with the necessary technical computations for the evolution of
the 2-point correlation function:

d
dt〈σxσy〉t =

∑
{σ}

σxσyṖ(σ; t) =
(7.40)

∑
z

∑
{σ}

σxσy[wz(σ(z))P(σ(z); t)−wz(σ)P(σ; t)] =

Again we change σ(z) ↔ σ as we did in (7.42), so that we can write both terms
in the same sum:

=
∑
z

∑
{σ}

P(σ; t)wz(σ)(σ(z)
x σ(z)

y − σxσy) (7.57)

Note that: σ
(z)
x σ

(z)
y = σxσy z 6= x, y

σ
(z)
x σ

(z)
y = −σxσy z = x ∨ z = y

(7.58)

Let’s consider x 6= y, since the x = y case is trivial: 〈σxσx〉 ≡ 1.
Substituting (7.58) in (7.57) leads to:

d
dt〈σxσy〉t = −2[〈wx(σ)σxσy〉t + 〈wy(σ)σxσy〉t] =

=
(7.39)
− �2w
�2d

[
2d〈σxσy〉t −

d∑
µ=1

(〈σyσrx+µ̂〉t + 〈σyσrx−µ̂〉t)

+ 2d〈σxσy〉t −
d∑

µ=1
(〈σxσry+µ̂〉t + 〈σxσry−µ̂〉t)

]
As before, we choose w ≡ d/4 and rewrite the terms in the square bracket by
using the discrete laplacian defined in (7.44), assuming translational invariance:

4 d
dtGt(rx − ry) = 4rxGt(rx − ry) +4ryGt(rx − ry)︸ ︷︷ ︸

4rxGt(rx−ry)

= 24rx G(rx − ry)
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Denoting x ≡ rx − ry this becomes:

2 d
dtGt(x) = 4xGt(x) x 6= 0 (7.59)

with the “boundary condition” Gt(0) ≡ 1 since σ2
x = 1.

When x = 0, Gt(0) is constant, meaning that ∂tGt(x) = 0. So we can rewrite
(7.59) to include also the x = 0 case:

2 d
dtGt(x) = ( 1 − δdx,0 )4x Gt(x)

Evaluating at x = 0 now leads to:

d
dtGt(x = 0) = 0⇒ Gt(x = 0) = Constant = G0(x = 0) = 1

Taking the discrete Fourier transform of both sides we get:

d
dtG̃t(q) = −2 λ(q)G̃t(q) − 1

2 4xGt(x)
∣∣∣
x=0

(7.60)

where λ(q) is the one defined in (7.50).
Unfortunately, now the q are coupled by the blue term, and so we cannot solve
directly this differential equation. To proceed, we use the Laplace transform,
defined as follows for a generic function ft:

f̂(s) =
∫ +∞

0
e−tsft dt (7.61)

Since the Fourier transform acts on the space coordinates an the Laplace
transform on the time one, they commute:

ˆ̃g(q, s) = ˜̂g(q, s)

The Laplace transform of the left hand side of (7.60) gives:∫ ∞
0

dt d
dtG̃t(q)e−st =

by parts
G̃t(q)e−st

∣∣∣∞
0
+ s

∫ ∞
0

dt e−stG̃t(q) =

=
(s>0)
−G̃0(q) + s ˆ̃G(q, s)

where ˆ̃G(q, s) is the correlation function after both the Fourier and Laplace
transforms:

ˆ̃G(q, s) ≡
∫ ∞

0
dt e−stG̃t(q)

And so equation (7.60) becomes:

s ˆ̃G(q, s) = G̃0(q)− 2λ(q) ˆ̃G(q, s)− 1
2 4x Ĝ(x, s)

∣∣∣
x=0

(7.62)

which is (7.59) after the Fourier and Laplace transforms.
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The initial condition G̃0(q) is given by:

G̃0(q) ≡
∑
x
eiq·x〈σ0σx〉t=0 = 1︸︷︷︸

x=0
+
∑
x 6=0

eiq·x
i.i.d.(7.54)︷ ︸︸ ︷
〈σ0σx〉︸ ︷︷ ︸
(2p−1)2

+1 =

= 1 + (2p− 1)2 ∑
x 6=0

eiq·x

Summing and subtracting (2p− 1)2 · 1 we can extend the sum over all x:

= 1− (2p− 1)2 + (2p− 1)2∑
x
eiq·x =

(7.48)
1− (2p− 1)2 + (2p− 1)2Ldδdq,0

(7.63)

All that’s left is to compute 4xĜ(x, s) at x = 0. First we rewrite the Laplace
transformed G, i.e. Ĝ(x, s), as the Fourier anti-transform of ˆ̃G(q, s):

Ĝ(x, s) =
(7.49)

1
Ld

∑
q
e−iq·x ˆ̃G(q, s)

Then we compute the laplacian:

4xĜ(x, s)
∣∣∣
x=0

=
(7.44)

d∑
µ=1

[Ĝ(µ̂, s) + Ĝ(−µ̂, s)− 2Ĝ(0, s)] =

=
1
Ld

∑
q

ˆ̃G(q, s)
d∑

µ=1
(e−iqµ + eiqµ − 2)︸ ︷︷ ︸∑d

µ=1 2(cos qµ−1)=−4λ(q)

= − 4
Ld

∑
q
λ(q) ˆ̃G(q, s) =

≡ − 4
Ld
h(s) (7.64)

h(s) ≡
∑
q
λ(q) ˆ̃G(q, s) (7.65)

Substituting (7.63) and (7.64) back in (7.62) and solving for ˆ̃G(q, s) we get:

ˆ̃G(q, s) =
G̃0(q)−4xĜ(x, s)

∣∣∣
x=0

s+ 2λ(q) =

=
(7.63)
(7.64)

G̃0(q) + 2L−dh(s)
s+ 2λ(q) (7.66)

However, h(s) depends on ˆ̃G(q′, s) ∀q′, so (7.66) is still not the solution!

The trick is to multiply both sides by λ(q) and sum over all q. In this way, the
left side becomes: ∑

q
λ(q) ˆ̃G(q, s) =

(7.65)
h(s) (7.67)
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And the right hand side:

∑
q

λ(q)
s+ 2λ(q) [G̃0(q) + 2L−dh(s)] = h(s) 1

Ld
∑
q

2λ(q)
s+ 2λ(q)︸ ︷︷ ︸
A(s)

+
∑
q

λ(q)
s+ 2λ(q)G̃0(q)

(7.68)

In particular, the last term can be simplified:

∑
q

λ(q)
s+ 2λ(q)G̃0(q) =

(7.63)

∑
q

λ(q)
s+ 2λ(q)

[
1− (2p− 1)2 +

���
���

���(2p− 1)2δdq,0L
d
]

Since λ(0) = 0:

= [1− (2p− 1)2]LdA(s)
2 = LdA(s)2p(1− p)

Equating (7.67) and (7.68) and solving for h(s) leads to:

h(s) = A(s)[h(s) + Ld2p(1− p)]⇒ h(s)
Ld

=
A(s)

1−A(s)2p(1− p) (7.69)

which can be substituted back in (7.66), leading to the complete solution for
ˆ̃G(q, s). (Lesson 35 of

28/05/20)
Compiled: January
28, 2021

However, we would then need to invert both the Laplace and Fourier transform
to get G(x, t), and finally take the limit for t→ +∞ to see what is the right
limiting scenario (monodominance or biodiversity). This can be done, but it is
not really necessary to answer our question.
Luckily, just knowing h(s) (7.65) suffices. In fact, from (7.64) we have:

h(s)
Ld

= −1
4 4x Ĝ(x, s)

∣∣∣
x=0

=
(7.44)
−1

4

d∑
µ=1

[
Ĝ(µ̂, s) + Ĝ(−µ̂, s)− 2 Ĝ(0, s)︸ ︷︷ ︸

1

]
=

=
(7.61)

1
4

d∑
µ=1

∫ ∞
0

dt e−st
[

1−Gt(µ̂)︸ ︷︷ ︸
Ct (7.56)

+ 1−Gt(−µ̂)︸ ︷︷ ︸
Ct

]
=

=
d

2

∫ ∞
0

dt e−stCt ≡
d

2 Ĉ(s)

So h(s) is proportional to the Laplace transform of the quantity Ct we are
interested in. Note that if s→ 0, values of Ct with larger t. So, to understand
the large t limit of Ct we can study3 the behaviour of Ĉ(s) at small s.

So, recall the form of h(s):

h(s)
Ld

=
A(s)

1−A(s)2p(1− p) = d

2 Ĉ(s)

A(s) = 1
Ld

∑
q

2λ(q)+s− s
s+ 2λ(q) =

��Ld

��Ld
− s 1

Ld
∑
q

1
s+ 2λ(q) (7.70)

3∧This argument can be made rigorous by using a Tauberian theorem
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In particular, note that A(s)→ 1 when s→ 0, meaning that h(s) is diverging
for s→ 0. To proceed, we make an expansion:

d

2 Ĉ(s) =

≈1︷︸︸︷
A(s)

1−A(s)2p(1− p) = 2p(1− p)(1−A(s))−1(1 +O(s)) =

=
(7.70)

2p(1− p)
ñ

1
Ld

∑
q

s

s+ 2λ(q)

ô−1

(1 +O(s))

In the continuum limit, the term in the square brackets becomes an integral of
the first Brillouin zone B = [−π, π]d, since λ(q) is periodic in each qµ:

1
Ld

∑
q

s

s+ 2λ(q) −−−−−→L→+∞

∫
B

ddq
(2π)d

s

s+ 2λ(q) (7.71)

Recall that λ(0) = 0, and so it will be small when q → 0. So for small s, the
denominator is small when q → 0, meaning that the integral is dominated by
small values of q.
Thus we expand λ(q) around q = 0:

2λ(q) =
d∑

µ=1
(1− cos qµ) =

qµ≈0
1
2
∑
µ

(q2
µ +O(q4

µ)) = ‖q‖
2

2 +O(q4
µ) (7.72)

and consider (7.71) when s→ 0:
∫
B

ddq
(2π)d

1
2λ(q) ≡ Jd

We use the fact that 1− cosx ≥ x2/4 for |x| < l, where l is the solution of
1− cos l− l2 = 0. Then we split the integral domain B in the region B′ = [−l, l]d
and the rest B −B′:

Jd ≡
∫
B

ddq
(2π)d

1
2λ(q) =

∫
B′

ddq
(2π)d

1
2λ(q) +

∫
B−B′

ddq
(2π)d

1
2λ(q)

≤ 4
∫
B′

ddq
(2π)d

1
‖q‖2︸ ︷︷ ︸

<∞if d > 2

+
∫
B−B′

ddq
(2π)d

1
2λ(q)︸ ︷︷ ︸

<∞∀d since inf
q∈B−B′

λ(q) > 0

To prove that the first term is finite for d > 2 we can use polar coordinates in d
dimensions:∫
B′

ddq 1
‖q‖2

≤
∫
‖q‖<2l

ddq 1
‖q‖2

=
∫

dΩd︸︷︷︸
d-dim
spherical
surface

∫ 2l

0
qd−3 dq <∞ if d− 2 > 0

Thus, if d > 2, Jd <∞, meaning that when d > 2 and s ≈ 0:

1
Ld

∑
q

s

s+ 2λ(q) −−−−−→L→+∞

∫
B

ddq
(2π)d

s

s+ 2λ(q) = sJd(1 + o(s))
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And taking the reciprocal:

Ĉ(s) =
∫ ∞

0
e−stCt dt = 4p(1− p)

dJd

1
s

(1 + o(s)) d > 2 (7.73)

Suppose that:

lim
t→+∞

Ct = C∞

Since 0 < Ct ≤ 1 (7.56), we have:

Ĉ(s) =
∫ ∞

0
e−tsCt dt =

z=ts

1
s

∫ ∞
0

e−zCz/s dz ≈
s≈0

1
s
C∞ (7.74)

because: ∫ ∞
0

e−zCz/s dz −−−→
s→0

∫ ∞
0

e−zC∞ dz = C∞

due to the Lebesgue dominated convergence theorem.

Finally, substituting (7.74) in (7.73) for s ≈ 0 leads to:

C∞

�s
=

4p(1− p)
dJd

1
�s
⇒ C∞ =

4p(1− p)
d · Jd

> 0 d > 2

Recalling the definition of Ct (7.56), this proves that, for d > 2, the system
tends to a state with many species “well mixed” together (biodiversity), as in
fig. 7.27.

If d < 2, the integral in (7.71) is still dominated by the behaviour of λ(q) at
small q, but in a rather different way. By using the expansion (7.72) we get:
∫
B

ddq
(2π)d

s

s+ 2λ(q) ≈(7.72)
s
∫
B

ddq
(2π)d

1
s+ ‖q‖2/s

=
q=x

√
s
sd/2

∫
B√
s

1
1 + ‖x‖2/2

ddx
(2π)d =

=
s≈0

sd/2
∫

Rd

ddx
(2π)d

1

1 + ‖x‖2
2︸ ︷︷ ︸

Kd

(1 + o(s))

where the integral Kd converges in d < 2. Then for Ĉ(s) is proportional to the
reciprocal:

Ĉ(s) = 4p(1− p)
Kdd

s−d/2(1 + o(s))

which is the Laplace transform of:

Ct =
4p(1− p)
dKd

Γ
Å
d

2

ã
t
d
2−1 −−−−→

t→+∞
0 d < 2

In fact, it can be shown that:∫ ∞
0

e−stt
d
2−1 dt = s−

d
2 Γ
Å
d

2

ã
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Since Ct −−−→
t→∞

0 for d < 2, the final scenario will be the one where a single
species occupies all the lattice (monodominance).

Finally, for the d = 2 case we proceed similarly:
∫

[−π,π]2
d2q

s

s+ 2λ(q) ≈s≈0
s
∫

[−π,π]2
d2q

1
s+ ‖q‖2/2

=
q=x

√
s
s
∫
‖x‖<π/

√
s

d2x

1 + ‖x‖/2 =

= 2πs
∫ π√

s

0

x dx
1 + x2/2 = 2πs ln

Å
1 + π2

2s

ã
=

≈ 2πs| ln s|
Å

1 +O

Å 1
| ln s|

ãã
∝ 1
Ĉ(s)

And its Laplace anti-transform is proportional to:

Ct ∝
1

ln t

In fact: ∫ ∞
0

e−st
1

ln t dt =
st=z

1
s

∫ ∞
0

e−z

ln z − ln s dz =

=
s≈0

1
s| ln s|

∫ ∞
0

e−z

1 + ln z
| ln s|

dz ≈ 1
s| ln s|

since by the Lebesgue’s dominated convergence theorem:

lim
s→0

∫ ∞
0

e−z

1 + ln z
| ln s|

dz =
∫ ∞

0
e−z dz = 1

At the end, Ct ∝ 1/ ln t −−−−→
t→+∞

0, and so also in the d = 2 case the model
predicts a scenario of monodominance. However, Ct goes to 0 very slowly, so
if the system’s timescale is long enough, we can still observe (temporarily) a
scenario of biodiversity.

In summary:

Ct ∼
t�1/w


C∞ d > 2 (Biodiversity)

1
ln t d = 2 (Monodominance)

t
d
2−1 d < 2 (Monodominance)

(7.75)
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�� ��Exercise 7.7.1 (Mean Field for Voter Model):

Consider a voter model where each node can interact with every other.

1. Determine the transition rateW (n+ 1|n) (n→ n+ 1) andW (n− 1|n)
(n→ n− 1).

2. Write the Master Equation P(n; t) for the probability to have a species
with population n at time t.

3. Calculate 〈n〉t and 〈n2〉t.

7.7.2 Final Remarks
The voter model we just examined is non-parametric - the only parameter we
inserted is w, which is just the reciprocal of a timescale, and so does not have
any qualitative impact on the dynamics. Nonetheless, we see some scaling
behaviour, for example for the 2-point correlation function (7.75), which is
typical of systems near criticality.
So, in a sense, the voter model “needs no tuning” to be near a critical point -
which is exactly what happens in natural systems.

7.8 Contact Process
The last model we consider is the Contact Process, originally proposed by T.
E. Harris as a toy model for describing an epidemic. It is a sort of “Ising model”
for describing dynamical transitions in non-equilibrium systems.

As usual, we consider nodes x ∈ Zd in a d-dimensional cubic lattice. Each node
can be either healthy (σx = 0) or infected (σx = 1):

σx =

1 if node x is infected

0 if node x is healthy

The dynamics is given by the following rules:

• Infection. Infected nodes propagate the infection to their nearest neigh-
bours at a rate λ/2d.

• Recovery. Infected nodes recover at a unit rate, and are immediately
susceptible to a re-infection.

Figure (7.28) – Example of evolution for a d = 1 contact process during a single timestep.
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The state where every node is healthy is an absorbing state, since nobody
will ever get infected again. On the other hand, the state where everyone is
infected is not absorbing, as infected individuals can recover.
So, in the limit t→ +∞, the system can be in one of two different scenarios,
depending on the choice of λ:

1. Non-active phase. The absorbing state is reached, meaning that the
epidemic “becomes extinct”.

2. Active phase. The epidemic persists with a constant density of infected
nodes.

Note that the second scenario can happen only on a infinitely large system
(thermodynamic limit), since for any finite number of nodes there is a always a
non-zero probability for all nodes to recover at the same time.
In the limit t → +∞, this event will happen with certainty, and so the only
possible scenario is the first one. What it’s interesting, is then to compute the
time needed to reach the absorbing state - which is expected to scale with the
number of nodes. The exact form of this scaling depends on λ. It can be shown
that, for a λ > λc, the extinction time scales exponentially in the number N of
nodes, but for λ ≈ λc it scales according to a power law.

7.8.1 Infinite range model
Let’s consider a mean field version of the model, where the population is “well
mixed”, meaning that each individual is nearest neighbour with every other
node.
Then, denoting with N the total number of nodes and with n the number of
infected ones, the Master Equation is that of a birth-death process:

Ṗ(n; t) = b(n− 1)P(n− 1; t) + d(n+ 1; t)− (b(n) + d(n))P(n; t) n ≥ 0
(7.76)

with d(N + 1) = b(−1) ≡ 0 and “absorbing boundaries” P(−1; t) = P(N +
1; t) = 0
b(n) is the rate at which new people get infected (transition n→ n+ 1). Each
pair of susceptible-infected nodes contributes to b(n) with a rate λ/(N − 1),
since N − 1 is the number of nearest neighbours of each node. As there are
n · (N − n) possible pairs (each of the n infected can spread the illness to each
of the N − n healthy ones), we get:

b(n) ≡ W (n+ 1|n) = λ

n− 1n(N − n) (7.77)

On the other hand, d(n) is the rate at which infected recover (transition
n→ n− 1). Each infected has a unit rate of recovery, and there are n infected,
meaning that:

d(n) ≡ W (n− 1|n) = n (7.78)
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The evolution of the average number of infected nodes 〈n〉t at time t is given
by:

d
dt〈n〉t =

N∑
n=0

Ṗ(n; t)n =

=
(7.76)

N∑
n=0

n[b(n− 1)P(n− 1; t) + d(n+ 1)P(n+ 1; t)− (d(n) + b(n))P(n; t)] =

Then we shift indices in the first and second term, so that b(n− 1)→ b(n) and
d(n+ 1)→ d(n):

=
N−1∑
n=−1

(n+1)b(n)P(n; t) +
N+1∑
n=1

(n−1)d(n)P(n; t)−
N∑
n=0

n(d(n) + b(n))P(n; t) =

Since b(N) = b(−1) = d(0) = d(N + 1) = 0 we can make all sums go from 0 to
N , and collect everything together:

=
N∑
n=0

[
(�n+ 1)b(n)P(n; t) + (Zn− 1)d(n)P(n; t)− n(HHHd(n) +���b(n))P(n; t)

]
=

=
N∑
n=0

[b(n)− d(n)]P(n; t) = 〈b(n)− d(n)〉t =
(7.77)
(7.78)

λ

N − 1〈n(N − n)〉t − 〈n〉t

Thus we arrive to:
d
dt〈n〉t =

λ

N − 1〈n(N − n)〉t − 〈n〉t (7.79)

For large N , λ/(N − 1) ≈ λ/N . Then we divide both sides by N , and define
the density of infected ρ(t) ≡ 〈n/N〉t:

ρ̇ = λ〈 n
N

(
1− n

N

)
〉t − ρ = (λ− 1)ρ− λ〈

( n
N

)2
〉t (7.80)

To solve (7.80) we need to determine how 〈(n/N)2〉t evolves, but this would
require knowing 〈(n/N)3〉t and so on, leading to an entangled hierarchy of
differential equations.

To proceed, we use a mean field approximation, factorizing the average:

〈
( n
N

)2
〉t ≈ 〈

n

N
〉2t = ρ2(t) (7.81)

However, note that this introduces a systematic error in our model, since:

〈
( n
N

)2
〉t − 〈

n

N
〉2t =

(
Var n

N

)
t
≥ 0 (7.82)

Substituting (7.81) in (7.80) leads to:

ρ̇ = (λ− 1)ρ− λρ2 (7.83)

Let’s start by analyzing the stationary state. We have two cases:
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• λ < 1 ≡ λc. In this case all the right hand side of (7.83) is negative,
meaning that ρ is always decreasing. Since ρ ≥ 0, the final (stationary)
state will be ρ∗ = 0.

Analytically, if we set ρ̇ !
= 0:

ρ∗ : (λ− 1)ρ∗ − λ(ρ∗)2 !
= 0⇔ ρ∗ = 0 ∨ ρ∗ =

λ− 1
λ

< 0

and the negative solution is unphysical.

Due to the form of (7.83), the absorbing state ρ = 0 will be reached
exponentially fast (fig. 7.29a).

• λ > 1 ≡ λc. In this case we still have ρ∗ = 0, but also ρ∗ = (λ− 1)/λ ≡
ρ̄ > 0. Studying the sign of (7.83), we have that for any initial ρ0 ∈ (0, 1],
the final stationary state will be ρ̄, and only for ρ0 = 0 we will have ρ∗ = 0
instead (fig. 7.29b).

This is true only for an infinite system, where the fluctuations (7.82) are
null. For any finite system, ρ will initially tend to ρ̄, but given a sufficient
time, some stochastic fluctuation will cause it to reach 0, where it will
remain forever.

(a) λ < 1 ≡ λc (b) λ > 1 ≡ λc

Figure (7.29) – Evolution of the infected density ρ below and above the critical rate λc.
For λ < λc = 1, the epidemic becomes extinct, but for λ > λc it “survives” forever with a
constant density of infected ρ̄ (assuming an infinite system).

We can then explicitly solve (7.83) by separation of variables, with the initial
condition ρ(0) ≡ ρ0:

ρ(t) = ∆
λ+ ∆−λρ0

ρ0
e−∆·t

∆ = λ− 1 ≡ λ− λc 6= 0

For times well above the characteristic timescale (t� |∆|−1 ≡ τc), we see that
the density approaches the stationary solution exponentially fast:

ρ(t) ∼
t�τc

e−|∆|t ∆ < 0

ρ(t)− ρ̄ ∼
t�τc

e−|∆|t ∆ > 0

The system’s phase diagram is shown in fig. 7.30.

259



Figure (7.30) – Phase diagram for the mean field contact process. The stationary density ρ̄
is 0 for λ < λc, and starts to approach 1 when λ > λc.

In particular we observe, in the mean field approximation:

ρ̄ ∝ ∆β β = 1; ∆ > 0

and the system’s timescale is τ = |∆|−1.
The contact system behaves similarly to the Ising Model, with the stationary
density ρ̄ assuming the role of the magnetization m. Some key differences are:

• In the Mean Field IM, the scaling exponent is β = 1/2 and not 1.

• This is a dynamical transition, not an equilibrium one. In fact, the
contact process is never at equilibrium (there are no Boltzmann weights,
nor detailed balance). Also, when λ < λc, the stationary state is ρ̄ = 0 -
without any kind of fluctuation. In this case, the system experiences no
dynamics at all - which is quite different from what happens in the high
temperature phase of the IM.

All that’s left is the ∆ = 0 case, when λ = λc = 1. Equation (7.83) becomes:

ρ̇ = −ρ2

which can be immediately integrated, leading to:

ρ(t) = ρ0
1 + tρ0

∼
t�τc

t−1

which is a power-law behaviour. In particular, note that ρ(t) approaches ρ̄ much
more slowly than in all other cases, where the decay is exponential. This is
again the phenomenon of critical slowing down.

7.8.2 Variation: infection from outside
(Lesson 36 of
01/06/20)
Compiled: January
28, 2021

Suppose that healthy individuals can become infected with a constant rate
h 6= 0 independent on the state of their neighbours (i.e. they are infected from
an “external field”). The new rate for the transition n→ n+ 1 becomes:

bh(n) = b(n) + (N −m)︸ ︷︷ ︸
N. of healthy

h
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The evolution of the average number of infected is then:

d
dt〈n〉 : t = 〈bh(n)− d(n)〉t = 〈b(n)− d(n)〉t + h(N − 〈n〉t)

And (7.83) gains an additional term:

dρ
dt = (λ− 1)ρ− λρ2 + h(1− ρ)

In this case, ρ∗ = 0 is not a stationary state anymore. Instead, we have a
unique stationary state:

ρ̄ =
1

2λ [λ− h− 1 +
»

(λ− h− 1)2 + 4λh]

At the critical point, λ = 1, with h > 0 and small:

ρ̄ =
1
2[−h+

√
h2 + 4h] = h1/2(1 +O(h)) ∼ h1/δ δ = 2

which is again a power-law, similar to the one we found in the mean field IM
(where, however, δ = 3).

7.8.3 Spatial effects
If we want to study spatial effects, we need to make nodes only locally connected.
Then, for each node x:

• The transition 1→ 0 (recovery) happens with a fixed rate of w−x (σ) = 1.

• The transition 0→ 1 (infection) happens with a rate proportional to λ
and the fraction of infected nearest neighbours:

w+
x (σ) = λ

2d
∑

y∈〈x,y〉
σy

We can merge both cases as follows:

wx(σ) = σx · 1 + (1− σx) · λ2d
∑

y∈〈x,y〉
σy (7.84)

Here wx(σ) is the rate of x flipping state. If σx = 0 (healthy), then only the
second term will matter, and if σx = 1 (infected) only the first one is non-zero.
As we did in studying the Ising Model dynamics, we define the state σ(x) as
equal to σ with the x-th state flipped:

σ(x)
y =

σy y 6= x

1− σx y = x
y = 1, . . . ,N

With this notation we can write the system’s Master Equation as follows:

Ṗ(σ; t) =
∑
x

[wx(σ(x))P(σ(x); t)−wx(σ)P(σ; t)] (7.85)
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The evolution of the fraction of infected can be computed as:

d
dt〈σz〉t =

∑
{σ}

Ṗ(σ, t)σz =
(7.85)

∑
x

∑
{σ}

σz[wx(σ(x))P(σ(x); t)−wx(σ)P(σ; t)] =

Exchanging σ ↔ σ(x) in the first sum, we can merge the two terms:

=
∑
{σ}

P(σ; t)
∑
x
wx(σ) (σ(x)

z − σz)︸ ︷︷ ︸
=0 if x 6= z

= 〈wz(σ)(1− 2σz)〉t =

=
(7.84)
〈
(
σz +

λ

2d(1− σz)
∑

y∈〈x,y〉
σy

)
(1− 2σz)〉t =

=
σ2
z=σz
−〈σz〉t +

λ

2d〈(1− σz)
∑

y∈〈x,y〉
σy〉t

Using the definition of a discrete laplacian (7.44, pag. 242) we have:∑
y∈〈x,y〉

σy = 4zσz + 2dσz

And we approximate by factorizing the average:

d
dt〈σz〉 ≈ −〈σz〉t +

λ

2d〈1− σz〉t(4z〈σz〉t + 2d〈σz〉t)

Denoting 〈σz〉t ≡ ρ(z; t):

ρ̇ = −ρ+ λ

2d
[
(1− ρ)∇2ρ+ 2d(1− ρ)ρ

]
= (λ− 1)ρ− λρ2 +

λ

2d(1− ρ)∇2ρ (7.86)

Comparing with the mean field equation (7.83), the only additional term is
the one with the laplacian, which gives the equation a diffusion-like nature.
Note that the diffusion rate is regulated by (1− ρ), meaning it is constant when
ρ ≈ 0, and vanishes when ρ→ 1, since when almost everyone is infected, the
number of pairs of neighbouring susceptible-infected nodes are few.
Again we have two cases:

• If ∆ = λ− 1 < 0, then the system will tend towards the absorbing state
ρ∗ = 0. Let’s denote ρ ≡ ρ− and study the dynamics near stationarity,
i.e. when ρ− ≈ 0. Equation (7.86) becomes:

ρ̇− = ∆ · ρ− +D−∇2ρ− D− ≡
λ

2d

• If ∆ = λ− 1 > 0, the stationary state will be ρ̄ = +∆/λ. Let’s denote
ρ(x; t)− ρ̄ ≡ ρ+(x; t), equation (7.86) becomes:

•

ρ̇+ = −∆ · ρ+ − λρ2
+ +D+(1− ρ̄− ρ+)∇2ρ+ =

≈ −∆ · ρ+ +D+∇2ρ+ D+ ≡ D−(1− ρ̄)
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Thus in both cases we have to solve an equation of the form:

ϕ̇(x, t) = −aϕ+ b∇2ϕ a, b > 0

To solve it, we use the Fourier transform:

ϕ̃(p, t) =
∫

Rd
eip·xϕ(x, t) ddx ϕ(x, t) =

∫
Rd
e−ip·xϕ̃(p, t) ddp

(2π)d

Transforming both sides we get:

˙̃ϕ(p, t) = −(a+ b‖p‖2)ϕ̃(p, t)

which can be immediately integrated:

ϕ̃(p, t) = e−(a+b‖p‖2)tϕ̃(p, 0) = e−(a+b‖p‖2)t
∫

Rd
ddx′ eip·x

′
ϕ(x′, 0)

And inverting the transform leads to:

ϕ(x, t) = e−at
∫

Rd
ddx′

∫
Rd

ddp
(2π)d e

−ip·(x−x′)−(a+‖p‖2b)tϕ(x′, 0) =

= e−at
∫

Rd

ddx′

(4πbt)d/2
exp
Ç
−‖x−x

′‖2

4bt

å
ϕ(x′, 0)

Adapting to the two cases:

ρ±(x, t) =
∫

Rd
ddx′

e−|∆|t exp
Ç
−‖x−x

′‖2

4D±t

å
(4πD±t)d/2︸ ︷︷ ︸
G±(x−x′,t)

ρ±(x′, 0)

where G±(x−x′; t) is the propagator that makes the initial condition “evolve”.
If we choose an initial condition with only one infected individual, i.e. ρ±(x′, 0) =
δd(x′), the epidemic will spread, but also dampen over time (the area below
the curve vanishes):

ρ±(x, t) = G±(x, t) =
e−|∆|t exp

(
− ‖x‖

2

4D±t

)
(4πD±t)d/2

(7.87)

Figure (7.31) – Example of evolution for a system with a single initial infected individual.
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A simulation in d = 1 of the contact process for different values of λ is shown
in fig. 7.32.

Figure (7.32) – Examples of evolution

Let ρ(r, t) be the probability that a node at position r is infected at time t,
given the fact that there was an infected at r = 0 at t = 0:

ρ(r, t) = 〈δσr(t),1〉 = 〈σr〉t

It can be shown numerically that ρ(r, t), near criticality λ . λc, ∆ = λ− λc ≈
0−, scales according to a power-law:

ρ(r, t|∆) = t−ψF

Å
r

tz/2, t|∆|v‖

ã
where F is a function of two (non-trivial) dimensionless variables, where τ ∝
|∆|−v‖ ≡ ξ‖ is a characteristic critical timescale, and ξ⊥ ∝ τ z/2 ∝ |∆|−v⊥ is a
characteristic critical spatial scale, with v⊥ = z/(2v‖).

When λ < λc, equation (7.87) gives:

ρ±(r, t) =
e−|∆|t exp

(
− ‖r‖

2

4D±t

)
(4πD±t)d/2

(7.88)

and so we find the mean field values of the exponenents ψ = d/2, v‖ = 1, z = 1
and v⊥ = 1/2.
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�� ��Exercise 7.8.1 (MaxEnt and Networks):

Let G be a network (i.e. a graph), with a certain number of vertices connected
by edges. Suppose we have measured some property of G, e.g. the number of
edges m(G), and we want to find the most unbiased distribution of networks
P(G) that is compatible with our observations.
Explicitly, suppose that we know the average of x:

〈x〉 =
∑
G

P(G)x(G) (7.89)

Then as a consequence of the MaxEnt principle, we choose P(G) such that
its entropy S(G) is maximum:

S(G) = −
∑
G

P(G) ln P(G)

with P(G) subject to the constraint (7.89) and the normalization condition:
∑
G

P(G) !
= 1

Using the method of Lagrange multipliers leads to:

∂

∂P(G)

ñ
−
∑
G

P(G) ln P(G)− θ
∑
G

x(G)P(G)− α
∑
G

P(G)
ô

!
= 0

with solution (as we’ve already seen):

P(G) = 1
Z(θ)e

−θx(G) Z(θ) = eα+1 =
∑
G

e−θx(G) (7.90)

As an example, let x(G) = m(G) be the number of edges. For each pair of
vertices (i, j) ∈ G we define a binary variable:

σij =

1 if i is connected to j

0 otherwise

The set of all σij defines the entire graph G = {σij : i 6= j; i, j = 1, . . . ,n}.
In particular, the number of edges can be written as:

m(G) ≡ m(σ) =
∑
i<j

σij

Substituting in (7.90) leads to:

P(G) ≡ P(σ) =
exp

(
−θ∑i<j σij

)
Z(θ)

Z(θ) =
∑
{σ}

exp
(
−θ

∑
i<j

σij

)
=
∏
i<j

∑
σij

e−θσij = ( 1︸︷︷︸
σij=0

+ e−θ︸︷︷︸
σij=1

)(
n
2)
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where: Ç
n

2

å
=
n(n− 1)

2 = Number of pairs (i, j)

We can also define a sort of free energy:

F (θ) = − lnZ(θ) = −
Ç
n

2

å
ln
Ä
1 + e−θ

ä
The average number of edges is given by:

〈m〉 =
∑
{σ}

P(σ)
∑
i<j

σij = −
∂

∂θ
lnZ(θ) =

=

Ç
n

2

å
1

1 + eθ︸ ︷︷ ︸
P

where P is the probability that an edge is present:

〈σij〉 = P

The probability that G has m edges is given by:

P(m) = e−θm

Z(θ) =
e−θm

(1 + e−θ)(
n
2)

= Pm(1− P )(
n
2)−m

which is what we would expect for an Erdos-Renyi graph (bernoullian graph).
The degree of a node i is defined as:

Ki(G) =
∑
j

σij

And we can compute its statistics:

P(Ki(G) = a) = 〈δKi(G),a〉

We can compute it by using a generating function:

G(α) =
∞∑
k=0

e−αaP(Ki(G) = a) = 〈e−αKi(G)〉 =

=
1

Z(θ)
∑
{σ}

exp
Ç
−
∑
m<n

θmnσmn

å
θmn ≡ θ+ α(δmi + δni)

The sum over all states evaluates to:
∑
{σ}

exp
Ç
−
∑
l<k

θlkσlk

å
=
∏
l<k

∑
σlk

e−θlkσlk =
∏
l<k

(1 + e−θlk)

Thus:

G(α) =
∏
l<k

1 + e−θlk

1 + e−θ
=

Ç
1 + e−θ−α

1 + e−θ

ån−1

=
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=
n−1∑
a=0

Ç
n− 1
a

å
e−a(θ+α)

(1 + e−θ)n−1

And then:

P(Ki(G) = a) =
Ç
n− 1
a

å
e−aθ(1 + e−θ)−(n−1) = (7.91)

=

Ç
n− 1
a

å
P a(1− P )n−1−a (7.92)

whic is a binomial distribution, with mean:

〈Ki(G)〉 = (n− 1) e−θ

1 + e−θ
= P (n− 1) ≡ c

Using c we can then rewrite (7.91):

P(Ki(G) = a) =
Ç
n− 1
a

åÅ
c

n− 1

ãa Å
1− c

n− 1− a

ãn−1−a

−−−−−→
n→+∞
a fixed

cae−c

a!
≡ Poissonc(a)
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