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Introduction

0.1 Introduction
(Lesson 1 of
28/09/2020)
Compiled: January
1, 2021

Game theory is the field that studies how to model interactions between
agents. In this framework, all players are supposed to follow some fixed
rules and are interested in certain outcomes, which however depend not only
on individual actions, but also on the choices of other agents. Game theory
seeks the optimal decision plan in such an environment, taking into account
the interactions with the other players: this is why it is also sometimes called
Interaction Decision Theory. This is quite different from other mathematical
models of agents, such as in Classical Decision Theory, where problems are
single-person, i.e. such that success solely depends on the individual’s ability,
and every uncertainty derives either from stochastic variables or approximations.

Historically, the first formal theorem in the theory of games was proved by
E. Zermelo in 1913, and originally involved the game of Chess. One of the
core books was “Theory of Games and of economic behavior”, published in
1944 by von Neumann and Morgensten, and developed the framework of zero-
sum games, where the interests of different players are strictly opposite (the
advantage of one is the disadvantage of the other, like in chess). Then, some
other fundamental results were derived by John Nash, concluding the basics of
the theory.

The first application of game theory was in economical settings, in all levels
ranging from micro (trading), intermediate (markets) and macro (countries and
monetary systems). Nowadays, game theoretical models are applied in various
fields, such as psychology (peoples are interacting agents), social sciences (laws
are like rules of a game), political sciences (choices of parties), biology (compe-
tition of species), computational intelligence and network systems (distributed
systems, multi-agent algorithms).

0.2 Decision problems
The first kind of problems we will consider are decision problems, where we
want to choose the best action to achieve a certain goal.
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To formalize this, we consider three elements:
• Actions (A)

• Outcomes of each action

• Preferences: a ranking of outcomes, describing which are preferable
than the others

For example, suppose the goal is to arrive at university. To do this, we could
go by foot, by bike or by bus. Each of these three actions (belonging to the set
A) has consequences, namely:

• going by foot is free, but takes more time, risking arriving late at the
lecture;

• going by bus is faster, but costs money (for the ticket);

• going by bike is sufficiently fast and it is free.
Here we prefer arriving early and not spending money. With this formulation,
it is clear that in this case the best choice is taking the bike.
Formally, if A is a set of alternatives, with |A| ≥ 2 (otherwise there is no choice
to be made), we define a preference to be a binary relationship < on A. More
precisely:

• If a, b ∈ A are two elements of A, writing a < b means that a is ranked
above b

• The relation < is reflexive (a < a) and antisymmetric (a < b⇔ b 4 a).
A preference is said to be complete if it ranks all elements of A, i.e. ∀a, b ∈ A,
then either a < b or b < a (or both).
It is transitive if, for every three actions ∀a, b, c ∈ A, if a < b and b < c then
a < c. This property implies that there can be no loops in the ranking, and that
there is a clear best choice (or a set of choices that are equivalent and better
than all the others) in A.
If < is both complete and transitive, then it is a total order relation, and we
say that the player adopting such preferences is rational.
Utility functions can be used to map inputs q (e.g. action or goods) to a Utility functions
certain payoff (“measure of goodness”) u(q) ∈ R. Note that, in this way, a
rational preference ranking < on q is mapped in the order relation of real
numbers ≤. In other words, if we prefer q over q′, then u(q) > u(q′).
If q ∈ R indicates a countable good and u(q) is differentiable, then usually u(q)
is an increasing function (having more goods is better) and mathematically
u′(q) ≥ 0 and u′′(q) ≤ 0.
Since ≤ is a total order relation on R, using utility functions can work only for
rational players: it is needed to have a complete transitive ranking of actions to
be able to have utility functions! Formally, we say that u represents < if:

a < b⇔ u(a) ≥ u(b) ∀a, b ∈ A

And then, we can state that the preferences that can be represented are only
the ones of rational players:
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Theorem 0.2.1. On a finite set A, a preference < can be represented by a
utility function u if and only if it is rational.

Proof. ⇒ : If < can be represented, then it must be rational, since ≥ defines a
total order relation on R, and a < b⇔ u(a) ≥ u(b) ∀a, b ∈ A implies that
< must be a total order relation also on A, and thus rational. Conversely (⇐),
given a rational preference, a suitable utility function can be defined as:

u(a) = |{b ∈ A : a < b}|

In other words, the utility of a ∈ A is the number of other elements b ∈ A that
are less preferable than a. Intuitively, this simply means to put all the elements
of a in an ordered sequence (a, b, c, . . . ) using < (which is possible since by
hypothesis < is rational) and then index them with the natural numbers: a→ 0,
b→ 1, c→ 2. The indexing function u that maps each element to its position
in the ordered list is the required utility function.

�

Rationality is a very strong requirement: in practice it means that all players
act for their own good only (otherwise they could take “bad” outcomes out of
altruism), and are aware of all consequences of their acts (if not, they could
make things worse by error), and also of all the possible actions that can be
taken.
It can be argued that assuming rationality is foolish: obviously humans are
not rational, they can act crazy, make mistakes or simply be generous. While
the point effectively becomes irrelevant in all applications that do not involve
humans (e.g. algorithms, autonomous agents, etc.), the real actual problem
is, at the end, the accuracy of a model. So, we can pragmatically assume
rationality to prove results, and then tweak the models so that they correctly
account for not rational behaviors (for example by inserting more parameters
in the utility function) and are closer to reality.

One possible way to graphically represent decision problems is through decision
trees. Basically, we start with the player at the root of the tree. Each possible
decision is represented as a different branch that can be taken, which leads to
an outcome, represented by its utility (on the leaves).

Figure (1) – Example of a decision tree. Here the goal is to have a nice dinner. For the first
dish, the player P can choose between ravioli (r) or spaghetti (s), with respectively the
utilities of u(r) = 5 and u(1) = 1 (they prefer ravioli).

Successive decisions form deeper layers in the decision tree:
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Figure (2) – Here we add another possible choice: fish (f) or vegetables (v)

But at any time we could always group each possible path in only one level, by
simply listing every combination:

Figure (3) – Consecutive choices can always be collapsed in tree with a single layer.

In this simple setup, it is easy to choose the best possible choice. Here, however,
we are dealing only with one player: things get much more interesting when we
add multiple agents!

0.2.1 More players
(Lesson 2 of
01/10/2020)
Compiled: January
1, 2021
"This section is
just a draft!

Let’s add more players to the game. In general, each player does not know
the strategy being used by other ones, and so must be able to make decisions
under uncertainty.
A way to account for that is through the framework of lotteries, a generalization
of decision problems where outcomes are stochastic in nature. For example,
consider an investor who can choose how much money to invest in a certain
market, and, depending on the ... probabilities
Let’s formalize this by denoting with X = {x1,x2, . . . ,xn} the finite set of
outcomes. Then we define P to be the set of all probability distributions
p : X → [0, 1] on X, which are normalized:∑

x∈X
p(x) = 1

We call P the set of lotteries.
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Figure (4)

Probabilities are conditional on actions a ∈ A, since outcomes are influenced
on the actions that a player takes. Note that lotteries are a generalization of
deterministic decision problems, which can be in fact modelled as degenerate
lotteries, since here p(xi|a) = 1 for a given i, and 0 for all the others, i.e. there
is no uncertainty.

In the language of game theory, all randomness is represented as the consequences
of the choices of another player, called nature.

Figure (5) – Consider an investor who can choose to invest in two different fields g or r.
The final outcome depends on external factors that are not under their control, and which
can be represented as “nature’s choices”, which are hidden to the player.

Lotteries can be extended to a continuous space of events, by simply replacing
discrete probabilities with cumulative distribution functions.
Suppose, for example, that choices are represented by real numbers, e.g. an
amount of money to be invested. Then X = [x0,x1] is a continuous interval
and the lottery is a CDF F : X → [0, 1], where F (x̂) = P[x ≤ x̂].

How can we define rationality in such a framework? Consider, for example,
the following case:

Figure (6)

Here, taking r could lead to the highest reward, but also to the lowest one (risk
is high). On the other hand, g leads to more “moderate” outcomes, but also a
lower maximum gain.
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One simple way to decide which branch is best is to take expectation values.
This was first proposed in the “Expected utility theory” developed by von
Neumann and Morgenstern (1944). We define the expected payoff from lottery
p over X = {x1,x2, . . . ,xn} such that pi = P[x = xi] as follows:

E[u(x)|p] =
∑
x∈X

p(x)u(x)

So the idea is to choose the actions that maximize the expected outcome.
Formally, we extend the correspondence between preference relation < and
utility functions to the stochastic case by inserting expected values. Specifically,
we say that < on P is said to be represented by a von Neumann-Morgenstern
utility function u : X → R if and only if:

p < q ⇔ u(p) ≡
∑
x∈X

u(x)p(x) ≥
∑
x∈X

u(x)q(x) ≡ u(q) ∀p, q ∈ P

Again, this can only be done if < is both complete and transitive (it has no
loops) — and this condition is the axiom of rationality.
However, we need two more hypotheses: independence. Basically, two gambles
mixed with an irrelevant third one will maintain the same order of preference
as when the two are presented independently of the third one. Mathematically:

∀p, q, r ∈ P (A), a ∈ (0, 1]

Nature can have more than one subsequent choice. In this case, all the above
machinery can be naturally extended by computing compound expectations.�� ��Example 1 (Continous investment):

Suppose we can decide the amount of investment, i.e. a 3 A = [0, 50]. The
expected outcomes are X = [0, 100], and depend on our choice:

x|a ∼ U [0, 2a]

In other words, once we decide a, the final outcome will be some value
between 0 and 2a, uniformly extracted.

We can then compute the expected utility:

ν(a) = E[u(x)|a] = 1
2a

∫ 2a

0
u(x) dx

Let’s fix u(x) = 18
√
x. We substitute in the above, and select the value of a

that maximizes the result:

Choose a : max
a∈[0,50]

1
2a

∫ 2a

0
18
√
x dx− 2a

This can be done with some calculus, by computing the first derivative and
setting it to 0:

12
√

2a− 2a !
= 0

And we find a = 18, with the expected payoff being ν(18) = 36.
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Note an important difference with the deterministic case: here the absolute
value of utilities matters! First, only the order was important, but since we
are now dealing with probabilities, we need also to understand how much an
outcome is preferred than another.
In other words, changing the utility function (but maintaining the same prefer-
ence ranking) does not change the best course of action in the deterministic case,
but it does so in the stochastic one (in fact u enters explicitly the computations)!
So we distinguish between ordinal preferences, where only order matters,
and cardinal ranking, where both order and absolute value matter.

Different lotteries can have the same expected utility. For example, consider
X = (0, 1, 20), and pA = (0, 1, 0), pB = (0.95, 0, 0.05). The expected utility
is 1 in both cases. However, A is a degenerate lottery: we are certain we will
get 1 every time. B, instead, has a very high probability of giving no payoff
(p = .95), and a small one of giving a high payoff (20 with p = .05).
A player could consider A and B equivalent, basing their choice only on the
expected outcomes. This is the risk neutral case.
If a player prefers not taking risks, they will be called risk adverse, and prefer
A over B, since A is deterministic. Otherwise, a risk loving player would do
the opposite.

The choice of utility function can encode the risk attitude of a player. In
essence, all monotonic utilities (such as u(x) = x,x2, log x), do not change
the order of preference of a user, but change their risk attitude. In fact, a
linear utility, evaluates equally both high outcomes with low probability and
low outcomes with high probability. However, if u is concave, then
So, a player facing a decision problem with a payoff function u over outcomes
is said to be rational if he chooses an action a ∈ A that maximizes his expected
payoff, i.e. chooses a∗ ∈ A such that:

ν(a∗) = E[u(x)|a∗] ≥ E[u(x)|a] = ν(a) ∀a ∈ A

Actions of player and nature may alternate over time. In this case, to de-
cide which action is best we proceed by Backward Induction (or Dynamic
Programming). Consider, for example, the following situation:

Figure (7) – A player can choose between two investments g and r. If they choose g, then,
after a move from nature, he can choose again between two other actions e and n. Then
nature plays again.

The idea is to classify all player’s actions in groups:
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• Group 1 contains all “final” actions, after which no other input from the
player is needed.

• Group k contains all actions that are followed by group k− 1 actions. So,
for example, group 2 actions are the ones that precede the final actions.

In other words, start from the end of the tree, and work backwards.
In the example in fig. 7 we have just two groups:

Figure (8) – Actions in group 1 are in orange, while group 2 are in yellow.

Then we start with group 1, compute the expected utilities and select the best
choices:

Figure (9) – Here in both cases we should select action e, since it leads to the highest
expected utility.

Then we prune the tree, removing the groups already processed:

Figure (10) – Only group 2 actions are left.

Now we have a simple tree which can be finally solved:

E[u|g] = 370 E[u|r] = 260
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So the best (rational) course of action is to first choose g and then e.

Since we are dealing with future decisions, we could also consider the fact that
future outcomes are “discounted” (because the value of money lowers over time).
In this case we multiply utilities by a discount factor δ < 1:

Figure (11)

The exact value of δ depends on the greediness of the player: a low δ means
that immediate gains, i.e. high outcomes that are closer to the present, are
valued more than the same outcomes that are further away in the future. A
high δ, instead, indicates a patient player that is interested in passing over some
higher immediate gains to come out on top at the end (“plays the long game”).

In any case, knowing in advance which choice the nature player will take
matters a lot. With decision trees we can actually quantify how much this
information is valued. Basically, we compare the scenarios were nature’s choice
is known with the ones where it’s not.
For example, consider the following case:

Figure (12)

If nature’s choice is not known, the expected payoff for the best action (r) would
be 300.

However, if we know how nature will play, we can plan the actions in advance,
basically playing “in response” to nature:

Figure (13)
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Once nature’s choice is made, the best action of the player is determined with
certainty. We can then compute the expected utility, which comes out to 440 in
this case.

The difference between the two cases is the value of information about nature’s
choice:

440− 300 = 140
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Chapter 1

Static Games of Complete
Information

1.1 Definitions
(Lesson 3 of
05/10/20)
Compiled: January
1, 2021

We are now ready to introduce more players to the game. There are several
ways to accomplish this:

• Treat other players as random variables, with the same role nature had
in the previous section. In this view, other players’ actions only introduce
more randomness in the system.

• Model other players as agents, with their own payoff function.

The second way is more efficient, since it allows for strategizing. If we assume
that other players are rational, then they will try to maximize their own payoffs.
Thus, by getting insight in their decision process, we can better anticipate
their actions, which is surely advantageous.

As a start, we consider static games of complete information:

• Static means that all players move together, without taking turns. Moves
need not happen simultaneously, but players must act without knowl-
edge of everybody else’s move (and so without communication). For
instance, rock/paper/scissors is a static game, while chess is not.

• Complete information means that everybody knows all payoff functions.
This means that objectives are not hidden, such as in the game of Risk.
One example of a complete information game is chess, since both players
compete to checkmate the other.

Examples of static games of complete information are guessing games (rock/paper/scissors,
matching pennies).

The static requirement means that players act independently, each choosing
an action from its own set Ai. Only after all n players have acted, choosing a
vector of actions (a1, a2, . . . , an), the outcome is determined, and players get
their payoff: ui(a1, . . . , an).
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In this framework, it is useful to think in terms of strategies, which are just Strategies
plans of action. A strategy is a mapping between certain requirements and an
action.
For example, one possible strategy in rock/paper/scissors is to change the sign
if the opponent has guessed right in the previous turn. A strategy can involve
randomness (mixed strategy): if two or more actions are possible given the
same requirement, one could be preferred (i.e. taken with a higher probability)
than the others.
However, for now we limit ourselves to pure strategies, which are defined to
be deterministic.

Then, we reformulate the problem by replacing actions with strategies. During
each game, all players simultaneously choose their strategy si ∈ Si, which
can be gathered in a vector (s1, s2, . . . , sn). Then, each player i gets a payoff
ui(s1, . . . , sn) ∈ R.

This notation allows specifying completely the game. In fact, the setting is
entirely defined by specifying the set of strategies available to each player (Si)
and their utility function ui. We denote this collection as the game’s normal
form:

G = {S1, . . . ,Sn;u1, . . . ,un}

We say that E is common knowledge if: Common knowledge

• All players know E

• All players know that all players know E

• And so on, ad infinitum.

This is obvious in technical settings, for example different machines sharing
exactly the same protocol. However, in human groups, saying that something
is common knowledge also implies that everybody is considering it in their
decisions, which could not be the case (people can forget, or have different
priorities).

We can now formalize complete information as saying that all that follows
is common knowledge:

• all possible actions of all players

• all outcomes of these actions

• the individual preferences of all players about these outcomes

We will assume that also player’s rationality is common knowledge.
An n player game can be represented as a function f : S1×S2× · · · ×Sn → Rn,
mapping a set of strategies (s1, . . . , sn) to a vector of utilities (u1, . . . ,un) ∈ Rn.
If all Si are discrete sets, with sizes |S1|, . . . , |Sn|, then f can be represented as
a |S1| × · · · × |Sn| matrix, where each cell represents a choice of the n strategies,
and contains a vector in Rn of the utilities. Note that this is an n-dimensional
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matrix, since each player’s strategies are contained in a direction orthogonal to
the others.
In this course, we will focus on the n = 2 case (bi-matrices), since working with
bi-dimensional matrices is easier.

Figure (1.1) – Example of matrix representation of an n = 2 players game. Each cell
contains the payoffs of both players.

Figure (1.2) – Example of utilities in a 2-player game. For example, if player A chooses the
strategy M , and B chooses C, then player A will get 0, and B will get 5 as payoffs.

1.2 Examples
One explicit example is from the odd/even game, where two players pick a pre-
ferred outcome (odd/even) and a number. Then they both show simultaneously
their numbers, and the player that correctly predicted the parity of the sum of
the two numbers will win.

Figure (1.3) – Bi-matrix for the odd/even game, with a bet of 4 euros.

Another example is rock/paper/scissors:
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Figure (1.4) – Bi-matrix for the rock/paper/scissors game, with a bet of 4 euros. If both
players choose the same action (diagonal) nobody wins, otherwise rock R beats scissors S,
scissors S beat paper P and paper P beats rock R.

In all of these examples there is no deterministic best strategy: a rational player
needs to use instead a mixed strategy, involving randomness.
Perhaps one of the most studied 2 players game of complete information is the
Prisoners’ Dilemma.
Alice and Bob have committed a crime together, and have been caught by the
police, but the evidence against them is insufficient. They are given a choice to
confess or not.
If both do not confess, they will both spend 1 month in jail (since the full
charges could not be confirmed). If one confesses and the other not, then the
first will be free (as thanks for their collaboration), while the second will spend
9 months in prison. Instead, if both confess, they will both be sentenced for 6
months in jail.

Figure (1.5) – Bi-matrix for the prisoners’ dilemma, with M = not confess, and F = confess.

Assuming that both players act independently, without any way to communicate,
and they both act rationally, i.e. trying to maximize their own utility function,
which is the best course of action to take?
To tackle this problem, we first define a way to compare joint strategies, i.e.
vectors s of all the players’ strategies.
We say that s is Pareto dominated by s′, if the latter rises the utility of
some player i while not lowering the utilities of all other players:

ui(s′) ≥ ui(s) ∀ players
ui(s′) > ui(s) for some player i

A joint strategy s that is not Pareto dominated by any other joint strategy is
said to be Pareto efficient: it is “the best” possible outcome. Clearly there
could be many distinct Pareto efficient strategies, each favoring a different
player.
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In the case of fig. 1.5, (F ,F ) is the Pareto dominated by (M ,M), since the
latter rises the utility of both players. Then, note that neither (F ,M) nor
(M ,F ) are Pareto dominated by (M ,M) or (F ,F ), since in all cases the utility
of a player lowers. For example, when going from (M ,F ) to (M ,M), Alice rises
by 8, but Bob lowers by 1.
Thus, in this case we have 3 Pareto efficient joint strategies: (M ,M), (M ,F )
and (F ,M). The first is “the best for all”, while the others are the “best favoring
a specific player”.

1.3 Solving Games

1.3.1 IESDS: an intuitive algorithm
However, players can choose only their strategy, not the joint one! So, we
reframe the same argument in terms of single strategies. Formally, consider a
game G = {S1, . . . ,Sn;u1, . . . ,un}. We say that a strategy si ∈ Si for player
i is strictly dominated by another strategy s′i ∈ Si if the latter leads to a
greater payoff independently of the actions taken by the other players:

ui(s1, . . . , s′i, . . . , sn) > ui(s1, . . . , si, . . . , sn) ∀(s1, . . . , si−1, si+1, . . . , sn) ∈ Si × · · · × Si−1 × Si+1 × · · · × Sn

A rational player will never choose a strategy that it is strictly dominated by
another, since it will perform worse.

Figure (1.6) – Consider player A (first number), and compare the strategies D and M . For
M , the utilities of player A are uM = (1, 4), while for D are uD = (0, 2). Note that the
entries of uA are strictly greater than the ones of uD, meaning that M strictly dominates D.
So we can remove D from the table: a rational player won’t ever choose such a bad strategy!

Figure (1.7) – Similarly, we can compare strategies available to player B (after having
removed D). We have uL = (0, 0) and uR = (5, 3). All entries of uR are greater than the
ones in uL, and so R strictly dominates L. Thus, B will choose strategy R (the only one
left). Now, for player A strategy M dominates strategy U (4 > 0), and so they will choose
M . So, if A and B are rational, they will play (M , R), with result (4, 3).
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This procedure is called iterated elimination of strictly dominated strategies
(IESDS), and can be used to shrink a game to a “smaller” one by relying on
common knowledge (in this case, that both players are rational). However, this
will lead to a solution only in the simplest cases.

If we apply this reasoning to prisoner’s dilemma, then paradoxically (F ,F ) will
be the rational choice. In fact:

Figure (1.8) – Alice compares uF = (0,−6) with uM = (−1,−9), and notices that F

strictly dominates M . Bob makes the same argument, and so the rational choice will be
(F , F ), resulting in (6, 6).

This means that rational players choosing the strategy that strictly dominates
the others, will produce a joint strategy that is not Pareto efficient, i.e. it is
not “the best, most efficient one”!

However, note that IESDS is very limited. For example, in the following no
strategy strictly dominates the others:

Figure (1.9) – There are no dominated strategy that can be eliminated from the table.

Figure (1.10) – Which game to play? The first one has payoffs that are always better than
the ones in the second. However, rational players in game 1 will always obtain (5, 5), while in
game 2 will always reach (8, 8), which is better.
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1.3.2 Formalization
(Lesson 4 of
08/10/20)
Compiled: January
1, 2021

A game in normal form is given by:

G = (M , (Si)i∈M , (ui)i∈M )

where M is the set of players, Si is the set of strategies available to player i,
and ui is the utility function of player i.
Then, a strategy profile s is the set of strategies chosen by the players, so
s ∈ S ≡ S1 × · · · × SM ≡ ×i∈MSi. Each utility function ui maps a common
strategy s to the payoff received by player i: ui : ×i∈M Si → R.
For a two player game, where each player has access to 2 strategies, we can
gather all the payoffs in the entries of a 2× 2 matrix:

P =

Player 2
L R

P
la
ye
r
1

T a, b c, d
B e, f g,h

This kind of simple matrices can be constructed only for toy games, and are
useful to understand the basic principles that can be then applied to more
complex cases.
A solution Φ of a class Γ of games G is a way to map Γ into a set of strategies:
Φ : Γ  ∪G∈Γ SG. Then the solution of a specific game G is a subset of this
general class solutions: Φ(G) ⊆ SG. Note that this is not a function, since it
maps input values not in a single point, but also in sets of points.
There are several ways to choose Φ, for example Nash equilibrium, or strict
dominance (as seen by the iterative elimination method in the previous section).
Solutions may not exist for all games, and if a solution exists it may not be
unique.
In the following, we will assume that all players are rational, they understand Assumptions
all the elements of the game, and these two facts are common knowledge
(everybody knows them, and everybody knows that everybody knows them).

Strict dominance

Recall that given two strategies si, s′i ∈ Si, we say that si strictly dominates
s′i, and write si � s′i, if, independently of the strategies s−i ≡ s \ {si} actuated
by all other players, the utility function ui for the player i will be better if they
choose si instead of s′i:

ui(si, s−i) > ui(s′i, s−i) ∀s−i ∈ S−i

The notation s−i with the negative index indicates the vector obtained by remov-
ing from s the i-th element. In this case, s is the vector of all players’ strategies,
si is the strategy of player i, and s−i is the vector (s1, . . . , si−1, si+1, . . . , sM )
of all strategies of players that are not i. Similarly, we denote with S−i the set
S1 × · · · × Si−1 × Si+1 × · · · × SM .
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Note that here we are focusing on the strategies of player i, basically ignoring
the actions of other player. However, as we have seen in the previous section,
not all games admit strictly dominant strategies. For example:

P =

Player 2
L R

P
la
ye
r
1

T 2, 1 0, 0
B 0, 0 1, 2

Best Response

In cases where there are no strictly dominating strategies, we need a weaker Reply
condition for the solution. One idea is that, given the choice of one player, it
is clear what is the best strategy for the other. For example, if player 2 plays
L (left), then player 1 should choose T (top). Conversely, if player 2 plays R
(right), then player 1 should reply with B (bottom).

Let’s formalize this notion. For player i, the strategy si ∈ Si is a best reply
against the strategy s−i ∈ S−i of the other players, if it leads to an equal or
better utility than any other available strategy s′i:

ui(si, s−i) ≥ ui(s′i, s−i) ∀s′i ∈ Si

To find si we just need to maximize ui:

ui(si, s−i) ∈ arg max
si∈Si

ui(si, s−i)

Now, note that a dominated strategy si ∈ Si is never a best reply. Best replies and
strict dominationProof. Suppose that si ∈ Si is dominated, i.e. there exists a s′i ∈ Si such that:

ui(s′i, s−i) > ui(si, s−i) ∀s−i ∈ S−i

This means that:

6 ∃s−i ∈ S−i s.t. ui(si, s−i) ≥ ui(s′i, s−i)

and so si can never be a best reply.

Nash Equilibrium

We can use the idea of best replies to find a solution for games where strictly
dominance fails, leading to the concept of Nash Equilibrium, also known as
Cournot equilibrium (who used the same result previously, unbeknownst to
Nash, who however better formalized it).

A strategy profile s∗ is a Nash Equilibrium if s∗i is a best response to s∗−i ∀i ∈M ,
i.e. if every player has chosen a best response against the others. Thus:

ui(s∗i , s∗−i) ≥ ui(s′i, s∗−i) ∀s′i ∈ Si
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In a Nash Equilibrium, players have no incentive to change their decisions, since
doing so would inevitably decrease their utilities.

For example, consider the following 2-player game:

P =

Player 2
L C R

P
la
ye
r
1 T 4, 3 5, 1 6, 2

M 2, 1 8, 4 3, 6
B 3, 0 9, 6 2, 8

Here S1 = {T ,M ,B} and S2 = {L,C,R}. The Nash Equilibrium s∗ is a
strategy profile, i.e. s ∈ S1× S2, such that each player does not want to change
their strategy.
To find it, we proceed as follows.
Let’s start with the first strategy available to player 2, which is L. In this case, Finding a Nash

Equilibriumthe best response for player 1 is T. Similarly, if 2 plays C, then 1 responds with
B, and if 2 plays R, 1 chooses T. In other words, for each column in the matrix,
pick the maximum first entry (i.e. maximum payoff for player 1).

P =

Player 2
L C R

P
la
ye
r
1 T 4, 3 5, 1 6, 2

M 2, 1 8, 4 3, 6
B 3, 0 9, 6 2, 8

Then we do the same from the point of view of player 2. Practically, look at
each row (which is a choice for 1) and select the entry with the maximum value
of the second number (i.e. maximum payoff for player 2, meaning that this is
the best reply).

P =

Player 2
L C R

P
la
ye
r
1 T 4, 3 5, 1 6, 2

M 2, 1 8, 4 3, 6
B 3, 0 9, 6 2, 8

The entries for which both players are choosing a best reply (i.e. the ones with
both payoffs colored) correspond by definition to the game’s Nash Equilibria.
In this case, there is only one such entry: s∗ = {T ,L}. Note that properly the
equilibrium is a set of strategies, not payoff, so s∗ 6= (4, 3)!

Weak Dominance

However, Nash Equilibrium is not the only way to extend strict dominance.
Another natural possibility is the following.
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Let si, s′i ∈ Si. We say that si < s′i (si weakly dominates s′i) if choosing si does
not decrease the utility ui independently of all other players’ choices:

ui(si, s−i) ≥ ui(s′i, s−i) ∀s−i ∈ S−i

and it strictly improves it for at least some other players’ actions:

ui(si, s−i) > u(s′i, s−i) for some s−i ∈ S−i

For example: Weak dominance
elimination
method

P =

Player 2
L R

P
la
ye
r
1 T 2, 3 1, 3

M 1, 0 0, 1
B 0, 1 1, 0

Note that M is strictly dominated by T, and so we can eliminate it:

P =

Player 2
L R

P
la
ye
r
1 T 2, 3 1, 3

M 1, 0 0, 1
B 0, 1 1, 0

If we now examine the strategies of player 2, we can see that L does not strictly
dominates R, since in the first row they have both equal payoffs (3) for player 2.
However, since L is strictly better than R if player 1 chooses B, we can say that
it is weakly dominant over R:

P =

Player 2
L R

P
la
ye
r
1 T 2, 3 1, 3

M 1, 0 0, 1
B 0, 1 1, 0

Finally, we can see that T dominates over B, and so the final outcome will be
(2, 3), given by s = {T ,L}.
However, the result of this procedure unfortunately depends on the order of
operations. In fact, let’s consider again the same matrix, but this time we
eliminate first the row B, since it is strictly dominated by T:

P =

Player 2
L R

P
la
ye
r
1 T 2, 3 1, 3

M 1, 0 0, 1
B 0, 1 1, 0
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Now R weakly dominates L for player 2:

P =

Player 2
L R

P
la
ye
r
1 T 2, 3 1, 3

M 1, 0 0, 1
B 0, 1 1, 0

Since T dominates over M, we get as final result (1, 3) given by s = {T ,R},
which is not the same as before!

Strictly dominance is not affected by order of elimination, but weak dominance
is. In this case, in fact, we have even another possible solution, that can be
obtained if we note at the start that both M and B are strictly dominated by T:

P =

Player 2
L R

P
la
ye
r
1 T 2, 3 1, 3

M 1, 0 0, 1
B 0, 1 1, 0

Here the “winning” strategy profiles are two: both {T ,L} and {T ,R}.

Let’s compare these results with the Nash Equilibrium of the same matrix (if it
exists).

P =

Player 2
L R

P
la
ye
r
1 T 2, 3 1, 3

M 1, 0 0, 1
B 0, 1 1, 0

The Nash Equilibria are {T ,L} and {T ,R}, i.e. the same found before, suggest-
ing a connection between the two concepts. We formalize this in the following
proposition.

Proposition 1.3.1. Let G = (M , (Si)i∈M , (ui)i∈M ), and let j ∈M . Consider Weak dominance
elimination always
selects a Nash
Equilibrium

a strategy ŝj ∈ Sj that is weakly dominated. We denote with Ĝ the restriction
of G obtained by removing ŝj, i.e. Ŝj = Sj \ {ŝj}.
Then, every Nash Equilibrium of Ĝ is a Nash Equilibrium of G, i.e. by iterating
the weakly dominance elimination we will select one Nash Equilibrium.

Proof. In the restricted game, the new set of strategies of player i is given by:

Ŝi =

Si i 6= j

Sj \ {ŝj} i = j

since the elimination step affects only player j.
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Let s∗ be a Nash Equilibrium of Ĝ. We want to show that it is a Nash
Equilibrium also for G. By definition, we have:

ui(s∗) ≥ ui(si, s∗−i) ∀si ∈ Si

And for i = j:

uj(s∗) ≥ uj(sj , s∗−j) ∀sj ∈ Ŝj (1.1)

To show that s∗ is a Nash Equilibrium in G, we need to show that there are
no possible profitable deviations in the strategies, i.e. that any different choice
would lead to lower utilities for some players. For i 6= j this can be immediately
shown, since their strategies are unaffected by the elimination process: Si = Ŝi.
In other words, players that are not j still act as if they were playing the full
game G.
Player j, instead, cannot choose ŝj anymore in Ĝ. So, if we extend back to G,
we need to check if j can switch their choice to ŝj and increase their utility.
In other words, if we replace s∗j with ŝj in the Nash Equilibrium s∗, does the
utility of j increase or decrease?

uj(s∗j , s∗−j)
?
≥ uj(ŝj , s∗−j)

(Note that for sure switching to another state in Ŝj does not increase uj , due
to (1.1). However ŝj 6∈ Ŝj).

The idea is to use the fact that ŝj is weakly dominated. Thus, there is another
state tj 6= ŝj that dominates ŝj , and since now tj ∈ Ŝj , we can use (1.1) to
show that the utility of switching s∗j → ŝj cannot increase.

More precisely, from the definition of weakly dominance we have that there
exists a strategy tj ∈ Sj such that:

uj(tj , s−j) ≥ uj(ŝj , s−j) ∀s−j ∈ S−j

Since s−j can be anything, we set s−j = s∗−j , obtaining:

uj(tj , s∗−j) ≥ uj(ŝj , s∗−j) (1.2)

Since tj 6= sj , it is not removed by the elimination, and so tj ∈ Ŝj . So we can
use (1.1) and set here sj = tj , leading to:

uj(s∗) ≥ uj(tj , s∗−j) (1.3)

Chaining (1.3) and (1.2) together we arrive at the result:

uj(s∗) ≥ uj(ŝj , s∗j)

proving that switching s∗j → ŝj does not increase uj , and so even j has no
incentive to change their mind, meaning that s∗ is indeed a Nash Equilibrium
also for G.
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1.3.3 Prisoners’ Dilemma
The prisoner’s dilemma is a game consisting of a single Nash Equilibrium
that is not Pareto’s efficient. In other words, all players can be in a situation
where nobody has any incentive to change their mind, but that it is not the
“best” solution for all.

P =

Player 2
L R

P
la
ye
r
1

T 3, 3 0, 5
B 5, 0 1, 1

The Nash Equilibrium is {B,R}, inducing the outcome (1, 1). However, {T ,L}
should be a better strategy profile, since it has a better outcome for everyone
(3, 3). So there is a Pareto improvement in passing from (1, 1) → (3, 3),
but {T ,L} cannot be sustained: in this case there is incentive for a player to
change their mind, since they can improve 3→ 5 their utility (but lowering the
outcome for the opponent).

Moreover, if the Iterated Elimination of Dominated Strategies gives a unique
solution, then the Nash Equilibrium is unique.

However, multiple Nash Equilibria may exist: Non-uniqueness

P =

Player 2
L R

P
la
ye
r
1

T 2, 1 0, 0
B 0, 0 1, 2

and sometimes a Nash Equilibrium may not exist at all: Non-existance

P =

Player 2
L R

P
la
ye
r
1

T 1,−1 −1, 1
B −1, 1 1,−1

These cases may be solved by using instead mixed strategies, i.e. strategy profiles
involving probabilities.

1.4 Preferences of Groups
(Lesson 5 of
12/10/20)
Compiled: January
1, 2021

Until now, we have been considering the preferences of each player in the game.
Assuming rational players, these utilities are both complete (each outcome can
be ranked) and transitive (there are no cycles, but each player has well-defined
preferred outcomes).
However, we would like a way to aggregate these preferences. For example,
consider the following:
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Figure (1.11) – Preference profiles (i.e. rankings) for 3 players, regarding different
activities: picnic (P), cinema (C) and hiking (H).

Given these preference profiles, can we construct a ranking for the entire group?
First, let’s define some notation. Let A be a set of outcomes. For a rational
player i, a preference profile <1 is a transitive ranking of all (complete) the
outcomes in A. For example, if A = {a, b, c}, a profile could be a � b � c. The
ranking could be non strict, i.e. a < b < c, since a player may be indifferent
about two outcomes that they see as equivalent.
Consider a set N = {1, . . . ,n} of n players, and let R(A) be the set of all
preference profiles for a rational player. Then, all players preferences are
elements in the space Rn(A), which forms the domain of a preference-aggregating
function.
The simplest example is the social choice function, which just selects a global Social choice

functionoutcome based on the rankings:

f : Rn(A)→ A

But in general, we could be interested in generating a new aggregated ranking
of the outcomes A, i.e. a new “global” preference profile: Social welfare

function /
Constitutionf : Rn(A)→ R(A)

Such a function f is called a constitution (or a social welfare function).
We expect a good aggregated ranking to be “good for everybody”, i.e. represen- a. Pareto efficiency

of a constitutiontative of global values. This is formalized by the concept of Pareto efficiency.
A constitution f is Pareto efficient if the aggregated ranking it produces
respects global agreements of the players. In other words, if all preference profiles
{<i} agree on the ranking of two outcomes a <i b ∀i ∈ N , then the aggregated
ranking <f must reproduce that ordering: a <f b.
In essence, the following must hold:

∀a, b ∈ A, a <i b ∀i ∈ N ⇒ a <f b

Another expected property for a good ranking is the so-called independence
of irrelevant alternatives. The idea is that if we add or remove elements to b. Independence of

irrelevant
alternatives

A, this should not change the relative ranking of other pairs of outcomes.
To formalize this concept, we first need some notation. Consider a ranking <i
over a set of outcomes A. We define the restriction <i |B, where B ⊆ A, as
the ranking that <i induces on the subset B. For example, if A = {a, b, c}, and
<i is:

a < b < c
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Then <i |a,c is given by a < c. Basically, it is obtained by removing the elements
of A \B from <i.

Now we are ready to define the independence property. Consider two sets of
profiles {<(i)}i∈N and {<′(i)}i∈N . We say that f is independent of irrelevant
alternatives if the following holds ∀a, b ∈ A:

if ∀i, (<i |{a,b}) = (<′i |{a,b})⇒ f(<(i))|{a,b} = f(<′(i))|{a,b}

To understand this (cryptic) notation, consider the following example. Suppose
we have 3 players, and 4 outcomes {a, b, c, d}. We define the first set of rankings
as follows:

<1 : a < d < b < c

<2 : c < b < a < d

<3 : a < d < c < b

For the second set of rankings, we shift the position of c and d, leaving the
relative ranking of a and b the same:

<′1 : d < a < b < c

<′2 : c < b < d < a

<′3 : c < d < a < b

In fact:

a <1 b and a <′1 b
b <2 a and b <′2 a
a <3 b and a <′3 b

This is what we mean when writing ∀i, (<i |{a,b}) = (<′i |{a,b}).
Then, if f is independent of irrelevant alternatives, we expect that it
will produce the same raking of a and b for both sets. For example, denoting
f(<(i)) ≡<f and f(<′(i)) ≡<′f , if a <f b, then it must be a <′f b.

One of the simplest possible choices for f is that of a dictatorship, where we Dictatorship
take f(<(i)) ≡<f=<i for an arbitrary player i. This means that the aggregate
ranking simply reflects that of player i, effectively disregarding all the others’
opinions:

a < b⇒ a <f b

Clearly, we would like for a good f to not be a dictatorship, since this would
defeat the purpose of an aggregating function.

One last required property ismonotonicity. This requires that, if an individual
modifies their preference by ranking an outcome a to some higher position, then
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the aggregating ranking should either place a at the same place as before or to
a higher rank, but certainly not to a lower one. In other words, an individual
should not be able to hurt an option in the global ranking by ranking it higher
in their personal ranking!

Unfortunately, all these requirements are too strong. In fact, in 1951 Kenneth
Arrow proved the following theorem:

Theorem 1.4.1. Any social welfare function f over three or more alternatives
(|A| ≥ 3) that is both Pareto efficient, monotonic and independent of Irrelevant
Alternatives is dictatorial.

As we will see in the next section, this has strong implications when discussing
procedures where we need to aggregate preferences, such as elections.

1.5 Elections
In elections, players express their preferences in form of votes, so that a common
outcome may be decided. There are many ways to do that, for example:

• The simplest idea is that of single voting, where each player expresses
their preferred outcome.

• Cumulative voting: each player has a number of votes which are dis-
tributed over the outcomes.

• Approval voting: each player can vote multiple outcomes.

Suppose we have 3 voters and 2 candidates, and we obtain the following
preferences:

Figure (1.12)

The majority has voted for A, and so by plurality rule we should prefer A.
Let’s add a third candidate:

Figure (1.13)

Here A beats B, B beats C and A beats C. Since A has surpassed all the other
candidates, the final choice should be for A.
However, these are lucky cases. If we have instead:
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Figure (1.14)

We see A > B, B > C and C > A, forming a cycle. Thus, in this case there is
no best candidate!

The basic rules we have been using in the past few samples define the concept Condorcet winner
of Condorcet winner, i.e. the outcome that is preferred to every other
candidate in a pairwise majority-rule comparison (the one that “beats” the
most competitors). As we have seen, it does not always exist, because there
could be Condorcet cycles: Condorcet cycles

A � B, B � C, C � A

Note that fig. 1.14 originates from the case with two candidates in fig. 1.12.
Depending on the position of the new candidate, we can make A or C the
winner, or originate a cycle. The probability of cycles actually grows with the
number of candidates, and for n→ +∞ cycles will surely occur.

1.5.1 Voting systems and Paradoxes
The order in which to compare the voters is called the agenda. Depending on
the voting system, this can affect or not the result!
For example:

Figure (1.15)

Here A > B > C > A form a Condorcet cycle, and D is the worst candidate.
Suppose the voting system consists of semifinals and a final: in this case the
order of matchup will determine the winner! In fact, suppose A goes against D
(A wins), and B against C (B wins). At the finals we have A vs B, and A wins.
If instead we make B go against D (B wins), and A against C (C wins), the
finals will be between B and C, with B winning! This is because whoever goes
against the worst opponent will surely win, and the only other candidate that
may defeat them will lose on the other branch of the semifinals.

Plurality voting

Each voter sorts the candidates in order of personal preference, and the winner
is the one who appears in most first places in these rankings.
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For example:

Figure (1.16)

Here A wins, because it has the most top votes (first line). However, if we look
at the complete rankings we see that B > A is preferred by 5 vs 4, and so is
C > A. Since also B > C is preferred by most (7 vs 2), B is the Condorcet
winner.

Two-phase run-off

Voting happens in two phases: in the first one the top two candidates are
selected, and only they compete in a second final round.
For example:

Figure (1.17)

By counting the top votes, A wins with 4, and B is the runner-up with 3 votes.
Again, if we look at the complete rankings, we see that C > A (5 vs 4), and
also C > B (6 vs 3), meaning that C is the Condorcet winner, but does not
even make it to the ballot!

Borda voting

If we have M candidates, the voter ranks them. According to their position,
each candidate receives a score: M − 1 for the top one, and 0 for the worst one.
For example:

Figure (1.18)

A obtains 5 · 2 = 10 points, B gets 5 · 1 + 3 · 2 + 1 · 1 = 12 points, and C
3 · 1 + 1 · 2 = 5, meaning that B wins. Still, A > B (5 vs 4) and A > C (5 vs
4), making A the Condorcet winner.

Since the scoring depends on the number of candidates, if one of them is removed
from the list, the final ranking may significantly changing (also be reversed).
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Approval voting

Each voter can give more than one preference (up to M), which counts as 1
point.
Here, depending on the number N of votes available to each player, the result
may change. If N = 1, we recover the plurality voting system.

Instant run-off

Look at the top preferences and remove the candidate with the least number
of votes. This procedure is iteratively repeated until the winner is found. The
voters who put the removed candidate as first preference are kept, and their
second preference is counted as votes for the other candidates.

Cheating

The previous paradoxes can get worse if we allow cheating, i.e. voters that
choose rankings that do not correspond directly to their true preferences, but
can skew the results of the election so that, at the end, their utility will be
maximized.
For example, one can imagine a situation where a candidate is winning with a
good margin. Voters of the least preferred candidate may switch their votes to
support instead the runner-up, making them the winner (if this is the preferred
situation).
The situation can get even worse if all the players know that cheating is
happening. In this case, voters may cheat in response to the cheating of others!
At the end, the outcome will depend not only on the order of comparisons
(agenda) but also on the order of cheating.

A social function f may be made strategy-proof, i.e. non manipulable, but
in this case it can be proven (Gibberard-Satterthwaite theorem 1973) that
any strategy-proof constitution that does not forbid anyone to win must be a
dictatorship.

1.6 Applications of Nash Equilibrium
(Lesson 6 of
15/10/20)
Compiled: January
1, 2021

We will now see several examples of application of Nash Equilibrium to economics.
The aim is twofold:

• First, these examples are very well known in literature, so knowing them
is useful for understanding references

• Second, they serve as inspiration for finding applications in other fields,
such as engineering. However, note that this won’t be possible in all cases,
and it may require first some translation work.

One way to use Nash Equilibrium is as a sort of prediction: we expect rational
players to play a Nash Equilibrium. However, this can lead to some problems.
In fact, some problems look like they have no Nash Equilibrium. However, this
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can be solved by generalizing the definition, so that any game can have at least
a NE.
In other problems there are instead multiple Nash Equilibria, and we would
like a way to choose only one of them as a “preferred solution”. Often, in fact,
they are not completely equivalent, and so there should be a way to choose “the
best one”.
A bigger problem is that a Nash Equilibrium is not necessary Pareto efficient,
i.e. players driven by egoism may not choose the best possible solution for the
entire society.

1.6.1 Duopoly
A classic situation in economy is one where there are two competing firms that
want to gain as many customers as possible.
A historic model for a duopoly is that of Cournot (1838), who anticipated the Cournot duopoly
results of Nash. This is actually a toy model: it is not representative of reality
nor accurate, but its simplicity allows exact computations, meaning that we
can easily understand its inner workings.
In Cournot model we consider two firms 1 and 2 producing a good in quan-
tities q1 and q2, leading to a total Q = q1 + q2. We assume that the cost to
produce q units of goods is the same for both firms, and it is given by a simple
proportionality relation: C(q) = c q, with some arbitrary constant c.
When the good is sold on the market, its price is P (Q) given by:

P (Q) = (a−Q)h(a−Q) (1.4)

where h is the Heaviside function, needed to make P (Q) ≥ 0. Clearly demand
and supply are not that simple, and so this is a point where the model is
unrealistic. For example, actually firms do not fix the quantity of produced
goods q, but can set the price.
However, formula (1.4) captures the basic concept that if a firm sells more goods,
the price will be lower, and viceversa (the more you produce, the lower the
price). Note that the price of the goods depends on the total amount of goods
produced Q, i.e. on both the firms.
Suppose the two firms choose q1 and q2 simultaneously and unbeknownst to
each other. What is the Nash Equilibrium?
Let’s start by formalizing the game. Each player i ∈ {1, 2} decide their move
qi ∈ Si = [0,+∞). Since producing too much, i.e. qi > a, would mean that
P = 0 (giving the goods away for free), which is clearly pointless, we can restrict
Si to [0, a) without any loss.
The payoff of a firm is simple its profit, i.e. the revenue minus the cost:

ui(qi, qj) = qi[P (qi + qj︸ ︷︷ ︸
Q

)− c] =
(1.4)

qi(a− qi − qj − c)

with (i, j) ∈ {(1, 2), (2, 1)}. Then, we want to find (q∗1, q∗2) corresponding to the
Nash Equilibrium. Since we are dealing with a continuous set of actions, we
cannot write a matrix for describing all the payoffs.
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Still, we can solve the problem. By definition, in a Nash Equilibrium both
players are playing their best responses to each other. If player j plays qj , the
best reply available to player i is the one that maximizes their profit:

qi = arg max
qi

ui(qi, qj)

At the Nash Equilibrium, both player are using the best reply, and so the
following must hold:

q∗i = arg max
qi

ui(qi, q∗j )

In other words, we need to solve the following system of equations:q∗1 = arg maxq1 u1(q1, q∗2)

q∗2 = arg maxq2 u2(q∗1, q2)

Given the symmetry, we just need to solve one of the equations, which can be
done by differentiation:

q∗i = arg max
qi

qi(a− qi − q∗j − c)⇒ (a− 2q∗i − q∗j − c)
!
= 0

leading to the solution:

q∗1 = q∗2 =
a− c

3
In this case, the profit is the same for both firms (as expected by symmetry):

u∗1 = u∗2 =
(a− c)2

9

1.6.2 Monopoly
Suppose one of the two firms from above disappears, leaving the other able to
control the entire market. This can be obtained by setting (for example) q∗2 = 0,
which leads to:

qm = arg max
q1

q1(a− q1 −��q2 − c)⇒ qm =
a− c

2 ⇒ um =
(a− c)2

4 > u∗1 (1.5)

Note that (qm, 0) is not a Nash Equilibrium, since clearly q2 = 0 is not the
best response for player 2. In this case, having no competition proves really
advantageous for player 1, who is able to make a higher profit.
However, the total amount of goods produced will be lower: Duopoly vs

Monopoly
Qm = qm =

1
2(a− c) < 2

3(a− c) = q∗1 + q∗2 = Q∗

Thus a monopoly has incentive to produce a bit less to gain more profit. So this
simple model shows that competition is good for the consumers, but bad for
the producers. Quantitatively, we can compare the total utilities in both cases:

utot = um =
1
4(a− c)2 >

2
9(a− c)2 = u∗1 + u∗2 = u∗tot
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1.6.3 Trust
If we allow the two firms to communicate, the result can change. In this case,
in fact, they can agree to “pretend to be a monopoly” by combining their moves
and splitting the revenues. This is advantageous, since half of the monopoly’s
revenue is still more than the outcome of each player in a duopoly.
So, they each produce qm/2, and get um/2, which is:

um
2 =

(a− c)2

8 >
(a− c)2

9 = u∗1 = u∗2

This situation would be best for both players, but it is not an equilibrium: any
player has the incentive to break the agreement to earn more.
Note the similarity with the prisoners’ dilemma. In both games, players reach
an equilibrium solution which is not the “best” globally. In technical terms, the
combined monopoly solution is Pareto dominating over the Nash Equilibrium.

1.6.4 Bertrand duopoly
Bertrand (1883) argued against Cournot model that firms choose prices, not the Set the price, not

the goodsproduced quantities qj . This completely changes the game: now the strategies
are the prices pi ∈ Si = [0,∞), and the sold quantities are determined by the
prices. Specifically, customers will buy only the cheaper product, i.e. the one
with the lowest pi:

qi = a− pi

And for the other player, if pj > qj , qj = 0 (nothing is sold). However, if both
players agree on the price, then they will share the production of goods.
Let’s assume the cost of producing goods to be the same as before, i.e. C(q) = c q,
with a > c.

We can see immediately that, at the Nash Equilibrium, both prices must be the
same, otherwise there is one player who is losing money and would like to change
their action. Moreover, prices must be the minimum allowable, otherwise one
player can lower their price and gain the entire market (since the other won’t
sell anything anymore). So, since producing a unit of goods costs c, we have:

Nash Equilibrium
p∗1 = p∗2 = c

Going below these prices would lead to negative profits, which are clearly not
sustainable.

Note that this kind of Nash Equilibrium is definitely not the best outcome
for the firms. As before, they could agree on a higher price and share the
market, effectively forming a monopoly. In this case, the prices can go up to
(a+ c)/2 > c. However, while this solution Pareto dominates over the Nash
Equilibrium, it is not an equilibrium: each player has an incentive to break the
agreement (by lowering their price) to conquer the market.

As a final remark, note that if a player believes that the other will set the Equivalent best
replies in a
continuum
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price at p∗2 = c, then any choice they make will lead to a profit of 0: they can
sell goods at production cost, or set a higher price and don’t sell at all. So,
any p1 ≥ 0 is a best response to p∗2 = c. However, (c+ ε, c) is not a Nash
Equilibrium, since now c is not the best reply for player 2 to p1 = c+ ε.

In reality, however, customers may sometimes buy a more expensive product. a. Imperfect
substitutesThis is because goods produced by different firms are imperfect substitutes:

they are not completely equivalent, and may have some different qualities that
are preferred by certain customers. This can be modelled by changing the rules
of the game:

qi = a− pi + b pj b < 2

This means that the amount of goods sold by i is proportional to the price of
the alternative: if pj is high, customers will mostly buy goods from i, but if
pj ≈ pi, they will buy from both. In this equation, b acts as a sort of exchange
rate between the different goods.
It can be shown that, in this case, the Nash Equilibrium becomes:

p∗1 = p∗2 =
a+ c

2− b

What happens if the production costs are not the same for the two firms? For b. Different
production costsexample, suppose that c1 = 1 and c2 = 2. Suppose also, for simplicity, that

prices are discretized, and can be changed in steps of ε = 0.01.
According to the Bertrand duopoly model, there is no way for player 2 to win,
because player 1 can set any price lower than c2, cutting out 2 and becoming a
monopolist. Thus, in this case the Nash Equilibrium is (1.99, 2.00).

However, note that as ε→ 0, the continuous space of actions leads to a problem. Discontinuities
In fact, player 1 has an incentive to set a price that is as much close as possible
to c2, but still lower. If ε → 0, this leads to a discontinuity in u1, which is
that of a monopoly for any p1 < c2, and that of a duopoly for p1 = c2. Clearly
(2, 2) cannot be the Nash Equilibrium, since p1 can achieve a better result by
lowering their price. But if they lower by ε, they could do better by instead
lowering less, i.e. by ε1 < ε, and so on.
Practically, we can just consider a discretization to solve this kind of problems:
this is also realistic, since there is a minimum amount of money.

1.6.5 Hotelling model
Another famous duopoly model is the one proposed by Hotelling (1929).
Here we consider two firms that sell perfect substitutes for the same goods along
a street. For example, consider two ice-cream vendors at a seaside boulevard,
assumed to be 1 km long.
Customers will buy ice-cream from the nearest vendor, and are uniformly
distributed along the street. For simplicity, suppose there are 101 possible
locations for the ice-cream stands (one each 10 m). What is the best choice for
the stands’ location?
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For example, if A chooses position xA = 22, and B chooses xB = 35, then
A will attract all people in [0, 28], and B the rest. So, xA is not optimal for
A: they should move instead to the right, more specifically to 36, so that now
A gets [36, 101] and B the rest. Similarly, now B would like to move to the
right of A again. This process continues until the equilibrium is reached at the
middle-point, with x∗A = x∗B = 50 (one player gets the left side, one all the
right one).
This result shows a sort of convergence. The same can happen with politicians
from two groups trying to attract voters from different sides, who often “gather
at the middle”, claiming very similar things.
However, if we allow more than two groups, this convergence is broken, and the
street will be divided equally.

1.6.6 Tragedy of the commons
Many political philosophers and economists, since at least Hume (1739) have un-
derstood that, if moved only by private incentives, citizens tend to misuse public
resources (e.g. by throwing trash in the streets or polluting the environment).
This problem is commonly referred to as the tragedy of commons.
This situation can be formalized in the context of game theory in several ways.
The classic version of the problem is that of Hardin (1968), in which n farmers, Hardin model
each owning gi goats, all use a common green area for foraging. In total, the
number of goats is:

G = g1 + g2 + · · ·+ gn

Each goat costs c in caring expenses. The value of foraging in the common
green is v(G), which is a decreasing function of G (more goats using the same
area means that each goat has access to less grass). Mathematically, it is a
concave function:

v(Gmax) = 0 v′(G) < 0 v′′(G) < 0

Generalization. Note that this framework can be generalized to many situa-
tions. For example, consider n users of a WiFi hotspot, each using gi processes.
Clearly, the more users connect at the same time, the less bandwidth will be
available for each of them, meaning that the value of accessing the common
connection v(G) decreases with G.

Each farmer can choose gi, i.e. how many goats to bring to the common green.
The payoff is the difference between benefits and maintenance costs:

ui = gi(v(G)− c)

To find the Nash Equilibrium, we search for the strategy profile consisting of all
best replies. To simplify notation, denote with g−i the profile strategy vector
without the i-th entry:

g−i ≡ (g1, . . . , gi−1, gi+1, . . . , gn)
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and with G−i the sum of all entries of g−i.
Then, the Nash Equilibrium is the solution of the following n equations:

g∗i = arg max
gi

gi(v(gi +G∗−i)− c)

Note that increasing gi increases the multiplier of benefit, but decreases each
benefit.

To solve this problem, note that by symmetry, all farmers are equivalent, and
so we expect that g∗i ≡ g∗ are all the same. So, the total number of goats is
G∗ = ng∗. Substituting in the above:

g∗ = arg max
g∗

g∗(v(G∗)− c)

We can now differentiate with respect to g∗ and set the derivative to 0 to find
the maximum:

∂

∂g∗
g∗(v(G∗)− c) !

= 0⇒ v(G∗)− c+ g∗︸︷︷︸
G∗/n

v′(G∗) = 0 (1.6)

We cannot find an explicit solution without knowing the full expression for v.
However, we can compare (1.6) with that where all farmers agree on “acting
like a monopoly” (i.e. the “best possible scenario” for all the farmers). In this
case, it is as if there was a single farmer, and so we need to maximize just one
condition:

Gm = arg max
G

G(v(G)− c)⇒ v(Gm) +Gmv
′(Gm)− c !

= 0 (1.7)

Note that both (1.6) and (1.7) are set to 0, and so we can equate them:

v(Gm) +Gmv
′(Gm) = v(G∗) + G∗v′(G∗)

n

Figure (1.19) – Comparison between the Nash Equilibrium and the monopoly solution for
the Hardin model. Note how G∗ > Gm, meaning that the benefit for each individual
v(G∗) < v(Gm), since v is a decreasing function. In other words, selfishness of the players
leads to a non-optimal utilization of the common resources.
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Let’s try to understand this situation. Suppose a user with gi goats considers
an increment h, i.e. thinks about changing their move gi → gi + h.
Looking at the payoff function:

ui = gi(v(G)− c)

At first order, increasing gi leads to a benefit gain:

(gi + h)v(G)− v(G)
h

= v(G)

However, this is counteracted by:

• An increase in the cost of possessions of ch/h = c.

• A decrease in the value of each possession [v(G+ h)− v(G)]/h ≈ v′(G),
for a total of v′(G)gi < 0 (recall that v′(G) < 0).

So, the Nash Equilibrium is exactly the situation where the benefit gain is
exactly cancelled by the other two losses:

v(G∗) + v′(G∗)G
∗

n
− c = 0

Note that here we are considering the losses of a single user (see the 1/n factor).

In the monopoly scenario, the equation is the same, but without the 1/n factor.
So, we are considering the loss of all users, which is v′(Gm)Gm. This is because
we are not playing the game at the level of users, but at the one of the entire
society.

This explains the tragedy of commons: when all players have access to a common
ground, losses are shared, and so they matter less for each individual (they are
divided by n), meaning that they do not feel a strong need to avoid them!

1.6.7 Selfish routing
Another model related to the tragedy of commons, but this time set as an
engineering situation, is that of selfish routing.

Pigou (1920) considered a scenario with two paths, red R and blue B, going
from a source s to a destination d. Let xR and xB be the fractions of traffic
on each road, and suppose that travelling through a path incurs in some cost,
which is x for the red one (i.e. proportional to the congestion) and fixed to 1
for the blue one.

Figure (1.20) – Diagram of the two paths in the selfish routing model.
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Clearly, traversing the red path is a dominating strategy, since depending
on congestion there is the possibility of paying a cost x < 1.

Since all players can see that, they will all go through the red path, making
x = 1, and the two roads equivalent. Note that, even in this situation, there is
still no unilateral incentive for one user to go instead through the blue path,
which is now empty.

Clearly, this is not very efficient! For example, if we force the traffic to split
equally over the two paths, we will have a cost 1/2 for the red road, and of 1
for the blue one, leading to an average:

Average cost = 1
2 ·

1
2 +

1
2 · 1 =

3
4

It can be shown that this is the globally optimal situation, i.e. the one with
the lowest average cost, and so this is the Pareto efficient strategy. However, it
is not an equilibrium: there is an incentive for the users moving through the
blue path to choose instead the red path.

The ratio between the Nash Equilibrium average cost and that of the Pareto
efficient strategy is the price of anarchy, which in this case is 1/(3/4) = 4/3.
This measures the relative loss of “global efficiency” produced by the selfish
behavior of players.

The situation becomes even worse if the cost for the red path is non-linear, i.e.
xa with a > 1. In this case, the “sacrifice” of only few users going through the
blue path would allow almost all to pay a very low cost. In fact, for a→ +∞,
the average cost of the Pareto efficient solution goes to 0, meaning that the
price of anarchy diverges to infinity.

Counterintuitively, a “better” network can have a “worse” Nash Equilibrium.
For example, consider the following scenario:

Figure (1.21) – Two balanced but independent paths.

In this case, the average cost at equilibrium is 3/2.

Suppose we add a new costless connection between the nodes r1 and r2, allowing
re-routing of the traffic. We could expect the average cost to decrease, or at
least remain the same:
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Figure (1.22) – A costless route is added between r1 and r2.

However, now the equilibrium is reached with all players going through the
orange path, incurring in a higher average cost of 2!

This is an example of the so-called Braess paradox.

Regarding this kind of problem, a more general result can be proven. In any Generalization to
graph with linear
costs

network where latencies (costs) are linear in the occupancy (congestion), the
price of anarchy is always 4/3. Intuitively, this is because when confronted
with two choices, all selfish users take the better one, leading to an overload of
paths. So, the price of anarchy is an intrinsic property of the problem, it does
not depend on the graph’s topology.

1.7 Generalized Nash Equilibrium
(Lesson 7 of
19/10/20)
Compiled: January
1, 2021

As it was discussed previously, there are games that do not seem to have a Nash
Equilibrium.
For example, consider the Odds & Evens game. Here each player bets on a
result (Even or Odd), and we denote the player with their bet. Then, they can
play an odd number (0) or an even one (1). The parity of the sum of the two
numbers determines the winner, who gains 4 points, while the other loses 4
points.

P =

Even
0 1

O
dd

0 −4, 4 4,−4
1 4,−4 −4, 4

Here, there is no strategy profile in which all players are choosing a best reply,
because one will certainly lose and regret their action.

Note that the problem lies in the uncertainty intrinsic in this kind of game,
which effectively simulates a coin toss. So, to extend the concept of Nash
Equilibrium also to these situations (which is desirable if we want to use it as a
sort of predictive tool), we need to allow strategies involving randomness, i.e.
mixed strategies.

As a start, let’s extend the game, allowing each player to make an “intermediate”
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move 1/2, resulting in an intermediate outcome between the two alternatives:

P =

Even
0 1/2 1

O
dd

0 −4, 4 0, 0 4,−4
1/2 0, 0 0, 0 0, 0

1 −4, 0 0, 0 −4, 4
(1.8)

In this extended game, there is a Nash Equilibrium, which is (1/2, 1/2).
Let’s try to formalize this. First, given a non-empty discrete set A, a probabil-
ity distribution over A is a function p : A→ [0, 1] satisfying the normalization
constraint: ∑

x∈A
p(x) = 1 (1.9)

A specific probability distribution can be represented as a vector p = (p(a1), . . . , p(an)),
where a1, . . . , an are all the elements of A. Since the entries of p sum to 1 (due
to (1.9)), p belong geometrically to a simplex, which is denoted by A ∈ ∆A.
Then, for a normal form game (S1, . . . ,Sn;u1, . . . ,un), a mixed strategy for Mixed strategy

definitionplayer i is defined to be a probability distribution mi : Si → [0, 1] over the
set Si.
Expanding the notation, this means that i chooses strategies in Si = (s(1)

i , . . . , s(n)
i )

with probabilities (mi(s(1)
i ), . . . ,mi(s(n)

i )). In other words, a player “makes use
of a random number generator” for choosing their strategy1.
The expected utility for player i is then a function over all the probability Expected utility
distribution of all players, i.e. ∆S1×· · ·×∆Sn, mapping a vector of distributions
(m1, . . . ,mn) to a number:

ui(m1, . . . ,mn) =
∑
s∈S

m1(s1) ·m2(s2) · · · · ·mn(sn) · ui(s)

where ui : S ≡ S1 × · · · × Sn is the utility function for player i. In other words,
we are summing the utilities for all possible strategy profiles, weighted by the
likelihood that the players actually play them.
Note that here we are assuming all choices to be independent (as it happens
in a static game of complete information).
Now, let’s consider again the Odds & Evens game, allowing players to play
mixed strategies. Suppose that Odd plays 0 with probability q, and Even plays
0 with probability r. Then the weighted payoffs are:

P =

Even
0

(prob r)
1

(prob 1− r)

O
dd

0
(prob q) −4qr,4qr 4q(1−r),−4q(1−r)

1
(p. 1− q) 4(1−q)r,−4(1−q)r −4(1−q)(1−r),4(1−q)(1−r)

1∧How can this be rational? Imagine like this: a player makes a choice by drawing a card
from a deck (e.g. in Magic the Gathering). They cannot choose which card to draw, but they
(rationally) constructed the deck so that the probability distribution of the drawn card is
determined by them.
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This is the representation of a single strategy profile m = (m1,m2) = (q, r)
(it is not the normal form!). The expected payoff for Odd is:

〈uOdd〉 = −16qr+ 8q+ 8r− 4 = −4(2q− 1)(2r− 1)

For even, observe that all payoffs are the same but with opposite sign, and so
〈uEven〉 = −〈uOdd〉.

The normal form for the game would be an infinite matrix with the expected
payoffs for all values of (q, r) ranging from (0, 0) to (1, 1). Basically it is the
same thing as (1.8), with all other possible intermediate states.

Degenerate mixed strategies (i.e. with the probability of one strategy being 1, Pure strategies as
degenerate mixed
strategies

and all the others 0) are pure strategies.
Formally, we define the support of a mixed strategy mi ∈ ∆Si as the set of
strategies with non-zero probability: {si ∈ Si : mi(si) > 0}. A pure strategy is
just a mixed strategy with singleton support. So, si ∈ Si can be identified with
mi such that p(si) = 1 and p(sj) = 0 for all sj 6= si (degenerate probability
distribution).

We are now ready to generalize all the previous definitions.
Consider a game G = {S1, . . . ,Sn;u1, . . . ,un}. Strict/Weak

domination
• If m′i,mi ∈ ∆Si, m′i strictly dominates mi if:

ui(m′i, m−i) > ui(mi, m−i) ∀m−i

• We say that m′i weakly dominates mi if:

ui(m′i, m−i) ≥ ui(mi, m−i) ∀m−i

∃m−i s.t. ui(m′i, m−i) > ui(mi, m−i)

So, generalization is immediate: we need just to replace pure strategies with
distributions (mixed strategies), and Si → ∆Si.
However, verifying these inequalities becomes much more complex, since now:

m−i ∈ ∆S1 × · · · × ∆Si−1 × ∆Si+1 × · · · × ∆Sn

which is a continuous set, and so the possible values to check are infinite!

Fortunately, we can restrict m−i to just pure strategies, achieving the same
results:

• If m′i,mi ∈ ∆Si, m′i strictly dominates mi if:

ui(m′i, s−i) > ui(mi, s−i) ∀s−i ∈ S−i

• We say that m′i weakly dominates mi if:

ui(m′i, s−i) ≥ ui(mi, s−i) ∀s−i ∈ S−i
∃s−i ∈ S−i s.t. ui(m′i, s−i) > ui(mi, s−i)
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In other words, we can limit our search to only pure strategies of the opponents.
Intuitively, this is possible because ui is a linear combination of the utilities
computed over pure strategies, since it is an expected value. So, if an equality
holds for all pure strategies, it holds for all mixed strategies too.
Then, a joint mixed strategy m ∈ ∆S1 × · · · × ∆Sn is said to be a Nash Generalized Nash

EquilibriumEquilibrium if all players are choosing best replies:

∀i, ui(m) ≥ ui(m′i, m−i) ∀m′i ∈ ∆Si

Applying this definition to the Odd/Even game, recall that the payoff for Odd
is −4(2q− 1)(2r− 1), and the opposite for Even. If q = 1/2 or r = 1/2, both
players have payoff of 0. If they both play 1/2, then no one has an incentive to
change the action, because any unilateral change leads to the same payoff of 0
for both.

Figure (1.23) – Nash Equilibrium for the Odd/Even game.

�� ��Exercise 1.7.1:

Prove that (1/2, 1/2) is the only Nash Equilibrium of the Odd/Even game.
Hint: consider three cases where the payoff of player Odd is < 0, > 0 or = 0,
but the joint strategy is not (1/2, 1/2). Show that in all of them there is a
player having an incentive in changing strategy.

1.8 IESDS and Mixed Strategies
In practice, we have shown that Iterated Elimination of Strictly Dominated
Strategies selects a Nash Equilibrium of a game. However, if there are no strictly
dominated strategies, this method can not be applied.
For example, consider the following game:

Figure (1.24) – No strategy strictly dominates another, so no elimination can happen in
IESDS.
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Fortunately, mixed strategies can solve these problems.
In this case, focus on strategy R. According to the previous definitions, it is
not dominated by L or C, since there the payoff could be 0 < 1. However, it
seems inefficient to play R, since the expected payoff given by L and C is bigger.
For example, we can consider the strategy m = 1/2L+ 1/2C, for which the
expected gain uB = 2 regardless of A’s move, which is strictly more than 1, the
gain obtained by playing R.
Thus, if we allow mixed strategies, R is strictly dominated by m, and so we can
eliminate it:

Figure (1.25) – R is dominated by m = 1/2L + 1/2C.

From there, we can make further eliminations. First, T now dominates D, and
so D can be eliminated. Then, L dominates C. The only remaining strategy
profile is the Nash Equilibrium:

Figure (1.26) – Nash Equilibrium with mixed strategies.

In general, we can extend the theorems about IESDS to IESDSm (IESDS +
mixed strategies). In particular:

• Theorem. Nash equilibria survive IESDSm, i.e. they are selected by the
method.

• Theorem. The order of eliminations in IESDSm is irrelevant.

Note that here we are always using strict dominance, not weak, which guaran-
tees the order independence. In fact, weakly dominated strategies can be Nash
equilibria or part of the support of a Nash equilibrium.

An interesting result is that, if all players do not have any incentive to unilaterally
change their play to another pure strategy, then they are playing a Nash
Equilibrium (and clearly viceversa).
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Theorem 1.8.1. Given a game G = {S1, . . . ,Sn;u1, . . . ,un}, and a joint mixed
strategy m, the following statements are equivalent:

• The joint mixed strategy m is a Nash equilibrium

• For each i:

ui(m) = ui(si, m−i) ∀si ∈ support(mi)
ui(m) ≥ ui(si, m−i) ∀si 6∈ support(mi)

In particular, if a player deviates from Nash Equilibrium to a pure strategy,
their payoff does not change (and so they have no incentive to deviate in the
first place), and in particular it does not get worse. This theorem explains that
the situation of fig. 1.23, with the row and column full of zeros merging in the
middle, is actually general, not a coincidence.

Again, the intuition comes from the fact that ui(m) is a linear combination of
the payoffs given by the pure strategies in the support of m:

Em[ui] =
∑
ak∈Si

E[ui|si = s1]︸ ︷︷ ︸
ui(si,m−i)

P[si = ak]

Now, the weight P[si = ak] are controlled by player i, who seeks to maximize
E[ui]. Assuming they play a best reply mi, then we expect that any unilateral
change does not increase E[ui]. Suppose that there is a unilateral change that
decreases E[ui]. This means that, only by changing the weights, we can make
ui lower. So, there must be a worse pure strategy for i, ui(si, m−i) < ui, which
we are giving more weight. However, probability is conserved: all weights must
some to 1. So, the weight we are giving to this worse strategy, is weight that
we are subtracting from some better strategy. But this means that we are not
playing the best possible reply!
In other words, if a perturbation of mi can decrease ui, then there is an opposite
perturbation that can increase it, and viceversa. So, if ui cannot increase given
a perturbation, it cannot decrease too, meaning that it must remain constant.
For example, suppose si ∈ {1, 2}, and:

ui = w1 · 1 +w2 · 10 w1 +w2
!
= 1

Starting with (w1,w2) = (1/2, 1/2), we can see that going to (3/4, 1/4) lowers
ui, and conversely (1/4, 3/4) rises it. But if we assume that ui cannot be made
bigger, the only way is to have something like this:

ui = w1 · 5 +w2 · 5

This theorem shows also that the Nash Equilibria found from the previous
definition (pure strategies) are compatible with this new definition (mixed
strategy). In other words, if s∗ is a NE, also the corresponding (degenerate) m∗
will be a NE.
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1.8.1 Examples
Recall the game of the “battle of sexes”:

P =

Brian
R S

A
nn

R 2, 1 0, 0
S 0, 0 1, 2

This game has two pure NEs: (R,R) and (S,S).
We can show that there is also a mixed NE. Suppose Ann (or Brian) plays R
with probability q (or r). Then their expected payoffs are:

uA(q, r) = 2qr+ (1− q)(1− r) uB(q, r) = qr+ 2(1− q)(1− r) (1.10)

Assume (a, b) is a mixed NE. Since it is not pure, the strategies are combinations
of both R and S, meaning that the support of both a and b is {R,S}. Then,
from the theorem:

uA(a, b) = uA(0, b) = uA(1, b)

Inserting (1.10) we get:

2ab+ (1− a)(1− b) = 1− b = 2b

leading to b = 1/3. From there, or by using uB(a, 0) = uB(a, 1), we can then
find a = 2/3. The asymmetry is given by the fact that they each have a different
preference for the positive outcomes.

1.9 Nash theorem
Do mixed strategy allow finding at least one Nash equilibrium in any game?
The answer is affirmative, as it was proved by Nash (1950).

Theorem 1.9.1. Every game with finite Si has at least one Nash equilibrium
(possibly involving mixes strategies).

(But actually finding it/them could be difficult).
Before proving this theorem, it is worth gaining some more understanding on
mixed strategies. Are they just a mathematical postulate needed for the nice
property of having Nash equilibria, or is there some physical meaning? Surely
we do not expect rational players to follow the toss of a coin!
Fortunately, there are several possible interpretations:

• Iterated games. Suppose a game is repeated M times, forgetting every-
thing after each iteration (memoryless process). Here, playing a mixed
strategy means fixing the frequency of each pure strategy during the whole
run. So, at each specific game the choice is randomized, but in the long
run there is a very clear trend.
The problem in this interpretation is that, in reality, iterated games do
involve memory, and so strategies should take into account past iterations.
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• Fuzzy values. Mixed strategies encode lack of decision, i.e. the need to
avoid sticking to just one choice because there is some intrinsic randomness
in the game.

• Beliefs. In modern game theory, the uncertainty of mixed strategies
reflects the uncertainty the opponent has about the choice of the other
player. For example, in the Odd/Even game, at any moment each player
knows which (pure) move they are going to make. However, they act so
that their opponent cannot anticipate their beliefs. In other words, there
is no way for player B to predict what A will play, and viceversa, even
though they both have in mind some particular, specific and concrete move.
Nonetheless, they both know that they don’t know, which is sufficient to
find a strategy to reach equilibrium.

(Lesson 8 of
23/10/20)
Compiled: January
1, 2021

In summary, at the start we interpreted strategies as just actions, which was

Different definitions
for strategies

effectively a bit redundant. Truly, strategies should be interpreted as plans of
actions. The distinction becomes clear for mixed strategies: an action can’t
be random, yet a strategy can involve randomness! But while I know that my
opponent will choose an action (a pure strategy), if I do not have any way to
predict it perfectly, then I may still form some belief about its action, which
is a probability distribution. So, players actually perform pure strategies, but
assume that each other are playing mixed strategies.

This change of definition may appear unintuitive, and confusing. However, it
was intended from the start. The idea is similar to that of real numbers. Values
with infinite non-repeating digits are not intuitive, but they are needed to find
solutions for certain equations, and that’s why we discuss them. Yet, to ease
their introduction, we start by explaining integers, which are a “special case” of
real numbers which well agrees with our innate numerical intuition. We can
think about mixed strategies as strategies “in-between” pure strategies, as real
numbers lie “in-between” integers.

Before proving Nash theorem, we recall the previous definitions of beliefs and Introduction
best-replies, which are the “ingredients” for finding Nash equilibria, and explicitly
restate them in the general case with mixed strategies. Then, we will compute a
mixed Nash equilibrium in an example, and introduce a visualization that will
give some intuition about the proof.

First, a belief of player i is a possible profile of their opponents’ strategies, Belief
i.e. an element of the set ∆S−i (all strategy profiles, except that of the current
player i).

A best-response is a correspondence, i.e. a “mapping that can be one to many”, Generalized best
responsesBR : ∆S−i → ρ(∆Si), where ρ(∆Si) is the set of parts of ∆Si, i.e. its elements

are subsets of ∆Si. Thus, BR associates an opponents’ strategy m−i ∈ ∆S−i
to a subset BR(∆S−i) ⊆ ∆Si of the i-th player’s strategies ∆Si. If this were a
function, i.e. a one-to-one mapping, then BR(∆S−i) would always be a singleton,
i.e. a set containing just one element.
This correspondence is such that each mi ∈ BR(m−i) is a best response to
m−i, that is a “good counter-action” to m−i.
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For example, consider the following game:

P =

Bea
F (r) G (1−r)

A
rt U (q) 6, 1 0, 4

D (1−q) 2, 5 4, 0
(1.11)

Here there is no clear “best strategy” to choose. Then, Bea ignores what Art
will play, but being rational she assumes he will play U with probability q.
Similarly, Art thinks Bea will play F with probability r.

Suppose that, for some reason, Bea is known for always playing F , meaning
that r = 1. In this case, Art’s best response is clearly U , which means q = 1.
Let’s generalize this to a generic fixed r, to see what is the best response Example: mixed

Nash equilibriumavailable for Art. His expected utility for option D is:

uA(D, r)︸ ︷︷ ︸
Utility for Art
playing D

= 2r︸︷︷︸
Bea plays F

+ 4(1− r)︸ ︷︷ ︸
Bea plays G

And similarly, for U we have:

uA(U , r) = 6r

We can compare these two quantities:

UA(D, r) = −2r+ 4 > 6r = uA(U , r)⇔ r <
1
2

So, if r < 1/2, D is the best response, and if instead r > 1/2, U is the best
response. If r = 1/2, the two are equivalent.
We have found that Art’s best response depends on the parameter r, meaning
that the probability q that Art will play U , depends on r, and we denote it
with q∗(r). From the previous analysis:

q∗(r) =

0 r < 1/2

1 r > 1/2

Similarly, this same computation can be done from Bea’s point of view, obtaining:

uB(q,F ) = q+ 5(1− q) uB(q,G) = 4q ⇒ r∗(q) =

1 q < 5/8

0 q > 5/8

Now, a Nash Equilibrium is a situation in which each player has chosen the
best response to the other player’s choice. So, it is the value (q, r) that belongs
to both graphs q∗(r) and r∗(q), i.e. to their intersection. Visually, if we choose
q and r as axes, q∗(r) and r∗(q) will appear as:
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Figure (1.27) – Mixed Nash equilibrium as the intersection of the best response functions
of the two players.

In particular, note that all points at r = 1/2 (or at q = 5/8) are best responses
for Bea (or Art).

Figure 1.27 gives an intuition about one way to prove Nash theorem! The idea is Proof: intuition
that each graph must change from 0 to 1, otherwise one of the two strategies is a
constant 0, and so it is strictly dominated and not viable. But then, there must
be an intersection between the two, since they are continuous lines, meaning
that they traverse all points in [0, 1].
Note that there could be more complex situations, where the lines go “up and
down” multiple times. In these cases there are multiple intersections, and so
multiple Nash equilibria. For example:

P =

Brian
R S

A
nn

R 2, 1 0, 0
S 0, 0 1, 2

Here:

uA(R, r) = 2r, uA(S, r) = 1− r ⇒ q∗(r) = 1− h(r− 1/3)
uB(q,R) = q, uB(q,S) = 2(1− q)⇒ r∗(q) = 1− h(q− 2/3)

and the graphs look like this:

Figure (1.28)

There are 3 intersections (Nash equilibria): (r, s) = (0, 0), (1/3, 2/3) and (1, 1).
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Proof. We are now ready to provide a formal proof. Consider a game G written
in normal form G = {S1, . . . ,Sn;u1, . . . ,un}. The best response of player i
is the correspondence BRi : ∆S1 × · · · × ∆Si−1 × ∆Si+1 × · · · × ∆Sn → ρ∆Si,
where ρ∆Si is the set of parts (subsets) of ∆Si, and BRi(m−i) = {mi ∈
∆Si : ui(mi, m−i) is maximal}. For example in (1.11) BRArt(r = 2/3) =
{q∗(2/3)} = {1} ≡ {U}.

Note that BRi are sets. So, if we want to pick a best response for each player,
we can consider a vector m = (m1, . . . ,mn) where mi ∈ BRi. In general, each
BRi can have more than 1 element, and so all possible combinations of elements
chosen from each set are contained in the cartesian product of these sets. We
denote it as BR : ∆S → ρ∆S, defined by:

BR(m) = BR1(m−1)× · · · ×BRn(m−n)

In other words, given a strategy m for all players, the elements of BR(m) are
global strategies in which each player i is choosing their best response to the
opponents actions m−i. But if everybody is already playing a best response
m, i.e. they are in a Nash equilibrium, then m ∈ BR(m). Thus:

m is a Nash Equilibrium ⇔m ∈ BR(m)

Following again the example from (1.11), recall that at equilibrium (r∗, q∗) =
(1/2, 5/8). Note that, if r = 1/2, then Art can play any move (or mixed
strategy) and his expected utility will not change. The same happens for Bea
when q = 5/8. Thus, in this case BR((r∗, q∗)) consists of all the possible mixed
strategies available by both players! This, of course, includes (r∗, q∗).

We can think asBR(m) as a “transformation”, in which each player is improving
their action. Then, the Nash Equilibrium is a fixed point of BR: in this case
there is no way for any single player to “improve” their action anymore, and so
the best possibility is to keep playing the same move.

Now, any player has at least a best response, and so BRi(m−i) is always
non-empty. Moreover, it must contain at least a pure strategy. In fact, we have
seen before that mixed strategies must be “intermediate” between (i.e. linear
combination of) two best responses.

An important existence theorem regarding fixed points is Brouwer’s Fixed
Point Theorem. In its simplest form, it states that if f(x) is a continuous
function from a closed real interval I to itself (I → I), then there exists a fixed
point: ∃x∗ ∈ I s.t. f(x∗) = x∗.
This can be seen as a generalization of Bolzano-Weierstrass theorem. For
example, consider the interval I = [0, 1]. Searching for a x∗ s.t. f(x∗) = x∗ is
the same as searching for an intersection with the line y = x. Since f(x) ∈ [0, 1]
(because f : I → I), there are two possibilities:

• f(0) = 0 or f(1) = 1 (or both). Immediately we have x∗ = 0 or x∗ = 1.

• If the previous option does not hold, then f(0) > 0, and f(1) < 1.
Subtracting x, this means that f(0)− 0 > 0, and f(1)− 1 < 0. So, the
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function f(x)− x is positive at x = 0, and negative at x = 1. Since
it is continuous, by the Bolzano-Weierstrass theorem, there must be a
x∗ ∈ (0, 1) s.t. f(x∗)−x∗ = 0⇒ f(x∗) = x∗, which confirms the theorem.

However, we can’t directly apply this result to our case: we are not working
on real numbers, but on strategy sets, and we do not have functions, but
correspondences (i.e. one-to-many). So, we need a generalization of this
theorem, which goes under the name of Kakutani’s Fixed Point Theorem.
It states that:

• If A is a non-empty, compact, convex subset of Rn

• If the correspondence F : A→→A is such that:

– For all x ∈ A, F (x) is non-empty and convex
– If {xi}, {yi} are sequences in Rn converging to x and y respectively,

then yi ∈ F (xi) ⇒ y ∈ F (x) (i.e. F has a closed graph, meaning
that it contains its limit points)

then there exists a fixed point x∗ ∈ A such that x∗ ∈ F (x∗). (Note how we say
∈ and not =, because we are dealing with correspondences!)
We will not prove this, but just observe that all the hypotheses hold for our
case. This follows naturally from the fact that strategies are really probability
distributions, i.e. sets of numbers that must sum to 1. For example, any
combined strategy m in example (1.11) could be uniquely mapped to a tuple
(q, r), with 0 ≤ q, r ≤ 1. This forms a set A ⊂ Rn which is clearly non-empty,
compact and convex (it is a square). Then BRi(m−i) is non-empty (there is
always a best response), and convex (if it contains two pure strategies, then
all the mixed strategies in-between are also best responses). The closed graph
property is satisfied by observing that all points in the curve 1.27 belong to
the graph. For example, consider a sequence (x) {ri} converging to a r̄ < 1/2.
The corresponding y is a sequence of 0s (BRArt(ri) = {0}) which clearly
converges to 0 3 BRArt(r̄) = {0}. The same happens for a r̄ > 1/2, but
now with BRArt(r̄) = {1}. The only interesting part to check is for a limit
r̄ = 1/2. In this case, the ri can be either from the left or from the right,
leading to yi = BRArt(ri) that are either all 0s or all 1s. However, note that
BRArt(1/2) = [0, 1] (i.e. 0, 1 and all the in-between values2), which contains
both 0 and 1. So, the convergence property is satisfied.
Of course, the last two properties can be generalized to all players, i.e. to the full
BR, satisfying the theorem’s requirements. Then, this guarantees the existence
of a fixed point for BR, which is nothing else than a Nash equilibrium.

1.10 Finding Nash Equilibria with time
How to find Nash Equilibria in practice? One way is to add some kind of “time
evolution” to the static game, which converges to the desired equilibrium.

2∧Think of this part of the graph as an actual line. This is in fact permitted by BR (i.e.
q∗(r) in the example) not being a function, but a correspondence, meaning that it can have
multiple values! If it were a function, we would have needed a discontinuous jump.
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This is the idea of fictitious play (G.W. Brown, 1951), where we allow players Fictitious play
to change their moves. In practice, we start with a global strategy m, then
choose a player i at random, who gets a chance to play again, performing a best
response to all the other players’ moves m−i, regarded as fixed.
We then proceed iteratively, evolving m by making random players move again,
until a stationary state is achieved.

Note that this procedure denies “full rationality” of players. If everyone already
has the correct beliefs about the others, then they will play the best possible
response, and have no regrets, i.e. no incentive to change their move.

In any case, we can see that Nash equilibria are absorbing states. That is, at
a Nash equilibrium m∗, all players have no regrets, and so nobody will change
their move, basically ending the evolution.

We can then ask if, by starting from any m, we can end up in a Nash equilibrium.

This (unfortunately) does not happen. For example, there are games (such as
Rock/Paper/scissors) in which the evolution of m is cyclical, and it reaches no
fixed state.

However, fictitious play does converge in some cases:

• If the game can be solved by IESDS

• Potential games, which will explored in the next section.

• Other cases, such as 2×N games with generic payoffs.

The advantage of fictitious play is that it is a distributed algorithm, i.e. it
does not require to synchronize all players’ moves. It is then a good way to
implement a program to find a Nash equilibrium.

1.10.1 Potential Games
Potential Games are a special class of static games of complete information
that are “solvable” through fictitious play.
To define them, we first need some notation. Let’s start with a game in normal
form G = {S1, . . . ,Sn;u1, . . . ,un}, and denote S ≡ S1 × · · · × Sn. A function
Ω : S → R is an (exact) potential for G if:

Ω(s′i, s−i)−Ω(si, s−i) = ui(s′i, s−i)− ui(si, s−i) = ∆ui

In other words, if player i changes their move from si to s′i, then they will have
a difference in (expected) utility ∆ui of Ω(s′i, s−i)−Ω(si, s−i). Note that Ω
is the same for every player, which is quite a strong requirement.
In practice, it suffices that the difference in potential is proportional to ∆ui,
with a coefficient wi > 0 that is player-specific. In this case, we call Ω : S → R

a weighted potential:

Ω(s′i, s−i)−Ω(si, s−i) = wi∆ui w = {wi > 0}

54



Even more in general, we can consider a ordinal potential Ω : S → R for G,
which encodes just the ordering of utilities, i.e. such that ∆Ω is a monotonic
difference of ∆ui, but not necessarily linear:

Ω(s′i, s−i) > Ω(si, s−i)⇔ ui(s′i, s−i) > ui(si, s−i)

A potential game is a game G that admits a potential. Local maxima of
the potential are equilibria for the game.
So, the main idea is that if G = {S1, . . . ,Sn;u1, . . . ,un} has an ordinal
potential Ω, it is immediate that its set of Nash equilibria is the same of
G′ = {S1, . . . ,Sn; Ω, . . . , Ω}. In other words, all the players want to maxi-
mize the same potential, reducing a multi-utility optimization to a single-goal
optimization.
As an example, note that the Prisoner’s Dilemma has an exact potential:

P =

Bob
M F

A
lic
e M −1,−1 −9, 0

F 0,−9 −6,−6
⇒ Potential =

Bob
M F

A
lic
e M 0 1

F 0 4
(1.12)

Another example is Cournot oligopoly, for which there is an ordinal potential
function:

ui(qi, qj) = qi(a− qi − qj − c)⇒ Ω(qi, qj) = qiqj(a− qi − qj − c)

Theorem 1.10.1. Every finite ordinal potential game has (at least) a pure Potential games
and pure Nash
equilibria

strategy Nash equilibrium (which can be found deterministically).

Proof. The idea is to use fictitious play. At each move, players maximize their
utility, and so the potential. Since the strategies are finitely many, a local
maximum will be reached, which is a (pure) Nash equilibrium.

Other kinds of games that allow a potential are congestion games, where
we try to minimize congestion, or (anti)coordination games, where higher
payoffs are assigned to players that make (or not) the same choice (so, there is
some sort of common goal).
In fact, it can be shown that any potential game is a sum of a pure coordina-
tion game and a dummy game. Here, a dummy (or pure externality) game
is such that for all s−i, ui(si, s−i) = ui(s′i, s−i), i.e. where the payoff of each
player i only depends on the strategies s−i of the opponents.
For example, for the Prisoners’ Dilemma:

P =

Bob
M F

A
lic
e M −1,−1 −9, 0

F 0,−9 −6,−6
=

Bob
M F

A
lic
e M −1,−1 0, 0

F 0, 0 3, 3︸ ︷︷ ︸
Coordination

+

Bob
M F

A
lic
e M 0, 0 −9, 0

F 0,−9 −9,−9︸ ︷︷ ︸
Dummy
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In this case, players would want to collaborate (coordination part), but a player
confessing gives a huge penalty (−9) to the opponent (dummy part). This shifts
the Nash Equilibrium to the “suboptimal” (i.e. Pareto inefficient) (M ,M).

1.10.2 Computational Complexity
While at least a Nash Equilibrium must exist, actually finding it could be
difficult.
There are specific cases where efficient algorithms (such as fictitious play) can
be used. However, in general, it is a hard problem, as demonstrated by
Papadimitriou et al.
More precisely, it belongs to a complexity class called PPAD, which is somehow
intermediate between P and NP.

1.11 Exercises
(Lesson 9 of
26/10/2020)
Compiled: January
1, 2021

�� ��Exercise 1.11.1 (Find Nash Equilibria):

Consider the following static games of complete information played by A
and B, where the normal-form representation of the game is given. For all
of them, find the entire set of Nash equilibria.
We start from:

P =

B
f g

A

F 2, 4 0, 1
G 1, 6 3, 5

(1.13)

Note that g is a strictly dominated strategy for player B, because 4 > 1
and 6 > 5, and so it can be removed from the game. Then we proceed with
IESDS, removing G for player A. The only remaining strategy, i.e. (F , f),
is the Nash equilibrium.
Consider now:

P =

B
f g

A

F 0, 4 3, 0
G 6, 0 0, 5

(1.14)

Here IESDS can’t be applied. In (F , f), A would want to play G, but here B
would want to play g, and now A wants to change to F again, and then B goes
back to f , cycling forever. This is similar to what happens in the odds/evens
game, and in fact this is in the same category of discoordination games.
So, there is no Nash equilibrium in pure strategies. However, the must be a
Nash equilibrium in mixed strategies.
To find it, we can use the indifference theorem, which says that in a mixed
Nash equilibrium, changing the combination of pure strategies in its support
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must not change the payoff. Denote with α the probability that A plays
F . Given that, B must be indifferent when answering with f or g, because
the support of B’s mixed strategy is {f , g} (a proper mixed strategy in this
game must involve both pure strategies). So, equating the expected payoffs
for playing f or g:

α · 4 + (1− α) · 0 !
= α · 0 + (1− α) · 5⇒ α =

5
9

Similarly, let β be the probability of B playing f , and repeating the same
reasoning from the point of view of A, we get:

β · 0 + (1− β) · 3 !
= β · 6 + (1− β) · 0⇒ β =

1
3

Moving on to the next game, consider:

P =

B
f g

A

F 9, 3 2, 2
G 0, 0 3, 9

(1.15)

This is a coordination game (similar to the Battle of Sexes one), since
the highest payoffs are the ones where both players choose the same move.
Here there are two Nash equilibria. To find them, let’s highlight the best
responses available to each player. A considers F if B plays f , and G if B
plays g. Similarly, B chooses f if A plays F , and g if A plays G:

P =

B

f g

A

F 9, 3 2, 2
G 0, 0 3, 9

The strategies for which both players are playing a best response are, by
definition, Nash equilibria.

Moreover, there is a mixed Nash equilibrium, which can be found by setting
indifference for player B:

uB(α, f) !
= uB(α, g)⇒ 3α = 2α+ 9(1− α)⇒ α =

9
10

And the analogous computations for player A lead to β = 1/10.

Finally, we consider:

P =

B
f g

A

F 2, 2 0, 6
G 6, 0 1, 1

(1.16)
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which is an example of Prisoners’ dilemma. By highlighting the best responses
(or proceeding through IESDS) we find that (1, 1) is the only pure Nash
equilibrium.

Just to see what would happen, let’s search for a mixed Nash equilibrium
(which we expect not to be there). By setting indifference for A:

2β = 6β + 1− β ⇒ β = −1
3

which is not acceptable, since β ∈ [0, 1] because it is a probability.

�� ��Exercise 1.11.2 (Mixed Nash equilibria):

Consider the following static game of complete information played by A and
B, where the normal-form representation is given below:

P =

B
J K L M

A

X 6, 7 5, 5 3, 8 8, 1
Y 4, 9 9, 2 0, 4 2, 3
Z 8, 4 2, 8 4, 2 3, 6

(1.17)

1. Prove that there is no Nash equilibrium in pure strategies.

2. Prove that these (mA,mB) are Nash equilibria in mixed strategies:

• mA = (2/3, 0, 1/3), mB = (5/11, 4/11, 2/11, 0)
• mA = (0, 4/11, 7/11), mB = (7/11, 4/11, 0, 0)

3. List all the joint pure strategies that are Pareto optimal.

Solution.

1. One possibility is to go through all 12 strategies, and see that each one
of them leaves some player with regrets. A quicker way is to highlight
the best responses.

P =

B
J K L M

A

X 6, 7 5, 5 3, 8 8, 1
Y 4, 9 9, 2 0, 4 2, 3
Z 8, 4 2, 8 4, 2 3, 6

(1.18)

Since there is no entry in the table with both payoffs highlighted, there
is no Nash equilibrium in pure strategies.
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2. Note that finding mixed Nash equilibria in a such a game is, in general,
difficult, given it is bigger than 2× 2. One possibility would be to use
the indifference principle. However, this requires to known beforehand
the support of the mixed state we are searching. In the 2× 2 case, there
is only one possibility, with both pure states belonging to the support.
However, here there are more possible combinations (for example, A
mixing X and Y , and B mixing K and M , and so on...), and each
should be checked independently. In general, many of them will have
no solution. Thus, the process becomes tedious very quickly.

Fortunately, in this case we are just required to prove that certain
mixed strategies are equilibria. So, we do know the support of these
mixed strategies.

• Here mA has support {X,Z}, and so we impose that X and Z
give the same payoff against mB. We also need to check that
Y gives a ≤ payoff than the others (otherwise it would be a
meaningful unilateral deviation for A).

uA(X,mB) = 6 · 5
11 + 5 · 4

11 + 3 · 2
11 + 8 · 0 =

56
11

uA(Z,mB) = 8 · 5
11 + 2 · 4

11 + 4 · 2
11 + 3 · 0 =

56
11

uA(Y ,mB) = 4 · 5
11 + 9 · 4

11 + 0 · 2
11 + 2 · 0 =

56
11

Analogously, we see that mB has support {J ,K,L}, meaning
that these pure strategies all give the same payoff against mA:

uB(J ,mA) = 7 · 23 + 9 · 0 + 4 · 13 =
18
3 = 6

uB(K,mA) = 5 · 23 + 2 · 0 + 8 · 13 = 6

uB(L,mA) = 8 · 23 + 4 · 0 + 2 · 13 = 6

uB(M ,mA) = 1 · 23 + 3 · 0 + 6 · 13 =
8
3 < 6

And this completes the proof.
• Proceeding as before, for A:

uA(Y ,mB) = 4 · 7
11 + 9 · 4

11 =
64
11

uA(Z,mB) = 8 · 7
11 + 4 · 2

11 =
64
11

uA(X,mB) = 6 · 7
11 + 5 · 4

11 =
62
11 <

69
11

And for B:

uB(J ,mA) = 9 · 4
11 + 4 · 7

11 =
64
11
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uB(K,mA) = 2 · 4
11 + 8 · 7

11 =
64
11

uB(L,mA) = 4 · 4
11 + 2 · 7

11 =
30
11 <

64
11

uB(M ,mA) = 3 · 4
11 + 6 · 7

11 =
54
11 <

64
11

3. In this case, we need to proceed by enumeration. To find the Pareto
efficient outcomes, we start from the maximum payoffs of A and B,
which happen in (Y ,G), giving (4, 9) and (Y ,K), giving (9, 2). These
are Pareto optimal, since there is no way for each player to get a higher
payoff.
We can then eliminate all strategies that are dominated by these ones,
i.e. with both payoffs ≤ than (4, 9) or (9, 2). For example, (Y ,L) gives
(0, 4) < (4, 9), and so can be removed. Similarly, (3, 8), (8, 1), (2, 3),
(2, 8), (4, 2) and (3, 6). We are left with (8, 4), (6, 7) and (5, 5). The
latter is dominated by (6, 7), and so can be removed. However, there
is no way to improve on (8, 4) or (6, 7) without some loss for a player,
and so (X, J) and (Z, J) are Pareto efficient too.

In summary, we find the following Pareto optimal strategies:

• (Y , J) giving (4, 9)
• (Y ,K) giving (9, 2)
• (X, J) giving (6, 7)
• (Z, J) giving (8, 4)

�� ��Exercise 1.11.3 (Normal Form):

Two students, Charlotte (C) and Daniel (D), need to write their MS Thesis.
They need to choose (independently and unbeknownst to each other) a
supervising professor. Three professors are available for this role: Xavier,
Yuan, and Zingberry. The utility of a student is given by the amount of
help he/she receives from the supervisor, which is quantified as 40 for Xavier,
60 for Yuan, 50 for Zingberry. However, if the two students select the same
professor as their supervisor, they only get 70% of the utility that they would
get if the professor had only one of them to supervise.

1. Write the game in normal form.

2. Find all the Nash equilibria of the game in pure strategies.

3. Find all the Nash equilibria of the game.

Solution.

1. The normal form is usually expressed as a table. Also, it can be useful
to write the payoffs diagonally, so that the payoffs of the same player
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are aligned:

P =

D
X Y Z

C

X 28 28 40 60 40 50
Y 60 40 42 42 60 50
Z 40 60 50 60 35 35

(1.19)

Note that 0.7 · 40 = 28, 0.7 · 60 = 42 and 0.7 · 50 = 35.
One way is to highlight the best responses available to each player:

P =

D
X Y Z

C

X 28 28 40 60 40 50
Y 60 40 42 42 60 50
Z 50 40 50 60 35 35

(1.20)

So two pure Nash equilibria are (Y ,Z) and (Z,Y ).
Note that the strategy X for both players is strictly dominated by the others,
and so can be effectively removed from the game. The game restricted to
{Y ,Z} is then an anti-correlation game, in which players receive a higher
payoff when they choose different strategies.
Noting that we are dealing with an anti-correlation game, we know that there
must be a third Nash equilibrium, this time belonging to mixed strategies.
Its support must be {Y ,Z}, since X is strictly dominated.

It can be found through the principle of indifference, by denoting with p

the probability that C plays Y . For symmetry, this must be equal to the
probability that D plays Y (exchanging the players does not change the
game!), which further simplifies the computations. So:

uD(p,Y ) !
= uD(p,Z)⇒ 42 · p+ 60 · (1− p) = 50 · p+ 35 · (1− p)⇒ p =

25
33

So the Nash equilibrium is (p, p).

�� ��Exercise 1.11.4 (Continuous strategies):

A strategic interaction takes place between a taxpayer T and the tax inspector
I. T is supposed to pay a share S of its income to have a net income after
paying taxes equal to R. However, T is considering two alternatives: hide
part of the taxes (H) to get an additional dishonest income of L (so the tax
paid is S −L and the net income is R+ L) or pay all due taxes in full (P ).
Player I also has two choices: check T for tax evasion (C) or do not check T
(D). Performing a check has a cost equal to E. If the tax inspector discovers
that T did not pay the tax, then the taxpayer will be fined and will have
to pay an additional amount equal to F , that goes into the inspector. The
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probability of being discovered by a tax inspector after a check is p. The
purpose of the taxpayer is to get the maximum possible amount of money.
The goal of the tax inspector is to maximize the collected amount (minus
the cost). Formalize this conflict in the form of a static game of complete
information and find its Nash equilibria.
Solution.
We start by writing the game in normal form, equating the players’ utilities
to the money they earn. First, if the taxpayer is honest (P ) and the inspector
does not check (D), we have the simplest case, in which T gets R, and I gets
S. If I does not check (D) and T hides the taxes (H), then T gets R+ L,
and I will receive less taxes, i.e. S −L. If I checks, but T is honest, then I
will lose money, getting S −E, and T will still get R.

P =

I
C D

T

H R+(1−p)L−pF
S−E+pF−(1−p)L

R+L
S−L

P R
S−E

R
S

(1.21)

The difficult part is when T is dishonest (H) and I checks (C). Here we
need to compute the expected earnings, given the probability p of detecting
the fraud. T has to pay F with probability p, but gets L with probability
1− p. So his expected reward is R+ (1− p)L− pF .
The situation is opposite for the inspector, who gets S −E by default (due
to the expense of checking), plus an additional pF − (1− p)L on average.
Note that all payoffs of I include a term S, and all payoffs of T a term R.
Given the fact that we are interested in ordinal payoffs, we can remove these
constants to simplify a bit the normal form:

P =

I
C D

T

H (1−p)L−pF
−E+pF−(1−p)L

L
−L

P 0
−E

0 0
(1.22)

In other words, setting R = S = 0 has no impact on Nash equilibria.
Depending on the values of the parameters, we have 3 possible positions for
the Nash equilibrium.

1. If the effort of checking taxes is too high (precisely, E > p(F + L)),
then there is no incentive for I to do it. As a consequence, T has the
incentive to hide taxes, and the NE is (H,D). The inequality comes by
imposing the strategy C to be strictly dominated by D. We already
have −E < 0, and so the remaining condition is:

−E + pF − (1− p)L < −L⇔ E > p(F + L)

2. Suppose that the effort of checking is sufficiently low (E < p(F + L)).
There are two possibilities:
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• The probability of T getting caught is so low that the expected
payoff of playing H is higher than that of playing P , regardless of
the response. In other words, we impose that H strictly dominates
P . L > 0 by hypothesis, and the other condition requires:

(1− p)L− pF > 0⇒ p <
L

L+ F

In this case, the Nash equilibrium is (H,C): the taxpayer is
always dishonest, and the inspector always checks.

• The probability of getting caught is sufficiently high (p > L/(L+
F )), and the cost of checking is low (E < p(F +L)). In this case,
the situation is that of a discoordination game, for which no
pure Nash Equilibrium exists. Instead, we need to search for a
mixed Nash equilibrium, in which T and I play H and C with
respective probabilities:

α =
L

p(L+ F ) ; β =
E

p(L+ F )

Note that α, β ∈ [0, 1], i.e. they are meaningful probabilities, only
if the above conditions hold.
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Chapter 2

Dynamic Games

(Lesson 11 of
03/11/2020)
Compiled: January
1, 2021

A dynamic game involves time-dependent situations, in which players take
turns to play.
As before, we will assume complete information, i.e. that everyone knows all
the payoffs, and everybody knows that they know, and so on. In other words,
the rules of the game are available to everyone, and all players act assuming
that other players know those.
However, the time dimension adds another quality to information. A player
that moves after another knows what they did play. This is very different
from the situation we analyzed in static games, where players moved simultane-
ously, without knowing beforehand their opponents’ moves. This distinction is
formalized with the following terms:

Perfect vs
Imperfect
information

• Perfect information, when a player can make a decision with full
awareness of the opponents’ moves (e.g. in chess).

• Imperfect information, when some moves are simultaneous. In these
cases, certain players may not have full awareness about other moves.
This situation appears also when there are external factors that are non-
controllable by players, such as moves “done by Nature”.

Note that this is independent of complete information. That is, there are games
of complete perfect information, and games of complete imperfect information.
As a starting example, consider the framework of the Battle of Sexes game,
where Ann and Brian agreed to meet either at the romance (R) of the sci-fi (S)
movie (with lowercase letters for Brian).

P =

Brian
r s

A
nn

R 2, 1 0, 0
S 0, 0 1, 2

(2.1)

If we treat this as a static game, we are assuming that Ann and Brian act
unbeknownst to each other, which is not very realistic.
So, let’s suppose that the two players can interact. For instance, Ann decides
which movie to see before Brian, and then calls him to communicate her proposal.
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Ann knows (complete information) that Brian’s best response is to go with her.
Thus, since Ann prefers R over S, she chooses R, anticipating Brian’s move.
Note that we need a way to order in time the actions. The normal form is then Extensive form
replaced by the game’s extensive form, consisting of the following information:

1. Normal form: set of players, and all their payoff functions

2. Time dimension: order of their move turns, actions allowed to players
when they can move (they may change at each turn), information they
have when they can move.

3. Complete information: probability of external events, and the fact
that all the above is common knowledge.

Graphically, this can be represented as a decision tree. The nodes are the Graphical
representationplayer that move, and each branch denotes a possible action. The leaves are

the payoffs for both players.

Figure (2.1) – Extensive-form representation for the Battle of Sexes dynamic game.

An extensive form game may omit some players, e.g. if they have a single Dummy players
actions. In this case, there are no nodes for a player, but they will still receive
payoffs. For them, the game is a dummy game: what they get only depends on
the action of others.

Figure (2.2) – Not all players need to have moved before payoffs are assigned. Here, for
example, C never acts, but still receives some points at the end. We say that C is a dummy
player. Also, some branches may end before others.
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On different branches, the information available to the same player is generally Information sets
different, and this can change the preferred action.

Figure (2.3) – The same player B acts differently depending on the prior choice of A,
which is known when they decide the action (r or s) to take. This difference is graphically
represented by having two distinct nodes for the same player, each in a separate branch of
the tree.

Each node has access to all the previous information, which is encoded in its
parent nodes. We can explicitly highlight this by giving a unique label to
each node:

Figure (2.4) – Player B has two distinct nodes: x1 and x2. Depending on which node he
finds himself in, his choice will be different. This more detailed notation makes this explicit,
since labels are not repeated.

So, we can think of a node as encoding the information set hi available to
the player i that is to move. For example, if the information set of B is {x2},
then they know that A has played S before.
More in general, if hi is a singleton, then the player has full awareness of all
previous moves.

If some choices are simultaneous, a player may not know at which node they are.
For example, in the original Battle of Sexes, B does not know if they are at x1
or x2, and so their information set is {x1,x2}. This is graphically represented
as follows:
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Figure (2.5) – If B does not know if he is at x1 or x2, then his information set is {x1, x2},
which is not a singleton.

Since there is no way for B to distinguish between x1 and x2 in this situation,
their strategy must be the same in both cases.
We can map each node xj to its information set hi(xj) ∈ Hi. In other words,
this maps a node (which can be identified by a sequence of moves) to the
knowledge that a player has in that node.
We assume that xj ∈ hi(xj), since the game is of complete information. This
means that a player at a certain node xj knows (for sure or with some probability)
to be at xj . Then there are two possibilities:

• hi(xj) = {xj}. In this case the player i can move knowing for sure that
they are at node xj .

• hi(xj) is not a singleton, i.e. there is another xk ∈ hi(xj) with xk 6= xj .
In this case, player i does not know for certain their node (due to some
simultaneous action), but knows they must be in some subset of the graph.
Here, the available actions A(xj) at node xj must be the same of all nodes
in the information sets (so A(xj) = A(xk)). Otherwise, since the player is
always aware of what they can do (complete information), they will have
a way to distinguish the nodes, and identify their position in the graph,
removing the original uncertainty.
This requirement can be enforced (if necessary) by adding “forbidden
actions”, which have a strongly negative payoff for all players. Thus, they
won’t ever be taken, but they “symmetrize” the graph.

The cardinality of information sets defines the perfect/imperfect nature of the
game:

• In a game of perfect information, all hi(xj) are singletons. Moreover, all
actions are decided by the players, i.e. there is not another “uncontrollable
player” (Nature) affecting the game.

• In a game of imperfect information, hi(xj) may contain multiple nodes
(there is endogenous uncertainty, i.e. “from within”, due to simultane-
ous moves), or there are external effects (choices of Nature, exogeneous
uncertainty).
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In dynamic games, actions need to account also the history of play, i.e. all Actions and
Strategiesthe traversed information sets. In other words, strategies need to specify the

reactions to all possibilities. Thus, a pure strategy in a dynamic game is
a plan of action encompassing all actions to do in response to every possible
situation. In a sense, it is a “big list of if/else statements”.
Finally, we have a clear distinction between actions and strategies: a strategy
consists of several actions, with conditions attached.

Explicitly, for the Battle of Sexes with Ann moving first, both players choose a Pure strategies
move within the set A = {R,S}. A strategy for Brian specifies which action a
to play in response to Ann’s action. So, it is a tuple (aR, aS), with 4 different
possibilities:

• (s, s): Brian goes to S no matter what

• (r, s): follows the choice of Ann

• (s, r): avoids Ann

• (r, r): Brian goes to R no matter what

Of course there are better and worse strategies, but note that while |A| = 2,
the number of possible strategies is 4, which is higher. In more complex games,
this number can quickly explode.

For example, consider the static Battle of Sexes repeated two times. In this case
Ann makes a decision at the start, and then one at the second night. However,
there are 4 possible configurations after the first night, and the second choice
can be tailored to each one of them. Thus, a pure strategy for Ann involves
5 actions (one at the start, 4 in response to the first night). Since each action is
chosen from a set of 2, the total number of available pure strategies is 25 = 32.
Note that some of these can never be played, either because they are very bad,
or because they are straight out impossible. For example, if Ann chooses R
at the start, the configuration (S,S) is impossible. Nonetheless, here we are
just defining all the possibilities, and need to include all of them as part of the
game’s definition, even those which have 0 probability.

Mixed strategies can be extended to dynamic games as probability distributions Mixed strategies
over the whole set of pure strategies.
This picture may appear a bit strange: playing a mixed strategy would mean
drawing a random plan of action and sticking to it until the end.

A more natural way of playing would be to draw probabilities at each turn,
depending on the previous actions. Intuitively, we consider a probability distri-
bution unique to the available actions at each position in the graph (or, more
generally, at each element of an information set).
Behavioral strategies are the formalization of this idea, and they assign Behavioural

strategiesprobability distributions to the actions Ai(hi) associated to each information
set hi(xj) ∈ Hi. They are mappings σi : Hi → ∆Ai(hi), where ∆Ai(hi) is a
probability distribution over Ai(hi).
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Expanding the notation, we have that σi(ai|hi) is the probability that i plays
action ai ∈ Ai(hi) given the information set hi = hi(xj), i.e. when he/she is at
any xj belonging to it.

Under certain mild assumptions, mixed strategies and behavioral strategies are Behavioural
strategies ≡ Mixed
Strategies
(Example)

equivalent. Let’s see it in an example, again using the Battle of Sexes game.

Figure (2.6)

The pure strategies available to B are {rr, rs, sr, ss}. For example, rs means:
play r if Ann plays R (the first action), and s if Ann plays S (the second).
So, a mixed strategy assigns a probability to each of them: {prr, prs, psr, pss}.

A behavioral strategy is fully defined by the σi(ai|hi), i.e. the probability
distributions over the available actions at each information set. In this case,
B has only two possible information sets, either {x1} or {x2}, which are both
singletons (perfect information). So we need to specify: σB(r|x1), σB(s|x1),
σB(r|x2) and σB(s|x2).

Now, in a mixed strategy, B picks a strategy at random at the start, and
sticks to it. Suppose Ann plays R. Brian will play r if he has picked rr, but
also if he has picked rs, because both of these strategies specify to respond
to Ann’s R with an r. Since they are disjoint events, their probabilities sum
up: σB(r|x1) = prr + prs. Similarly, σB(r|x2) = prr + psr, since now B is
responding with r to Ann’s S. And the same can be done for σB(s|x1) and
σB(s|x2). Together, these form 4 equations1 in 4 unknowns, proving a 1 to
1 correspondence between the parameters prr, prs, psr and pss of the mixed
strategy and those σB(r|x1), σB(s|x1), σB(r|x2), σB(s|x2) of the behavioral
strategy.

This reasoning can be generalized to more complex cases, such as the ones Perfect recall
with non-singleton information sets. However, we are making an implicit (yet
reasonable) assumption, which is perfect recall. This means that players
do not forget information about the past. A player may be confused about
the node in the graph they are occupying, but they know which turn they are
playing, i.e. “at which level” the node must be.

In the following, we will always assume perfect recall to hold, since this applies No perfect recall:
the absent-minded
driver

1∧Actually we should count also the normalization conditions, since these are all proba-
bilities, making the system over-determined.
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to most realistic situations. However, it is useful to see an example of situation
in which it does not hold.
Andrew is driving on the highway and is now close to home. He sees the sign of
an exit from the road, and he knows that there are 3 possibilities:

• First exit: bad neighborhood, payoff 0

• Second exit: direct way home, payoff 4

• Third exit: need to go back, very long, payoff 1.

Andrew is tired, and when he passes an exit he is unsure of which is it. Graphi-
cally, the situation looks like this:

Figure (2.7)

Andrew does not know which node he is at, and so the information set is
{x0,x1}. Note how it spans nodes at different times. Clearly, the only sensible
strategy is e, since it must be the same in both cases.
Formally, the set of strategies is only {e, s} (there is only one player and one
information set). A mixed strategy is a distribution over it. Let’s denote with p
the probability of choosing e. Then we compute the expected payoff as follows:

E[uA] = 0 · p︸︷︷︸
Exit immediately

+

Exit at the
middle︷ ︸︸ ︷

4 · (1− p)p+ 1 · (1− p)2︸ ︷︷ ︸
Exit at the end

= −3p2 + 2p+ 1⇒ Max at p∗ = 1
3

The situation changes with a behavioral strategy. Let q be the probability
that Andrew is at node x0. The strategy defines p = σ(e|{x0,x1}), i.e. the
probability of going out at a node. Now there are two possibilities: either A
starts at x0 (with probability q) or at x1 (with 1− q). So:

E[uA] = q[0 · p+ 4 · (1− p)p+ 1 · (1− p)2] + (1− q)[4 · p+ 1 · (1− p)] =
= −3qp2 − qp+ 3p+ 1

This is the same as before only if q = 1. So, without perfect recall, behavioral
strategies are more general than mixed strategies. The key point is that in a
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mixed strategy we always begin at the first turn. In a behavioral strategy, since
choices are delayed, we can consider also some prior knowledge about which
turn we are in.

After all this discussion, we can adapt the normal form also to a dynamic game.
The idea is to extend it to all pure strategies:

Figure (2.8)

This generalizes also to situations with simultaneous actions. The idea is that a
strategy must treat the same all nodes in an information set.

Figure (2.9)

Since games can involve dummy players, different extensive forms can be
represented by the same normal form:

Figure (2.10)
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2.1 Dynamic Nash Equilibria
(Lesson 12 of
06/11/2020)
Compiled: January
1, 2021

While other concepts, such as pure/mixed strategies, generalize naturally to the
dynamic case, Nash equilibria require more work.

To see that, let’s start from the most natural way to define them in this new
dynamic setting. We have seen that a game in extensive form can be rewritten
in normal form, by just enumerating all possible available strategies. In a sense,
we are dealing with “paranoid” players that plan in advance all countermoves
to their opponents.

The dynamic Battle of Sexes, when expressed in normal form, looks like this:

P =

Brian
rr rs sr ss

A
nn

R 2, 1 2, 1 0, 0 0, 0
S 0, 0 1, 2 0, 0 1, 2

(2.2)

By highlighting all the best responses, we see that there are 3 Nash equilibria:

• (R, rr): Ann plays R, Brian always plays R

• (R, rs): Ann plays R, Brian copies her move.

• (S, ss): Ann plays S, Brian always plays S.

Note that (S, rs) is not a Nash equilibrium, because in this case Ann has an
incentive to change her move to R, knowing that Brian will then follow her.

(R, rr) and (R, rs) are equivalent at equilibrium, since they only differ in Brian’s
planned response (r or s) to Ann’s S, which is never played. Still, they cannot
be really equivalent. If we are not at equilibrium, (R, rs), i.e. “Brian copies
Ann’s move”, is the rational strategy, because Brian wants to be with Ann.

Then, consider (S, ss). While it is a NE, it is not rational for Ann to play S.
She goes first, and she can get a higher payoff by choosing R, and she knows it.
Also, she is rational, and so she should maximize her payoff.

Still, the possibility that Brian plays ss must be considered. This looks like a
threat2, forcing her to play S: otherwise, both get nothing. However, it cannot
be sustained. The best move for Brian is to always copy Ann’s move (because
he wants to be with her), and so ss is non-credible: it is an empty threat.
If executed, it will damage both players. So, while (S, ss) exists, it won’t be
chosen by rational players.

Note how, in the last few paragraphs, we considered plans for moves that
never happen. These are just needed for evaluation purposes, to be sure that
everything is considered. To be rational means to think about all the possibilities,
not just the ones that seem “more likely”. If we say that a strategy is the best,
it must be so in the whole graph, not just one part of it!

2∧All of this reasoning happens in Ann’s mind, since she is very paranoid, and must
consider every possibility, as expected for a rational player.
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In summary, we see that between the 3 NE, only one will be really played:
(R, rs).
This leads us to introduce the concept of an equilibrium path. Given a Equilibrium path
joint profile of behavioral strategies m∗ = (m∗1,m∗2, . . . ,m∗n) corresponding to a
Nash Equilibrium, its equilibrium path contains the decision tree nodes that are
reached with probability > 0.�� ��Example 2 (Ultimatum game):

Two players share 10 candies as follows:

• Player 1, the proposer, presents a split

• Player 2, the responder, decides whether to accept it.

If player 2 refuses, they both get nothing.
There are 11 ways to split candies, but for simplicity we will consider just 3:
AP = {D : (9, 1),F : (5, 5),G : (2− 8)}. Since the proposer plays first, he
has only 3 (pure) strategies, one for each move.
The responder has just 2 actions, AR = {Y : (accept),N : (Refuse)}. How-
ever, since he goes second, the total number of strategies will be 3 · 2 = 6,
because each strategy must specify a response to one of the choices of P .
The game’s extensive form is the following:

Figure (2.11)

To find the Nash equilibria, we can reason as follows. Suppose P plays F .
Clearly, R’s plan must respond Y to F (accept the proposal), otherwise he
would get nothing. However, he needs to specify also the answers to other
proposals. He must plan to say N to every other split that would be better
for P , which, in this case, is D. In this way, P cannot unilaterally change
his move to D and gain an advantage: doing so would get him a rejection,
and so nothing. On the other hand, it does not matter which action R has
planned to all the other possibilities with a lower payoff for P than the
current one. So, he can say Y or N to G, and nothing will change, because
P has no incentive to move from F to G.
From this reasoning, we see that P won’t change its move. The same holds
for R: if he changes the planned response (Y ) to the current split, he will get
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nothing. Otherwise, if he unilaterally changes his response to another move,
nothing will change, because that move has not been played. So, again, no
incentive to make any different move from his part, which confirms the Nash
Equilibrium.

In summary, a full list of NEs is as follows:

• (D,Y Y Y ), and all the combinations (D,Y NN), (D,Y NY ),
(D,Y Y N).

• (F ,NY Y ) and (F ,NYN)

• (G,NNY )

But, which of these equilibria is likely to get really played?

There is only one: (D,Y Y Y ). Basically, the idea is that R always prefers
getting something rather than nothing, and P knows that. Thus, all strategies
in which R refuses a split are empty threats: they are not rational moves,
and so they are non-credible.

2.1.1 Rational Nash Equilibria
We introduced Nash Equilibria as a way to solve games, in the sense that we
expect rational players to recognize and play a NE. However, the NEs found
by analyzing the normal form of a dynamic game are not all really playable:
several of them, as seen in the above examples, seem to be irrational. So, we
need a more powerful definition.

First, we will see how to get a good (i.e. playable) solution in the first place.
Then, we will formalize that procedure in the following section, extending the
definition of a Nash equilibrium.

Let’s start with a special case of dynamic games, called sequential games, (a) Perfect
informationwhich are just dynamic games with perfect information. So, all players take

turns, there are no simultaneous decisions, all players know what happened
before their turn, and all information sets are singletons. Moreover, all of this
is common knowledge.
This kind of games can be solved by means of backward induction. Backward induction
To see that, consider a 2-players game.

1. Player 1 chooses action a1 ∈ A1.

2. Player 2 sees a1, and chooses action a2 ∈ A2. The set A2 depends on a1,
because a1 could somewhat limit decisions of player 2. This is known by
both players.

3. At the end, players receive payoffs u1(a1, a2) and u2(a1, a2).

Since both players are rational, they can always make optimal decisions. In
particular, player 2 knows always where they are in the decision tree (perfect
information) and so they can choose the optimal move here.
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But player 1 has complete information, and so they can anticipate what player
2 will do, and then optimize their choice.

So, by starting from the end and optimizing at each step we can solve the entire
game. In fact, this can be proved by a theorem:

Theorem 2.1.1 (Zermelo). Any dynamic game of perfect information has
a backward induction solution that is sequentially rational. Moreover, if
terminal payoffs are all different, the solution is unique.

In practice, consider the following.

1. When it is their turn, Player 2 sees Player 1’s move ah1 and solves the
optimization problem:

R2(ah1) = arg max
a2∈A2

u2(ah1 , a2)

2. Player 1 can anticipate that computation, and solve:

a∗1 = arg max
a1∈A1

u1(a1,R2(a1))

The outcome (a∗1,R2(a∗1)) is a Nash Equilibrium in pure strategies.

For example, consider the following game:

Figure (2.12)

At the last move, A chooses L′′, because this leads to a better payoff 5 > 3. So,
we remove the R′′ branch from the game.
Now B can choose between L′, which ends the game with (1, 1) or R′, which
again ends the game (since then B will play L′′) with (5, 0). The best choice is
L′, since 1 > 0, and we can remove R′. Then, A prefers L, because 2 > 1.

So, the final strategies are (LL′′,L′). Note that we need to specify all of them,
also the actions that never get played (since the game effectively ends after L).
Moreover, this is not a Pareto efficient solution, which would be the one with
payoff (3, 2). However, a strategy (RR′′,R′) is non-credible: if A is given the

75



opportunity to play the second move, they will play L′′, not R′′, to maximize
their payoff. B knows that, and so, if given the opportunity to play, would
choose L′, not R′. But again A knows that, and so they won’t give B the
opportunity to play, and choose L at the start!

Formally, if we know that a1 implies a response R2(a1), then any strategy Credibility
involving “if a1, then a2 6= R2(a1)” is classified as non-credible: it is an empty
treat, it won’t be chosen by rational players.

Backward induction can be generalized to the case of imperfect information, (b) Imperfect
informationwhere some players act simultaneously. For instance:

1. Players 1 and 2 choose actions a1 ∈ A1 and a2 ∈ A2

2. Players 3 and 4 observe the outcome a1 and a2, and choose a3 ∈ A3 and
a4 ∈ A4.

3. Payoffs are computed as uj(a1, a2, a3, a4) for j = 1, 2, 3, 4.

The idea is that simultaneous moves can be regarded as a static game, and we
know that rational players will opt for a Nash Equilibrium. Specifically:

1. For every choice (a1, a2) of the first two players, players 3 and 4 play a
Nash Equilibrium (a∗3(a1, a2), a∗4(a1, a2))

2. Players 1 and 2 can anticipate this (complete information), and com-
pute their payoffs as uj(a1, a2, a∗3(a1, a2), a∗4(a1, a2)). Since they are ra-
tional players, they will choose a NE a∗1, a∗2, leading to the outcome
(a∗1, a∗2, a∗3(a∗1, a∗2), a∗4(a∗1, a∗2)).

We are sure that there is at least one NE, but there could be more than one,
and so the results of this backward induction will generally be many.

2.1.2 Subgame-perfect Nash Equilibrium
From the previous section, we saw that a dynamic game can be solved by back-
ward induction, which amounts to finding the NE at the end, and “propagating
it back”. In other words, we start from the last turn, and treat it as a one-turn
separate game (a subgame), solve it, and substitute the result in the previous
turn, which can now be regarded as a one-turn separate game too. Thus, the
solution we seek has the property of being a NE for all these subgames, which
suggests a possible extension of the NE definition.

First, we need to precisely define what we mean with subgame. A (proper)
subgame G contains a single node of the (extensive-form) tree and all of its
successor nodes, with the requirement of including all nodes belonging to the
same information sets: xj ∈ G,xk ∈ hi(xj)⇒ xk ∈ G. Clearly, the whole game
is a subgame of itself.

For example, consider the following game:
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Figure (2.13)

The subtrees that start from x0, x1 and x2 are all subgames. However, we can’t
pick only x3 and its successors as a proper subgame, since x3 and x4 belong to
the same information set, meaning that we would need to include also x4 and
its successors (and the same holds for x4). In other words, subgames “can’t
break bubbles in the graph”.
In this view, the choice of A, i.e. y or z, decides which subgame (x1 or x2) will
be played by B.

Definition 1 (R. Selten). A Nash equilibrium is subgame-perfect (SPE) if Subgame-perfect
NEthe strategies chosen by the players give a NE in every subgame.

It can be shown that every finite extensive form game has an SPE.

2.2 Minimax
(Lesson 13 of
10/11/2020)
Compiled: January
1, 2021

We now take a small parenthesis to introduce an important optimization method
with many applications, also in Game Theory.
Consider a “two” player game, in which i battles against their opponents −i,
who may or may not multiple players, but we treat them like a single group.
We define a function fi : Si → R as follows:

fi(si) = min
s−i∈S−i

ui(si, s−i)

In other words, if i plays si, the worst payoff they could get (depending on the
choices from the other players) is fi(si).
So, it is convenient for i to choose s∗i that maximizes this worst outcome. This
means that i will get at least wi ≡ fi(s∗i ):

s∗i = arg max
si∈Si

fi(si)

Such s∗i (which may be not unique) is called a security strategy and assures
a payoff:

wi = max
si∈Si

min
s−i∈S−i

ui(si, s−i)
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called the security payoff, or maximin (max imum of the minimum payoffs).

A security strategy is a conservative approach, in which we expect opponents
−i to be very smart, and immediately make use of any misstep player i makes.

Similarly, suppose i plays after −i. If they play a best response, the payoff they
get is given by the function Fi : S−i → R defined as follows:

Fi(s−i) = max
si∈Si

ui(si, s−i)

Over all possible moves s−i, the minimum payoff guaranteed to i is:

zi = min
s−i∈S−i

Fi(s−i) max
si∈Si

ui(si, s−i)

and zi is called the minimax for player i (minimum of the max imum payoffs).

Note that, in both definitions, we only need the utility ui of player i, and so we
can ignore the utilities of the opponents.

As an example, consider the following game:

P =

player B

L C R fmin

pl
ay
er

A

T 5,− 3,− 4,− 3
D 2,− 6,− 1,− 1

Fmax 5 6 4
(2.3)

When computing Fmax, player A knows which move player B will play, and
thus chooses their move with maximum payoff. For example, if B plays L, then
A will respond with T , getting Fmax = 5. If A does not know what B will play,
they still know that playing T will get, at the minimum, a payoff fmin = 3.
Similarly, playing D gets 1.
Then, the maximin is 3, since it is the maximum of the minimum row values.
The minimax is instead 4, which is the minimum of the maximum payoffs.

In all cases, maximini ≤minimaxi, because in the latter case i is always playing
best responses. Moreover, it can be shown that if a joint strategy s is a NE,
then for every player i, minimaxi ≤ ui(s). In fact, in a NE all players choose a
best response. The minimax is the minimum payoff of all best responses, and
so it must be ≤ than ui computed at the NE s.

To find the Nash Equilibria, we need to know also the payoff for the other
player:

P =

player B

L C R

pl
ay
er

A

T 5, 6 3, 2 4, 1
D 2, 0 6, 8 1, 2

(2.4)

There are two NE, which are (T ,L) and (D,C). In both cases, uA > minimaxA.
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If there is only one NE, such as (D,L) in the following game:

P =

player B

L C R

pl
ay
er

A

T 3, 4 5, 0 3, 1
D 5, 4 6, 2 7, 2

(2.5)

then, for both players, the maximin must be payoff at the NE, and from the
other properties we have:

maximini = minimaxi = ui(NE)

The converse is not true: maximini = minimaxi does not imply that there is a
unique NE with that payoff!

2.2.1 Zero-sum games
A stronger connection between minimax/maximin and NE can be obtained for
a specific kind of games, called zero-sum games. Here ui(s) = −u−i(s), that
is i gaining an advantage happens at the expense of their opponent −i (and
viceversa).

For example:

P =

player B

L C R

pl
ay
er

A T −9, 9 8,−8 −5, 5
M −2, 2 −6, 6 2,−2
D −1, 1 3,−3 4,−4

(2.6)

Zero-sum games are a special case of adversarial games, in which when the
utility ui of a player i increases, then the utility of the opponents u−i must
decrease. In other words, there is always a winner and a loser.

If G is a zero-sum game with finitely many strategies, then (von Neumann,
1928):

1. G has a NE ⇔ maximini = minimaxi for each i. Actually, this needs
to be checked only for a player i, since u−i = −ui, and so maximini =
nimimax−i, and similarly for minimaxi.

2. All NEs yield the same payoff, which is the maximini

3. NEs have the form (s∗i , s∗−i) with s∗i being a security strategy.

The common value of maximin1 = minimax1 is called the value of the game
(player 1 is taken by convention). A joint security strategy (if any), i.e. a
NE, is called a saddle point of the game. To see why, consider the utility
function ui(si, s−i). i wants to maximize it. Since ui = −u−i, and −i wants to
maximize −i, we see that −i wants to minimize ui. Thus, i will move along the

79



si direction3 to maximize ui, and they will choose a s∗i that does so. Conversely,
−i will move along s−i to minimize ui, choosing s∗−i. A point (s∗i , s∗−i) that is a
maximum along one direction (that of si) and a minimum along another (that
of s−i) is exactly a saddle point, and in this case it is the choice that satisfies
both players. Since they do not have any incentive for unilateral deviation, this
is a Nash Equilibrium.
In zero-sum games, the utilities u−i can be left implicit, thus using a regular
matrix instead of a bi-matrix.

2.2.2 Mixed Minimax
We now extend the previous results to the general case of mixed strategies.
So, consider the function fi : ∆Si → R, where ∆Si is the set of probability
distributions over the pure strategies, defined by:

fi(mi) = min
m−i∈∆S−i

ui(mi,m−i)

A mixed security strategy for i is the one that maximizes fi:

m∗i = arg max
mi∈∆Si

fi(mi)

And the mixed security payoff (in mixed strategies) is:

maximinmi = max
mi∈∆Si

min
m−i∈∆S−i

ui(mi,m−i)

As before, a mixed security strategy is the conservative mixed strategy guar-
anteeing the highest payoff for i in case of the worst mixed strategy by the
opponents −i.
Similarly, we define Fi : ∆S−i → R as:

Fi(m−i) = max
mi∈∆Si

ui(mi,m−i)

And the minimum of the best response utilities is the minimax:

minimaxmi = min
m−i∈∆S−i

Fi(m−i) = min
m−i∈∆S−i

max
mi∈∆Si

ui(mi,m−i)

By exploiting the linearity of expected utilities, we can find fi(mi) by mini-
mizing ui(mi, s−i), i.e. by limiting the opponents’ strategies to pure strategies.
Similarly, Fi(m−i) can be found by maximizing ui(si,m−i). This is because if
mi is a best response, every pure strategy in the support of that mixed strategy
must also be a best response.
Finally, maximinmi and maximinmi always exist, since the ui are now continuous
functions over compact domains, and their minima/maxima always exist.
Also in this case, if m is a NE, then for every player i:

minimaxmi ≤ ui(m)
3∧Imagine the possible strategies of player i as points along their axis i in a 2D plane

(since we are dealing with 2 players).
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As an example, consider the following game:

P =

Joe
S C

Ji
m T 3,− 0,−

M 1,− 2,−
(2.7)

For Jim, the best responses (in pure strategies) are 3 and 2, with a minimum
(minimax) of 2. The minimum payoffs for each action are 0 and 1, with a
maximum (maximin) of 1.

By using mixed strategies, Jim can increase its maximin by playing mi =
1/4 T + 3/4M , reaching maximinm = 1.5.
In fact:

ui(mi,S) = 1
4 · 3 +

3
4 · 1 = 1.5

ui(mi,C) = 1
4 · 0 +

3
4 · 2 = 1.5

In other words, playing mi makes Jim’s payoff indifferent on Joe’s choice.

Similarly, the worst strategy that Joe can play (from the point of view of Jim)
is m−i = 1/2 S + 1/2C, with a minimaxm = 1.5. In fact:

ui(T ,m−i) =
1
2 · 3 +

1
2 · 0 = 1.5

ui(M ,m−i) =
1
2 · 1 +

1
2 · 2 = 1.5

Note that:

minimaxm = maximinm

Let’s see another example to understand why.

P =

Bea
F G

A
rt U 6, 1 0, 4

D 2, 5 4, 0
(2.8)

Let q be the probability of Art playing U , which we will use to parametrize A’s
mixed strategies. Then, we compute fA explicitly from the definition:

fA(q) ≡ min
mB∈∆SB

uA(q,mB) = min
si∈S−i

uA(q, sB) = min
sB∈{F ,G}

uA(q, sB) =

= min{uA(q,F ),uA(q,G)} = min{6q+ 2(1− q), 4(1− q)} = min{2 + 4q, 4− 4q}

Since q ∈ [0, 1], we can find graphically this minimum:
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Figure (2.14) – The green line is 2 + 4q, the blue one is 4− 4q. The minimum is
highlighted in orange.

Now, the maximin is defined as:

maximinm = max
mA∈∆SA

fA(mA) = max
q∈[0,1]

fA(q) = max
q∈[0,1]

min{2 + 4q, 4− 4q} = 3

And graphically is the uppermost point of the orange line:

Figure (2.15)

So, moving in mixed strategies allows increasing the maximin of pure strategies.
Similarly, for the minimax we denote with p the probability that Bea plays F .
Then we compute FA(p) from the definition:

FA(p) ≡ max
mA∈∆SA

uA(mA, p) = max
sA∈SA

uA(sA, p) = max
sA∈{U ,D}

uA(sA, p) =

= max{uA(U , p),uA(D, p)} = max{6p+ 0(1− p), 2p+ 4(1− p)} = max{6p, 4− 2p}

And for the minimax:

minimaxm = min
mB∈∆SB

FA(mB) = min
p∈[0,1]

FA(p) = min
p∈[0,1]

max{6p, 4− 2p} = 3

Graphically, the situation is the same as before, but reversed. That is, moving
in the mixed strategies decreases the maximin from that of pure strategies.
Since maximini ≤ minimaxi always for pure strategies, and in general maximinmi ≥
maximini and minimaxmi ≤ minimaxi, we expect the mixed minimax/maximin
to “meet at the middle”, when they saturate the inequality. This can in fact be
verified:

maximini ≤ maximinmi = minimaxmi ≤ minimaxi
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Now, this does tell us something about Nash Equilibria only in zero-sum games.
In particular, at the NE, ui(m) = minimaxmi = maximinmi .
In the above example, we can see that (q = 1/4, p = 1/2) is a NE, with an
expected payoff of 3 for both players, which coincides with the maximin and
minimax. However, that game is not a zero-sum game, and so this is just a
coincidence!
As a counterexample, consider the Battle of Sexes:

P =

Brian
R S

A
nn

R 2, 1 0, 0
S 0, 0 1, 2

(2.9)

Here maximin = 0 and minimax = 1 for both players in pure strategies. Then
maximinm = minimaxm = 2/3. However, there are 3 NEs with payoffs 1, 2
and 1.67, which are not that of the minimax/maximin, since this game is not
zero-sum.
Note that, since maximinm = maximinm always in mixed strategies, this assures
that zero-sum games have always a NE in mixed strategies, which is nothing
else than Nash theorem.
In summary, we can now extend the previously stated theorem.

Theorem 2.2.1 (Zero-sum games). For a zero-sum game G with finitely many
strategies:

1. For every player i, maximinmi = minimaxmi , and thus G must have a
Nash equilibrium (this is actually how to find it).

2. All Nash Equilibria in mixed strategies are security strategies for player i
and yield a payoff to i equal to maximinmi .

Optimizing zero-sum games can still be hard, due to the sheer number of Linear
programmingstrategies involved (e.g. in chess). In practice, it can be solved through linear

programming as follows.
Suppose player 1 has pure strategies {A1,A2, . . . ,AL}, and player 2 has {B1,B2, . . . ,BM}.
A mixed strategy a = {aj} for player A is a linear combination:

a1A1 + · · ·+ aLAL

And similarly for B:

b1B1 + · · ·+ bMBM

Let u1 be the utility of player 1. Since we are dealing with a zero-sum game,
u2 = −u1. Then we consider the following:∑

j

aju1(Aj ,Bk) ≥ W ∀k

with aj ≥ 0 and ∑
j aj = 1, since they are probabilities. The idea is to find

the maximum W for which values of a can be found that satisfy the above
constraint.
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2.3 Stackelberg games
Stackelberg games are a special case of sequential games, i.e. dynamic games
with perfect information, in which there are two players: the first, called the
leader, and the second, the follower. They can be solved, as previously seen,
by backward induction, which leads to the so-called Stackelberg equilibrium.

Stackelberg games can be represented in normal form as static games. For
example, the dynamic Battle of Sexes in which Ann plays first is a Stackelberg
game:

P =

Brian
R S

A
nn

R 2, 1 0, 0
S 0, 0 1, 2

(2.10)

The Stackelberg equilibrium is (R,R), as can be found through backward
induction. Note that, since Brian knows the choice of Ann, and plays his best
response to that, he achieves at least his minimax, which is 1 in this case: this
follows directly by definition.

Mixed strategies are allowed, in the sense of a player “not revealing their hand”.
So, for example, in the Odds/Even game:

P =

Even
0 1

O
dd

0 −4, 4 4,−4
1 4,−4 −4, 4

the Stackelberg equilibrium is the same as the Nash Equilibrium, i.e. the mixed
strategy 1/2 0 + 1/2 1 for both players, who achieve the minimax (0).

As another example, consider the following:

P =

Joe
F G H

C
ar
l

R 2, 2 3, 1 0, 0
S 1, 6 5, 4 6, 4
T 0, 1 4, 3 6, 2

(2.11)

If this is a static game, then (R,F ) is a pure Nash Equilibrium. If instead Carl
goes first, as in a Stackelberg game, then the equilibrium will be (T ,G). The
idea is to apply backward induction: Carl knows that Joe will respond to any
of his actions with his best response (highlighted in blue). For example, if Carl
plays S, then Joe will respond with F , resulting in a payoff of 1 for Carl. By
looking at these payoffs (which are, in order, 2, 1, 4, i.e. the values to the left
of the blue numbers), Carl chooses the highest one (4), and so he plays T .
Note that, in this case, Joe gets a payoff of 3, which is better than his minimax
(2). This is not surprising, since the game is not zero-sum.
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However, backward induction may not produce a unique solution if there are
repeated payoffs, such as the two 6 for Carl. This becomes evident if we let Joe
go first. Now, if Joe plays F , Carl with respond with R, if he plays G, Carl
reacts with S, but if Joe chooses H, Carl can play either S or T . For Carl, they
lead to the same payoff, but the situation for Joe is very different!

To resolve the stalemate, we assume that Carl is a generous follower : when
indifferent about his payoff, he chooses the option that maximizes the opponent’s
payoff. In this case, if Joe goes with H, Carl reacts with S.

Thus, the possible outcomes for Joe (which are the values to the right of the red
numbers) are 2, 4, 4. Here we have another ambiguity: will Joe play G or H?

Again, we need a further assumption: Joe is a generous leader, and so he
will resolve ties by favoring the follower (basically answering Carl’s kindness in
choosing S rather than T ). So, Joe plays H, which gives Carls a better payoff
than G (6 > 5). And so the Stackelberg equilibrium is (S,H).

Note that, in this situation, Carl obtains payoff 6, which is much higher than
his minimax (2).

As a final remark, note that in Stackelberg games, or even in general in sequential
games, the player that goes first has an advantage (first-move advantage):
their payoff is always ≥ than that of the Nash equilibrium. This may appear
counterintuitive: the second player knows more, because they have seen the first
player move! However, recall that both players are rational, and the game has
complete knowledge: player 1 can anticipate all of player 2’s knowledge, and
so they get more.

2.4 Consistency of time discounting
(Lesson 14 of
13/11/2020)
Compiled: January
1, 2021

Consider a dynamic game that can terminate at different turns. Until now, we
have treated all payoffs to be of the same importance. However, intuitively an
immediate payoff should be preferable to a delayed one: it is best to take a
reward now than tomorrow.

This can be modelled by applying a discount factor to future payoffs, lowering
those who are very far into the future. As we will now see, there is really only
one way to do this that is consistent.

As a start, consider a player who has a fixed resource budget K = 1 (e.g. food)
to allocate over N subsequent time steps (e.g. days). Let’s assume N = 3.
Every time the player has access to x units of the allocated resource, they get
a utility of u(x). Since delayed rewards are worse than immediate rewards, at
every time step the computed utilities are multiplied by a discount factor δ < 1.
So, x1 on the first timestep leads to u(x1), but x2 on the second timestep gives
δu(x2) < u(x2). The total payoff visible at the start is then:

v(x1,x2,x3) = u(x1) + δu(x2) + δ2u(x3) (2.12)

The player wants to maximize v, subject to the constraint x1 +x2 +x3 = K = 1.
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Note that this is a standard one-player optimization problem, which can be
solved directly through calculus, without the need of any Game Theory method.
To solve it, we need to specify a utility function, which is:

u(x) = log(1 + x)

Note that it is an increasing function, which is somewhat saturating, and in
particular it is concave.
Then, from the constraint we have x1 = 1− x2 − x3, which can be substituted
into v(x1,x2,x3) = v(1− x2 − x3,x2,x3). Differentiating and setting the first
derivatives to 0 we get:

x1 =
3− δ− δ2

1 + δ + δ2 x2 =
−1 + 3δ− δ2

1 + δ + δ2 x3 =
−1− δ + 3δ2

1 + δ + δ2

With δ = 1, there is no discount in the future, and so we get x1 = x2 = x3,
i.e. an equal split. Otherwise, it is convenient to set x1 higher. For δ = 0.8,
for example, x1 = 0.6393, x2 = 0.3115 and x3 = 0.0492. Note that δ >
(
√

5− 1)/2 = 0.618 must hold, otherwise the constraint cannot be satisfied.
Now, for this choice to be consistent, it should remain invariant through
time. That is, suppose we consider the player at the start of the second day,
with 1− x1 available resources, and consider the split between that day (the
second) and the following one (the third). Will this lead to the same x2 and x3
previously computed, or will the play regret their previous decision?
So, let’s consider:

w = u(x2) + δu(x3)

and maximize w with the constraint x2 + x3 = 1− x1, with x1 constant. The
result is:

x2 =
2− x1 − δ

1 + δ
x3 =

−1 + 2δ− δx1
1 + δ

From this, we see that x2 and x3 agree with the previously computed values!
For example, with δ = 0.8 and x1 = 0.6393, we get again x2 = 0.3115 and
x3 = 0.0492.
In fact, it can be shown that the exponential discount procedure (2.12) is the
only one with this self-similarity property.
As a counter-example, consider the following non-exponential discounting:

v(x1,x2,x3) = u(x1) + δu(x2) + δu(x3)

With the same procedure of maximizing v we get:

x1 =
3− 2δ
2δ + 1 x2 =

2δ− 1
2δ + 1 x3 =

2δ− 1
2δ + 1

Now we need δ > 0.5. For δ = 1 we still get an equal split, but with δ = 0.8 we
have x1 = 0.5385, x2 = 0.2308, x3 = 0.2308.
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However, when performing the same split on the next timestep, we get a different
result. Specifically, we maximize:

w(x2,x3) = u(x2) + δu(x3)

This leads to:

x2 =
2− x1 − δ

1 + δ
x3 =

−1 + 2δ− δx1
1 + δ

and for δ = 0.8, x1 = 0.5385 we get x2 = 0.3675 and x3 = 0.0940, which is
inconsistent with the previous choice. This is very strange: a rational player
can anticipate all of this, and make the correct final decision directly at the
start! For instance, if we consider the different choices at each timestep as
the choices of different players over sequential turns, we can apply backward
induction to find that x1 = 1. In other words, the past self anticipates they
will not split correctly in the following turns, and so they avoid that by taking
all the resources.

2.5 Multistage games
Multistage games are a particular set of dynamic games in which the same
number of players acts during repeated turns. This opens the possibility of
considering intermediate payoffs.
These can be modelled as a finite sequence of T normal form stage games.
They all involve the same players, and the total payoffs can be computed by
aggregating their sequence of outcomes with some function (commonly, a sum).

The usual kind of multistage games is a sequence of 2 stage games with same
players, but different action sets. Each game leads to partial payoffs u(j)

i for
each player i, which are independent of the outcome of the previous games. The
total payoffs are the discounted sums of partial payoffs for each player, with a
discount factor δ same for all players (and this is common knowledge):

utot
i =

T∑
j=1

δju
(j)
i

For example, consider Al and Bob playing the Prisoner’s Dilemma as a “first
turn”. Then, they both go out of jail, and they can either join a gang (G) or
remain alone (L). This second stage (“Revenge”) is a static game, with the
following payoffs:

• If both stay alone (L), they never meet again: payoff 0 for both.

• If they both join a gang, they fight each other, leading to a negative payoff
for both.

• If only one joins a gang, he/she will receive a small loss, and the other a
high loss (nobody to defend him/her).
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Explicitly:

P1 =

Bob
m f

A
l M 4, 4 −1, 5

F 5,−1 1, 1
P2 =

Bob
l g

A
l L 0, 0 −4,−1

G −1,−4 −3,−3

This can be mapped into the following extensive form:

Figure (2.16)

However, from this it is not clear that the final payoffs are the combination
of the partial payoffs in the two stages. Note how the number of available
strategies increases exponentially. A strategy for Al needs to specify an action
at each node she plays. Since actions are binary, we have 25 = 32 possibility.
Same holds for Bob, since his information sets are also 5.

We already know how to solve dynamic games: this amounts to find the subgame
perfect equilibria (SPE). In multi-stage games this procedure is simplified by
the fact that all stage games are independent. Thus, just taking a NE at each
stage leads to SPE. This is formalized by the following theorem:

Theorem 2.5.1. If s∗j is a NE strategy profile for the j-th stage game, then
there exists an SPE whose equilibrium path is s∗1, s∗2, . . . , s∗T .

(But this does not mean that all the SPEs are of this form, as we will see!)
In the above example, we see that (F , f) is a NE of the first stage, and both
(L, l) and (G, g) are NEs for the second stage. Then, we have the following
SPEs:

• A plays (F ,L,L,L,L), B plays (f , l, l, l, l)

• A plays (F ,G,G,G,G), B plays (f , g, g, g, g)

2.5.1 Strategic connection
In the above discussion, we considered each stage by itself. This allows solving
the game, but in a sense removes all the “strategy” from the game. For example,
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a player may consider not playing a NE at a previous stage, just to avoid
incurring in some revenge at the later stages. In other words, early actions do
have consequences. One does not want to insult the player he is expected to
cooperate later on!

We will now see that if all stages have a unique NE each, then the only SPE
is the one encompassing all these NEs, which is of the type explored above.
However, if multiple NEs exists, there is space for more complex strategies!

First, we note that any Nash Equilibrium for the whole game must involve
playing a NE in the last stage. This is because in that final part there are no
more plans to be made: all the past is fixed, and now players just consider best
responses, since there will be no “possibility of revenge” in the future, as the
game will end immediately.

Theorem 2.5.2. Any NE s∗ (even if it is no SPE) of a multistage game (G1,
G2, . . . , GT ) must dictate a NE is played in stage game GT .

As a corollary, the following holds:

Theorem 2.5.3. If G1, G2, . . . , GT all have a unique NE, then (G1,G2, . . . ,GT )
has a unique SPE.

The idea is that all players know that, at the end on turn T , they will play a
NE. But if this NE is unique, there is nothing to decide, the strategy at T is
already defined. This means that the “effective final round” is now T − 1, and
from the above we know that players will choose a NE also there. Since it is
unique, we can reiterate the argument up to the first turn.

However, if there are multiple NEs at the last round, then there can be SPEs
involving non-NE at the previous stages! Note that this is not a contradiction:
each stage is not a subgame, so an SPE does not require playing a NE at each
stage! It just happens that doing so results in a particular kind of SPE.

The idea is to steer the game towards the “most convenient” NE at the end.
For example, in the above game, there are two NEs at the end: (L, l) and (G, g).
Of the two, (L, l) is clearly better for both players. The two, then, can use the
threat of playing (G, g) as a way to enforce playing (M ,m) at the first round,
which is Pareto efficient, but not a NE.

Let’s see how. First, consider the strategy s1 = (M ,L,G,G,G) for A, and
s2 = (m, l, g, g, g) for B. In other words, they choose (M ,m) in the first round,
and then (L, l) in the second. However, they would respond with (G, g) to any
other outcome of the first round.

This is an SPE. To see that, we need to check that it is a NE in every subgame.
Note that 4 subgames are in the second stage, in which both players consider
only NEs. So, the only remaining check is to see if it is a NE for the whole game,
i.e. if playing s1 is a best response to s2 and viceversa. But we already know
that they are NEs for the whole second stage (i.e. nobody wants to unilaterally
deviate during the second round), and so we need to effectively check only
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stage 1. Here, player 1 consider just two choices: M or F . Let’s compare their
expected utilities, knowing 2 will play s2:

u1(M , s2) = 4 + 0δ u1(F , s2) = 5− 3δ

If 1 plays M , 2 plays M , and both get (4, 4) in the first stage. Then, following
s1 and s2, they will play (L, l), getting (0, 0) multiplied by the discount factor
δ. Similarly, if 1 plays F instead, they will get (5, 1) in the first round, but then
play (G, g) in the second, leading to (−3δ,−3δ).

Depending on the value of δ, the best response changes. In particular, M is
better, meaning that (s1, s2) is an SPE, if δ is high enough:

4 > 5− 3δ ⇒ δ ≥ 1
3

In other words, betraying the other player to get an immediate gain is convenient
only if one values less long-term payoffs (low δ, meaning high discount, i.e. utility
lowers quickly over time). Only in this case threats may be credible, and can
have concrete impacts.

Moreover, this worked because we started with 2 NEs at the end, one clearly
“better” (a “carrot” outcome) and one not (a “stick” outcome). This means that
one of them (the stick) can be used as a threat.

In fact, the same procedure can work to create an SPE where the first move is
any, for example (F ,m).

2.5.2 One-stage deviation principle
These deviations from NEs can happen at most once, even during games with
more than 2 stages. That is, it is not possible to deviate, for example, in turn 1
and 3. This is the statement of the one-stage deviation principle.

To prove it, we start with a few definitions.
A strategy si is optimal if there is no way to improve it for every information set
hi (no s′i and hi for which ui(s′i,hi) > ui(si,hi)). In particular, it is one-stage
unimprovable if there is no way to improve it by changing an action done in
a single given information set hi.

An optimal strategy is one-stage unimprovable by definition: the latter is a
special case of the former. Surprisingly, the converse does hold!

Theorem 2.5.4. A one-stage unimprovable strategy must be optimal.

The idea is that, if we start with a non-optimal strategy a, we can always link it
to an optimal strategy b by making a sequence of deviations, i.e. single changes
to the one-round strategies. This forms the “optimal path” in strategy-space
linking a to b. But then, if we consider any intermediate strategy c lying in that
path, the optimal path linking c to b is the ones that remains on the initial
longer optimal path from a to b. In other words, every part of the optimal path
is an optimal path.
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So, if we cannot do any step forward (i.e. we are at a one-stage unimprovable
strategy), then we must be at the end of the optimal path (i.e. at an optimal
path). Let’s formalize this idea.

Proof. We proceed by contradiction. Assume si is one-step unimprovable but
not optimal. This means that there is a way to improve it to a s′i, but it requires
changing 2 or more steps. Suppose s′i deviates from si under the information
set hi. The number of such deviations is finite, consider the last of them. Take
the subgame starting at the deviation point (or at its parent node). This is a
subgame for which there is a single deviation improving the payoff of player i,
meaning that si can be improved by a single deviation, which is a contradiction.
Thus, no better s′i may exist, meaning that si must be optimal.

2.6 Repeated Games
(Lesson 15 of
17/11/2020)
Compiled: January
1, 2021

A repeated game G(T , δ) is a dynamic game where the same static game G
is played as a stage game T times. All intermediate payoffs are discounted by
δ and aggregated to form the total payoff. If T is finite, the game has a finite
horizon, otherwise it has an infinite horizon (in this case, δ must be < 1, i.e.
there must be discounting).
For example, consider T = 2 (two turns) and δ = 1 (no discount), with the Unique NE
following normal form for each stage (Prisoners’ dilemma):

P =

Bob
m f

A
l M 4, 4 0, 5

F 5, 0 1, 1

In the final stage, there is only one NE: (F , f). Thus, it must be played in any
rational strategy. Effectively, this means that each player gets a guaranteed
payoff of 1 from the second stage. So, we can merge both rounds in a single
one, with all payoffs increased by 1:

Ptot =

Bob
m f

A
l M 5, 5 1, 6
F 6, 1 2, 2

There is, again, only one NE: (F , f). So both player will choose (F , f) in both
rounds.
In general, this happens for all finitely repeated games with only one NE.
The mere possibility of anticipating which choice to make in the last round,
determines how all the previous ones are played.
Formally: repeated games are a particular case of multi-stage games. Thus,
the outcome of last stage is a NE, always. Then, as a corollary of the previous
theorems:
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Theorem 2.6.1. If a stage game G only has a single NE s∗, then G(T , δ) has
a unique subgame-perfect outcome, i.e. play s∗ in every stage.

This is merely a consequence of backward induction.

Things get more interesting if there are multiple NEs. For example, consider Multiple NEs
the following:

P =

Bob
M F H

A
l

M 4, 4 0, 5 0, 0
F 5, 0 1, 1 0, 0
H 0, 0 0, 0 3, 3

Here there are two NEs: one “good” (H,H) and one “bad” (F ,F ).
In this case, it is possible to play a non-NE in the first stage so that the good
NE may be selected. Specifically, the players choose (M ,M) in the first round,
and (H,H) in the second if they both played (M ,M), and (F ,F ) otherwise (it
is important to specify also responses to moves that do not happen!).
Note that this does not involve any kind of information exchange, but just
speculation.

Strategies with repeated NE are all SPE too. From the mathematical point of
view, these are all equivalent. How to force players to choose one rather than
another is a task-specific engineering problem.

Philosophically, we can say that repeated games tend to introduce cooperation,
even if players are selfish. In fact, while the last stage is always “egoistically
played”, the presence of multiple egoistic NEs can lead to “collaborative” NEs
(with the carrot and stick mechanism). However, all NEs are equivalent, and
there is no way to tell which will be played in the end. However, external
influences (society, religion, etc.) could make players prefer the collaborative
NE. In a sense, these are the “engineering ways” to optimize the outcomes!

An additional remark is that cooperative NEs require consistency. In other
words, players should “stick” to their strategies, and don’t “renegotiate”.

For example, in the previous setup one of the two players may decide do switch
their choice to F in the first round, gaining an advantage, and then convince
the opponent to still play into the (H,H) good equilibrium. The other may
threat towards (F ,F ), but this would hurt both players so it is less credible.
In other words, a greedy player may still not cooperate and still gain everything,
if they can renegotiate, and there are no credible responses.
This undermines the previous philosophical argument for cooperation.

One way around that, is to have additional NEs that punish players that do
not cooperate. In the previous example, playing (F ,F ) at the final round hurts
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both players. So, suppose we add two other NEs:

P =

Bob
M F H P Q

A
l

M 4, 4 0, 5 0, 0 0, 0 0, 0
F 5, 0 1, 1 0, 0 0, 0 0, 0
H 0, 0 0, 0 3, 3 0, 0 0, 0
P 0, 0 0, 0 0, 0 4, .5 0, 0
Q 0, 0 0, 0 0, 0 0, 0 .5, 4

Here there are 4 NEs: (F ,F ), (H,H), (P ,P ) and (Q,Q). All except (F ,F ) are
Pareto efficient, and (M ,M) is the best.
Players can anticipate that, if they play (M ,M) in the first round, they will
collaborate with (H,H) in the second. However, if someone deviates, the other
can choose the NE that will punish him/her, without losing everything. For
example:

• (M ,¬M) in the first round leads to (P ,P ), punishing the second player.
Similarly, (¬M ,M) leads to (Q,Q), punishing the first player.

• If both deviate (¬M ,¬M), they won’t trust each other and lead to (F ,F ).

So, philosophically, frequent interactions with the availability of more punish-
ment options incentives cooperation.

2.6.1 Infinitely repeated games
An infinitely repeated game, with stage game G and discount factor δ, is denoted
as G(∞, δ). To avoid diverging expected utilities, we need δ < 1. This allows
comparing different payoffs that are infinitely repeated. For example, is it better
to receive 1 forever, or 3 forever? Both sums are infinite, so it does not matter!
If we introduce payoffs, instead, it is clear that the latter is best, because we
are comparing:

1
1− δ = 1 + δ + δ2 + · · · < 3(1 + δ + δ2 + . . . ) = 3

1− δ
In infinitely repeated games we cannot apply backward induction: there is no
last stage to begin from! As we will see, this allows cooperation even without
punishments.
Since there is no last stage, there is no requirement to play a NE of G. In
particular, there may be an SPE of G(∞, δ) in which no stage’s outcome is a
NE of G. The key point is that, in a infinitely repeated game, every subgame is
the same infinitely repeated game.
As an example, consider again the Prisoner’s Dilemma. Since stages are repeated
ad infinitum, it would be convenient to play (M ,M) forever. To force that,
players use F as a threat. The idea is to exploit the infinite nature of the game
to make this threat final.
Thus, we define a grim trigger strategy (GrT) as follows:
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• Start playing M at stage 1

• Play M if all past outcomes were of the kind (M ,M). Otherwise, play F .

Note that any deviation of the opponent will result in an eternal sequence of F
from the other! Even if this is not credible (playing (F ,F ) hurts both players),
the severity of a misstep infinite, making the grim trigger an important strategy
to consider.

It can then be shown that:

Proposition 2.6.1. For a δ sufficiently close to 1, the joint strategy where both
users play GrT is an SPE.

Proof. First we need to show that GrT is a best response to itself. If Bob
assumes that Al will play GrT, he knows that, whenever the outcome is not
(M ,M), Al will play F forever. Thus, also for Bob it is optimal to play F

forever if the outcome is not (M ,M). This proves that also Bob will play F if
even a single previous outcome is not (M ,M), which is part of the GrT strategy.

We now need to understand what Bob should play if all the previous outcomes
are (M ,M). This is the same as asking what Bob should play in his first move.
In fact, in the case of no previous history, if Bob plays M , and Al the GrT,
then we will have (M ,M). So, the next stage will be exactly the same – with
no reason to deviate. However, if Bob plays F at first, then we will get (M ,F ),
which is advantageous for Bob. But now the GrT activates, and all the following
turns will result in (F ,F ). So, we need to balance a one-turn gain with an
infinitely long loss. The expected value V of a sequence (F ,F , . . . ) from Bob,
when Al plays the GrT, is:

V = 5 + δ · 1 + δ2 · 1 + · · · = 5 + δ

1− δ

If instead Bob chooses M in the first round, he will do so always (all the
conditions will be the same forever, so no incentive to change), resulting in a
sequence of (M ,M), with a value V ′:

V ′ = 4 + δ · 4 + δ2 · 4 + · · · = 4
1− δ

Let’s compare them:

V = 5 + δ

1− δ <
4

1− δ = V ′

This holds if δ > 1/4. That is, if Bob sufficiently cares about the future, then
V ′ is better, and so he will play the GrT too.

This proves that, for δ > 1/4, the GrT is the best response to itself, and so it is
a NE for the whole game. But there are only two kinds of subgames:

• Those where all the previous stages are (M ,M), which are exactly the
same as the whole G (since it is infinite). We have just proven that the
GrT is a NE for G.
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• Those where at least one stage deviated from (M ,M). In this cases, the
GrT becomes “always play (F ,F )”, which is a sequence of NE in all stages,
and so it is a NE of the entire subgame.

Since the GrT is a NE in all the subgames, it is an SPE.

In the above example, we have seen how cooperation naturally emerges from Friedmann
Theoreminfinite repetition. This is actually a particular case of a more general theorem,

which – surprisingly – has no author associated. It was first cited in a paper by
Friedman as a known result, but nobody could trace it to previous publications.
That is why it is sometimes cited as “the Folk Theorem”, in the sense of
“something that everybody knows”.

We begin with a definition. A feasible payoff is any convex combination of
pure-strategy payoffs. That is, if a game is played for an infinite amount of
time, any linear combination w1(u1a,u2a) + w2(u1b,u2b) + . . . of the payoffs
with weights summing to 1 (∑wi = 1) is a possible (feasible) value for the
average payoff of a stage4.

Graphically, these are all the points inside the convex hull of the pure payoffs:

Figure (2.17) – Feasible payoffs are the points (u1, u2) inside the convex hull of the
pure-strategy payoffs.

Theorem 2.6.2 (Friedman Theorem). Let G be a finite static game of com-
plete information. Let (e1, e2, . . . , en) be the payoffs from a NE of G. Let
(x1,x2, . . . ,xn) be feasible payoffs s.t. they are element-wise bigger than the
above, i.e. xj > ej ∀j. Then, if δ is close to 1, G(∞, δ) has an SPE with payoffs
(xj).

Proof. The idea is that any of these feasible payoffs can be obtained with a
well-constructed GrT.

4∧These are also the possible values of the expected utility of a mixed strategy. However,
note that in an infinitely repeated game we can realize them by playing pure strategies alone,
since we have an infinite number of payoffs to average!
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Figure (2.18) – In G, (1, 1) is a NE. All the points with both utilities > 1 are inside the
orange area. These are the (x1, x2) feasible payoffs that can form an SPE.

In the Prisoner’s Dilemma, the only “punishment” available is playing (F ,F ).
However, in general, the maximin can be used as a worse punishment, since it
is ≤ the payoff at the NE. In particular, in the above we can replace (e1, e2, . . . )
with the security payoffs (r1, r2, . . . ). Still, note that any threat must be credible
to be effective, i.e. rational from the point of view of the one that is enforcing
it.
Finally, note that all of this depends on the choice of δ. A small δ makes all
punishments less effective, because players focus on short-term rewards.

Finite memory

In engineering, a “grim reaper” strategy can be difficult to implement, since it
requires an arbitrarily large amount of memory to hold all the past interactions.
Fortunately, there are approximations (in the sense that they are NE, but not
SPE) available to solve this problem.
One example is the Tit-for-That strategy (TFT). At stage t, the player i
chooses the move (cooperate/defect) played by the opponent −i at the previous
stage t− 1. Two players implementing TFT reach the same “optimal” equilib-
rium path as before (mutual cooperation). However, TFT is also forgiving, in
the sense that a misstep from one of the parts can be corrected at later stages.
So, if there is some error and a player makes a bad move, there is still the
possibility to converge again to the optimal path.
However, TFT requires synchronization between the two players. Two “un-
syncrhonized” TFT players will always choose (M ,F ) or (F ,M), effectively
minimizing their payoffs (a death spiral, with no cooperation).
This illustrates why TFT can’t be an SPE. However, in a good implementation
these outcomes never happen, and so the result will be the same of GrT.
There are less forgiving variants, e.g. “Tit for Two Tats”, in which two good
choices from the opponent are needed to forgive a past mistake.

2.6.2 Reputation
Repeated interactions can develop trust between the players, i.e. a higher
propensity towards cooperation.
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For example, consider the following game:

Figure (2.19) – A can either (T)rust B or not. If trusted, B can either (C)ollaborate or
(D)efect.

From backward induction, we see that B defects, and so A anticipates this and
does not trust him/her.

However, if the game is infinitely repeated, we can build a GrT as follows:

• In the first turn, A chooses T . Then A chooses T as long as the previous
outcomes are (T ,C). Otherwise, he/she will always play N .

• B chooses to always play C, which is the best response if δ > 1/2.

Is there a way to give B more incentive to cooperate, other than the grim
possibility of A playing GrT?

Let’s introduce a third dummy player G, called the guarantor. His function is Guarantees
to improve B’s reputation. The idea is that B can pay G in advance, providing
an insurance of 2. Then, if B defects, G keeps the insurance. Otherwise, G
returns the insurance to B, keeping a small fraction (0.1) for the service.
The extensive form is now:

Figure (2.20) – Adding a guarantor G builds B’s trust, allowing cooperation without the
need of eternal punishments. Note that, to fully specify an SPE, we need to denote also the
choices outside the equilibrium path, i.e. the responses to moves that do not happen.

If B pays G, he/she gains trust, making A want to cooperate. Note that this
happens without the need of (infinite) repetition!
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However, this introduces another problem. In the real case, G has an incentive
to flee with the reward. That is, if we allow him to keep the insurance or return
it to B, the strategy of keeping it strictly dominates the other.

Still, if the game is repeated, G may have an interest of prove himself as a
trustworthy guarantor, establishing its reputation in the market. Quantitatively,
if he keeps the insurance he gets a payoff of 2, and then 0 forever. If he
cooperates, he gets 0.1, but remains in business. On the long run, he will get:

0.1 + δ · 0.1 + δ2 · 0.1 · · · = 0.1
1− δ

which is > 2 if δ > 0.95.

2.7 Dynamic Bargain
(Lesson 16 of
20/11/2020)
Compiled: January
1, 2021

An important application of dynamic games is that of dynamic bargain,
where players need to split a sparse resource.

For example, consider a quantity of 1 which is shared between 2 players, so that
the first gets x, and the second 1− x.

There are two possible approaches to decide the optimal x.

• Nash bargaining, a simple axiomatic and static approach. Contrary to
the name, this does not involve Game Theory concepts.

• Dynamic bargaining, in which one player proposes a split (proposer),
and the other accepts/rejects it (responder), and the role are exchanged
at every turn.

In this section, we will focus on the second one. The game proceeds as following:

1. In stage 1, Player 1 is the (P)roposer, and 2 is the (R)esponder. P offers
shares (x, 1− x), and 2 can accept, ending the game, or refuse, proceeding
to the next turn.

2. In stage 2, roles are reversed: P = 2, R = 1. Then P proposes a share,
and R responds to it, exactly as before.

3. In general, at stage t, P = 1 if t is odd, and otherwise P = 2.

4. Since we need a final result, the game can’t go on indefinitely. So, we
set a deadline, i.e. after T stages the game will end with both 1 and
2 getting nothing. Moreover, after each round payoffs are discounted by
a factor δ, effectively “wasting” a fraction 1− δ of resources. So, if the
game ends at stage 1, they get u1 = x,u2 = 1− x, otherwise at turn t
they receive u1 = δt−1x,u2 = δt−1(1− x).

When T = 1, we get the ultimatum game, seen in example 2. In this case,
all solutions with P proposing (x, 1− x) and R accepting are NEs, and the only
SPE is the one where P keeps everything, i.e. x = 1.
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When T is odd, player 1 is the last proposer. So, at round T the setup is that
of the ultimatum game: player 2 will accept everything, and 1 will propose
x = 1, leading to ufin

1 = δt−1,u2 = 0.
Knowing this, player 2 will try to terminate the game before the final round,
by making an offer that 1 can accept, i.e. x ≥ δ. In this way, if 1 accepts
he/she gets u1 ≥ δ · δt−2 ≥ δt−1, which is the same or better than the payoff ufin

1
obtained by reaching the final round, and so 1 will accept such a split (there is
no meaningful deviation from his/her part). The advantage is that now u2 ≥ 0,
and it is maximized for x = δ.

This reasoning can be iterated backward, so that the game can be concluded at
the first round, leading to the following payoffs:

u1 =
1 + δT

1 + δ
; u2 =

δ− δT

1 + δ

Similarly, if T is even, the final proposer will be player 2, and everybody knows
that. So, he/she will be able to exploit this fact, and the results will be the
same, but with roles reversed: u1 ↔ u2.

As a consequence of backward induction, the unique SPE must involve the
game ending at turn 1. We can see this as the effect of two principles:

• Playing at a later round wastes some resource, so players want to avoid
that.

• Rational players can anticipate what the final share will be, and use that
to reach an agreement at previous rounds.

Note that this is not a repeated game, due to degradation and the termination
condition (i.e. the number of rounds is not defined in advance).

Interestingly, this same reasoning can be applied to an infinite horizon, even
though backward induction does not work there. The idea is that, even in this
case, players do not want to play later rounds to avoid resource degradation.
Then, for T → +∞:

u1 =
1

1 + δ
; u2 =

δ

1 + δ

and for δ → 1, we have an equal split. Otherwise, the split favors player 1,
because he/she goes first, and so has a first-move advantage.

However, since we are not using backward induction, we need a different proof
for the uniqueness of this SPE. This can be done by contradiction.

Proof. Assume there is more than one SPE. For player 1, the best payoff is v1,
and the worst is w1. Conversely, for 2 the best payoff is v2 = 1−w1, and the
worst is w2 = 1− v1, because he/she gets what 1 leaves out.
Now 1 does not want the game to go on after the first turn, and so needs 2
to accept immediately the first split. Effectively, 2 does so if going on can’t
improve his/her payoff. So, suppose 2 refuses the first split. Now 2 can copy 1’s
proposal, and get either v2 = δv1 or w2 = δw1 (due to the resource degradation).

99



If v2 > w2, it is convenient for 2 to continue the game, so that he/she can make
this proposal. 1 anticipates this, and sets v2 = w2, so that 2 won’t have any
incentive to continue playing, and will accept the first split, as desired.
Putting everything together:

v2 = δv1 = 1−w1
!
= w2 = δw1 ⇔ v1 = w1 =

1
1 + δ

But this means that the SPE is unique.

2.8 Dynamic duopolies
Let’s consider a Stackelberg duopoly, which is a natural dynamic extension
of Cournot duopoly.
The idea is that a dominant (leader, 1) firm moves first, and a subordinate
(follower, 2) firm moves second. They both decide the quantities of goods q1
and q2 to produce, incurring in a cost C(q) = cq, with constant c. The market
price is P (Q) = a−Q, with Q = q1 + q2, and a > c.
We proceed by backward induction. 1 knows that 2 will choose their best
response. The profit of 2 is given by:

u2(q1, q2) = q2(a− q1 − q2 − c)

Let R2(q1) = arg maxq2 u2(q1, q2), i.e. the best response available to 2 for a
given choice of q1. By maximizing the above we see that:

R2(q1) = a− q1 − c
2

Note that this quantity has already appeared when discussing Cournot’s
monopoly (see (1.5), pag. 35), with a → a − q1. Intuitively, 2 acts as a
monopolist with the “left-over resources” by 1.
Now, 1 anticipates all of this, and moves accordingly by maximizing his/her
utility:

q∗1 = arg max
q1

u1(q1,R2(q1)) = arg max
q1

q1(a− q− 1−R2(q1)− c) =

= arg max
q1

q1(a− q1 − c)
2

which leads to:

q∗1 =
a− c

2 q∗2 =
a− c

4
In this setup, 1 has a clear advantage. In fact, recall that in the Cournot’s
duopoly we had q∗1 = q∗2 = (a− c)/3.
Player 2 can (virtually) threat 1 by responding to any choice different from the Virtual threats
fair one ((a− c)/3) with a very high q2, which hurts both players. However,
this is irrational, so it is an empty non-credible threat. 2 does not want to
decrease u2, and so he/she will choose q2 = R2(q1).
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Note also that, in this setup, 2 has more information, but this does not result More information
can be badin any advantage for him/her. In fact, 1 can anticipate this (1 knows that 2

will know) and move accordingly (first-move advantage). In a competitive game
(such as the one just considered), knowing more is actually a disadvantage.
In fact, it would be better for 2 to ignore q1, which would make the game static, Static version
and lead back to the (a− c)/3 fair share.
The same result can be obtained even from fictitious play, i.e. by allowing 1 Fictitious play
(and then 2) to change their moves. For example, suppose 2 assumes 1 to play
q1 = (a− c)/2, and so sets q2 = (a− c)/4. Knowing this, 1 plays a better
q1 = 3(a− c)/8. But this changes 2’s best answer again. Iterating, the sequence
of moves will converge to q∗1 = q∗2 = (a− c)/3.
As previously observed, the aggregated production at the static NE is higher (Lack of) Trust
than that of a monopoly:

2
3(a− c) > a− c

2 ≡ qm

This means that both firms are producing more, and earning less, and they are
doing so because they do not trust each other! Specifically, the best response to
q1 = (a− c)/4 is not q2 = (a− c)/4.
However, we expect that by infinitely repeating the same static game there Gaining trust

through infinite
repetitions

should be a way to build trust, according to Friedman’s theorem. The idea is
to use a Grim Trigger (GrT) strategy:

• At t = 1, produce qm/2 (half of the monopoly quantity)

• At t > 1, produce qm/2 if in every previous stage u < t the production
was qm/2 for both firms. Otherwise, produce qc = (a− c)/3 forever after.

And this works for a sufficiently high discount factor δ. To find it, we can repeat
the same steps used in proving that GrT is an SPE for the repeated Prisoner’s
Dilemma.
So, suppose 1 plays the GrT, and so:

q1 =
qm
2 =

a− c
4

What is the best response of 2 during the first stage?

• Defect. 2 chooses the best response, which is:

q2 = arg max
q2

q2(a− q2 − qm/2− c) =
3
8(a− c)

This leads to a profit:

uD =
9
64(a− c)2 (2.13)

• Collaborate. 2 chooses q2 = um/2, gaining:

u2 =
um
2 =

(a− c)2

8
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As expected, defecting at the start is advantageous for 2. However, we need to
account also future rewards.
If 2 defects, they will get uc forevermore, leading to a total payoff of:

uD + δ
uc

1− δ

However, if they collaborate the final payoff will be:
um

2(1− δ)

Inserting um/2 = (a− c)2/8, uc = (a− c)2/9 and (2.13), and then comparing
the two expressions, we see that collaborating is better if δ ≥ 9/17.

If δ < 9/17, the GrT is no longer an SPE. However, there is still a way to
improve over playing qc. The idea is to choose a “less ambitious” GrT’ with
objective q∗ ∈ [qc, qm/2], consisting of “play q∗ at the start, and after any
deviation stay at qc forever”.
When both firms play q∗, they get:

u∗ = q∗(a− 2q∗ − c)

In this case, the (“myopic”) best response at first turn is:

qD =
a− q∗ − c

2

which leads to:

uD =
(a− q∗ − c)2

4 > u∗

Accounting for the future rewards, the GrT’ is better if:

u∗

1− δ ≥ uD + δ
uc

1− δ

Inserting all the values leads to:

q∗(a− 2q∗ − c)
1− δ ≥ (a− q∗ − c)2

4 + δ
(a− c)2/9

1− δ

The minimum q∗, corresponding to max u∗, attainable with a given δ, is the
one that saturates the inequality:

q∗ = (a− c) 9− 5δ
3(9− δ)

And for δ ∈ [0, 9/17], q∗ ∈ [qc, qm/2].

As a final remark, note that the GrT can be improved by adding a higher threat,
i.e. not playing the NE, but a higher (and still credible) qthreat > qc. Formally,
we denote with (R)eward the action of choosing qm/2, and with (P)unishment
that of producing qthreat ≥ qc (but not � qc). Then, consider the following:
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1. Start with R (Reward).

2. At stage t, choose R if both firms played R at stage t− 1, or even if they
both defected, by playing P (forgives a mutual betrayal). Otherwise, play
P .

It can be shown that this works for δ = 1/2 and qthreat = 2(a− c)/5 > qc.

All this discussion shows that while a static Cournot duopoly can’t lead to a
“shared monopoly” (i.e. a cartel), infinite repetitions can lead to that! This is
through GrT-like strategies, which require no interaction between the players. In
other words, trust can develop over time without the need of explicit agreements.
In practice, this makes countering real-life cartels a very difficult problem, since
they could arise just from the rationality of the players.

2.9 Exercises
(Lesson 17 of
24/11/2020)
Compiled: January
1, 2021

�� ��Exercise 2.9.1:

An investment fund is jointly opened by Ava (A) and Brett (B), who
simultaneously invest 5000€ each at time 0. The investment fund is supposed
to be left untouched for 4 years. If this happens, both investors will receive
x € each at year 4. However, at the end of each intermediate year, that is,
at years 1, 2, 3, A and B can decide to keep the money in the fund (K)
or withdraw it (W ). They make this decision independently and without
consulting with one another. Early withdrawal of the money implies a penalty,
so they can withdraw only 6000+ 500t € overall at year t = {1, 2, 3}. If either
of them withdraws the money before the end date, he/she can get this entire
sum, the other gets nothing. If they both apply for early withdrawal in the
same year, each of them gets half of the amount allowed for withdrawal. Any
kind of early withdrawal (by one or both players) closes the investment and
ends the game. The player have a payoff equal to the money the eventually
get, without any discount factor.

1. Represent this game in extensive form.

2. Define the players’ strategies and write them down.

3. Discuss the subgame-perfect equilibria of this game, in two cases: (a)
x = 7200; (b) x = 8000.

Solution.

1. The game consists of 3 turns, each involving a simultaneous decision
of both players, with only one outcome (K,K) continuing the game:
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Figure (2.21)

This looks like a simultaneous trust game.

2. Every player takes a move in 3 possible information sets (B has 6
nodes, but can only distinguish pairs of them, due to the simultaneity
of moves). The strategy of each player corresponds to designing a
binary choice for each of them, for a total of 23 = 8 strategies: WWW ,
WWK, WKW , WKK, KWW , KWK, KKW , KKK. We need to
list all of them to identify SPEs. However, note that playing W at any
round ends immediately the game, so in practice WWW and WWK

behave the same. Effectively, to track the game evolution we only
need to distinguish W , KW , KKW and KKK. More precisely, W
is equivalent to {WWW ,WWK,WKK}, and so we may write it as
Wyy, with a generic y ∈ {W ,K}.

3. Let’s start with x = 7200. In this case, the last round can be repre-
sented in normal form as follows:

P =

B
W K

A

W 3750, 3750 7500, 0
K 0, 7500 7200, 7200

(2.14)

Note that K is a strictly dominated strategy for both players, and so it
is never played. Thus, there is only one NE in the last round, which is
to play (W ,W ). Both players can anticipate this, and so we can scale
the payoffs of all previous rounds, adding a guaranteed 3750 to all of
them. Then we can repeat the same reasoning, finding that also in the
previous round K is a strictly dominated strategy, and so it is in the
first round. So, the SPE is unique, and both players choose WWW as
a strategy.
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If x = 8000, the last round is different:

P =

B
W K

A

W 3750, 3750 7500, 0
K 0, 7500 8000, 8000

(2.15)

There are two NEs: (W ,W ) and (K,K) (there is also a mixed NE,
but it does not matter here). This means that the SPE is not unique.
In particular, both (WWW ,WWW ) and (KKK,KKK) are SPEs.
In fact, any strategy involving playing a NE at each subgame is, by
definition, an SPE. So also (WWK,WWK) and (WKK,WKK) are
SPEs.

In the last round, there is actually also a mixed NE, similar to the
one found in the Battle of Sexes. This can be found by applying the
principle of indifference. Let p be the probability of A playing W .
Then, we want B to be indifferent in choosing W or K:

uB(p,W ) = 3750p+ 7500(1− p) !
= 0p+ 8000(1− p) = uB(p,K)

which results into p = 2/13. The expected payoffs are:

uB(p,W ) = uB(p,K) = 800011
13 = 6769

However, this NE is strictly dominated in round 2.
Nonetheless, if we denote this strategy with m, we see that
(WWm,WWm) is an SPE, because m is a NE in the last round.
Still, such kind of strategy is really the same as (WWW ,WWW ) or
(WWK,WWK), as in both the game ends immediately.

�� ��Exercise 2.9.2:

Two players A and B take turns, starting from A. They begin the game
with two peas each. A legal move in the game consists in transferring to
the opponent any integer number of peas. It is not allowed to transfer a
quantity of peas that was transferred by someone before. Zero peas cannot
be given either. Anyone who cannot make the next move according to the
rules is considered a loser. Who will win this game?

Solution. This is a sequential game, and its optimal solution can be found
through backward induction. First, we need to construct the game’s extensive
form. We label each node with a game’s state (x, y), meaning that A has x
peas, and B has y peas. We arrive to:
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Figure (2.22)

Then we proceed with backward induction. Let’s start from the left side.
(2, 2) and (0, 4) are both final nodes, and A (at (4, 0)) can choose to either
win, or lose. Clearly he/she will decide the former, and so the branch with
(0, 4) is never played. Now B (at (1, 3)) chooses between (3, 1) and (4, 0).
The first is a winning move, the second leads to a loss, and so they will play
the former. Thus, A at the first round can’t choose 1 as an action, as this
will result in B winning.

We can proceed similarly in the right half, finding that also here B will win
in the end. So, independent of A action, B will always win.�� ��Exercise 2.9.3:

Wife (W ) and Husband (H) share the chores of the house. Due to her
working shift from 10:30 am to 6:30 pm, W has two opportunities to do
something, at 7:00 am and 7:00 pm. H instead works two shifts, early
morning and afternoon till late evening, so he has only one opportunity
to contribute, at 2:00 pm. There are two particular chores in the maily:
fix some (F)ood or (C)lean the house. If either family member performs a
chore, he/she pays an individual cost, but both members receive an identical
benefit: F gives benefit 30 but costs 10, C gives benefit 50 but costs 20.
Moreover, any of these actions performed by W in its first opportunity costs
10% more, but also gives 10% more benefit to both players (e.g. F costs 11,
but gives benefit equal to 33). Alternatively, any player at his/her turn can
“do nothing” (N) instead of choosing either chore. This can be done at any
round, and gives individual benefit 10 only to the member choosing it (the
social benefit is of course 0). Also, a chore cannot be repeated in the day (if
food is already prepared ina previous round, the current action taker can
only clean the house or do nothing). Action N can be repeated through all
the rounds.

1. Write down the extensive form of the game.

2. How many subgame-perfect equilibria are in this game? Also, name
the process on how do you find them.
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3. Actually find them.

Solution.

1. This is a sequential game with no simultaneous decisions. The extensive
form is as follows:

Figure (2.23)

2. SPEs can be found through backward induction. We assume W
and H to be generous, in the sense that when choosing between equal
payoffs for them, they opt for the outcome that favors the other. Then,
since there are no repeated payoffs, the SPE must be unique, and is to
be found in pure strategies.

After removing the branches in the last round, we are left with:

Figure (2.24)

So, the final result will be W playing N in round 1, followed by H
playing F in round 2 and finally W plays C in round 3.

However, to fully describe the SPE we should actually write a more
complicated strategy, specifying the action of each player at each
information set. For W this amounts to NNCNFCFF , and for H to
NNF .

Note that the Pareto dominating outcome (73, 75) is not reached, but
the SPE is still a good (70, 70). This happens because both players are
egoistic, or, in this case, simply lazy.
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�� ��Exercise 2.9.4:

Consider a repetition for 2 times with discount factor δ = 1 of the stage
game that is reported below in normal form:

P =

Player B
M F H

P
la
ye
r
A M 7, 7 −2, 9 −1,−1

F 9,−2 2, 2 0, 0
H −1,−1 0, 0 6, 6

1. What are the Nash equilibria of the stage game?

2. If any of these Nash equilibria are played at both stages, you obviously
have a subgame-perfect equilibrium. Can you find a subgame-perfect
equilibrium s = (sA, sB) of the repeated game which is not a repetition
of the Nash equilibrium of the stage game?

3. If you consider an arbitrary discount factor δ, what are the conditions
for s to still be a subgame-perfect equilibrium?

Solution.

1. This is a repeated game, for which we already have the stage’s normal
form. Note that it is a symmetric game, in the sense that swapping
the players changes nothing in the matrix.
Note that strategy M for both players is strictly dominated by F , and
so we can remove it, reducing the game to a 2× 2 matrix. Here we
see that (F ,F ) and (H,H) are the two pure NEs, similarly to the
Battle of Sexes game. There is also a mixed NE given by both players
choosing 0.25F + 0.75H.

2. Here we are seeking an SPE made of two strategies where sometimes
neither (F ,F ) or (H,H) is played. This is possible because an SPE
involves playing a NE in each subgame, not necessarily in each stage
game.
However, we know from theory that the last round is always played
according to a NE. Moreover, since the game is symmetrical, it makes
sense to search for a symmetric pair of strategies: sA = sB.

So, we search for a possible deviation during the first stage. One idea
would be (M ,M), which is a Pareto efficient strategy. To select it, we
can use a “carrot-and-stick” approach in the last round, as follows:

• Play M in the first round, and then play H in the second if and
only if the first outcome was (M ,M). In other words, select
the “better” NE, with payoff (6, 6) higher for both players, if the
opponent complies during the first round.
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• Otherwise, if the opponent deviates from M , play F in the second
round.

This results in playing (M ,M) at the start, and (H,H) in the second,
or (F ,F ) if any other deviation occurs. Players can be tempted to
deviate in the first round, since (F ,M) gives a bigger payoff 9 > 7.
However, this is compensated by the punishment, which is getting
2 < 6 in the second round. Since δ = 1, players regard future payoffs
the same as immediate payoffs, so they will comply and play (M ,M).

3. A lower δ decreases the incentive to comply in the first round. In
particular, for δ = 0, players won’t play (M ,M) at the start. In other
words, a lower δ makes the punishment less effective.

Quantitatively, let’s compare the payoff of the myopic strategy involv-
ing a deviation in the first round, which is 9 + 2δ, with that of the
collaborative strategy, which is 7 + 6δ. So, cooperating is better if:

7 + 6δ > 9 + 2δ ⇒ δ > 0.5

This is consistent with the theory that claims that the discount factor
δ must be big enough for the punishment to be credible.

As a final remark, note that if we had an infinite repetition, we could
avoid the need for the “carrot” NE (H,H). The comparison is between
the myopic strategy of always playing F (against a properly defined
GrT), with payoff:

9 + 2δ + 2δ2 + · · · = 9 + 2δ
1− δ

and the collaborative strategy of always playing M :

7 + 7δ + 7δ2 + · · · = 7
1− δ

Cooperation works if:

7
1− δ > 9 + 2δ

1− δ ⇒ δ >
2
7
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Chapter 3

Bayesian Games

(Lesson 18 of
27/11/2020)
Compiled: January
1, 2021

Introduction
In the previous chapters, we examined games in which all players share common
knowledge. They know the utilities of all players, they know all the possible
moves.
Equilibria are situations in which all players are forming consistent beliefs,
i.e. they are all playing a best response to the action they believe their opponents
are going to make. In other words, A believes that B will play b, and so A plays
her best response a, and at the same time B believes that A will play a, and he
will play his best response which is b. Both beliefs are consistent, they “confirm”
each other, forming in a sense a “self-enforcing prophecy”.
However, if A wants to select the right a, she needs to know what B wants, i.e.
his utilities. In fact, she needs to know that B’s best response to a is to play
b. In this way she is certain that the loop is complete, and that her beliefs are
correct.

In a more realistic situation, players do not know all opponents’ utilities, and so
they have to form beliefs over those. So, A won’t know for sure that B’s best
response to a is exactly b. However, A can guess which are B’s priorities, and
play accordingly. This was first proposed by Harsanyi (1960).

Effectively, we are now dealing with a game of incomplete information.
Beliefs over the characteristics of other players are captured by their types, i.e.
how they behave depending on the circumstances.

Even in this situation it is possible to form consistent and correct beliefs, i.e. a
form of equilibrium.

3.1 A first example
A player’s type determines their utilities, but all players know only their type,
and not that of the others. This can be modelled by drawing a type vector
(t1, . . . , tn) at the start of the game, where ti is drawn among all the possible
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types available to player i. Then each player j is shown their type tj , and the
game proceeds regularly1.

The act of drawing a random vector can be regarded as a Nature’s move, i.e. an
external source of uncertainty, since players do not know the full details about
it.

The game is both dynamic (Nature moves first), and of imperfect informa-
tion (Nature’s move is not known entirely), and it is denoted as a Bayesian
game.

Types can be generalized to include also states of knowledge about the game. Generalized types
For example, a player may know more about the other players’ types, and this
information can still included in his/her type2.

As a first example, we will use the following Entry Game: Entry Game

Figure (3.1)

Player 1 is a newcomer, who may either (E)nter or stay (O)ut. Player 2 is
incumbent: if 1 enters, 2 may (A)ccept or (F)fight.
The SPE outcome is (E,A). Note that there is another NE, which is (O,F ), but
it is not an SPE, since 2’s threat is non-credible. These are all the characteristics
we need to show features of Bayesian games.

Let’s make this game Bayesian. Suppose player 2 can be of two types:

• Rational: behaves as already discussed

• Crazy: enjoys fighting, and his/her payoff for (E,F ) is 2 instead of −1.

Effectively 2 has always a unique definite type. The point is that 1 does not
know which one is it!

1∧The same setup is used concretely in the Mafia/Werewolf game. Here types are the
players’ roles (e.g. civilian, werewolf, etc.), and each player knows initially only their own
role.

2∧For example, werewolfs in the Werewolf game know which are the other werewolf
players. This information is part of their role (type).
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Suppose Nature decides that 2 is Crazy with probability p. Now 1 has a non-
singleton information set, because he/she does not know the full outcome of
Nature’s decision:

Figure (3.2)

If 2 is Crazy, the threat of playing (E,F ) is now credible.

In the following, we suppose that the probability distribution for each player’s Common prior
assumptiontypes is common knowledge (common prior assumption). In other words,

1 does not know for sure if 2 is Crazy or not, however he/she knows that 2 is
Crazy with probability p, and 2 knows that 1 knows, and so on.

Note that in this new extensive form, 2 has four pure strategies, of the form
xy, where:

• x describes what a Rational player 2 does

• y describes what a Crazy player 2 does

The full list of 2’s strategies is AA, AF , FA, FF . In other words, 2 “plans an
action for each of their personalities”. This is not important directly for player 2,
who knows their type and so which node he acts in, but for understanding how
player 1, who is uncertain, will move. In other words, 2 can “picture himself”
as 1 sees him/her to anticipate 1’s moves.

Philosophically, we can distinguish between the actual player 2, which has a
definite type and knows it, and the abstract type-player 2, which is needed to
model the opponents’ beliefs.

Note that in incomplete information games, the number of strategies explodes
even more rapidly, since we need to state what each type of player does.

After all strategies are listed, we can rewrite the game in normal form, computing
the expected utilities for each move. For example, consider the joint strategy
(E,AF ). In this case, the expected payoffs are:

u1(E,AF ) = p · 1 + (1− p) · (−1) = 2p− 1
u2(E,AF ) = p · 1 + (1− p) · 2 = 2− p
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Computing all the combinations leads to:

P =

Player 2
AA AF FA FF

P
la
ye
r

1
O 0, 2 0, 2 0, 2 0, 2
E 1, 1 2p− 1, 2− p 1− 2p, 1− 2p −1, 2− 3p

(3.1)

We can now find the NE using the standard techniques. However, note that, in
general, the result will depend on the value of p. In other words, depending on
the common prior, the NEs may be different.

3.2 Formalization
A Bayesian game consists of the following:

• A set of players N = 1, . . . ,n.

• A strategy space Si for each player i = 1, . . . ,n.

• A type space Ti for each player i = 1, . . . ,n.

• Type-dependent utilities of players ui : (S1,S2, . . . ,Sn;T1, . . . ,Tn)→ R

A static Bayesian game is one in which all real players (i.e. all except Nature)
move simultaneously. Effectively, since Nature still moves first, this is still a
dynamic game.
However, in this simple case, each player’s strategy is a single action ai ∈ Ai.

1. The type ti ∈ Ti of each player i is chosen by Nature for all i = 1, . . . ,n,
according to the joint prior probability distribution Φ(t1, . . . , tn) which is
assumed common knowledge. This means that the game is of perfect
information, because all beliefs are correct, but incomplete, because
there is uncertainty.

2. We assume that the utility ui of player i depends only on player i’s
type, i.e. ui = ui(a1, a2, . . . , an; ti) (private values assumption). In a
more general case (common values), ui is a function of all the types:
ui = ui(a1, . . . , an; t1, . . . , tn).
Different types have different utilities: the utility of player i of type j is
ui,j(ai, a−i) ≡ ui(ai, a−i; tj)
Types can also limit the available actions. This can be done by setting
the payoff for an unwanted move to a very low value (−∞).

3. Since each player know his type, they can infer something about the
type of others from the joint distribution Φ(t1, . . . , tn), which is common
knowledge. Specifically, they can compute the conditional probability:

Φ(t−i|ti) =
Φ(t1, . . . , tn)

Φ(ti)
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This means that each player can know something more3, assuming that
Φ is not separable: if all types are completely independent, then nobody
knows anything more. In fact, in this case Φ(t) = ∏

i ϕi(ti), and so:

Φ(t−i|ti) =
ϕ1(t1) · · ·ϕn(tn)

ϕ(ti)
=

= ϕ1(t1) · · ·ϕi−1(ti−1)ϕi+1(ti+1) · · ·ϕn(tn) ≡ Φ(t−i)

This knowledge is denoted as the belief of each player regarding other
players’ types.

Putting everything together, we denote a static Bayesian game as:

G = {N ;A1, . . . ,An;T1, . . . ,Tn; Φ1, . . . , Φn;u1, . . . ,un}

where ui = ui(a1, . . . , an; ti).
A pure strategy for i is a map si : Ti → Ai, specifying the actions to play for
each type of player. This comes directly from the definition of strategies for a
dynamic game: a mapping from each information set to an action. In case of a
static Bayesian game, there is one information set for each of i’s types.
So, to fully specify a strategy for i, we need to know an action for each of i’s
possible types, even if i knows his/her type! This is not important directly for
i, but for understanding the beliefs that other players −i can form about i, and
plan their reactions. Such an “over-specification” is similar to that we made
in generic dynamic games, were strategies included also responses to actions
that are never taken (i.e. nodes outside the equilibrium path). Basically, it is
needed to allow beliefs of different players to be consistent, which is a necessary
condition for finding Nash Equilibria.
Then, a mixed strategy for i is a probability distribution over their pure
strategies.
Finally, all of this can be generalized to the dynamic games, in which pure
strategies are “plans of actions” provided for each type.

3.3 Bayesian Nash Equilibria
(Lesson 19 of
01/12/2020)
Compiled: January
1, 2021

A Bayesian Nash Equilibrium is just a Nash Equilibrium for Bayesian
strategies. That is, given a (static) Bayesian Game:

G = {N ;A1, . . . ,An;T1, . . . ,Tn; Φ1, . . . , Φn;u1, . . . ,un}

a joint strategy s∗ = (s∗1, . . . , s∗n) is said to be a Bayesian Nash Equilibrium if,
for each player i and each type ti ∈ Ti, si(ti) maximizes the expected payoff:

max
si∈Si

∑
t−i

ui(s∗1(t1), . . . , s∗i−1(ti−1), si, s∗i+1(ti+1), . . . , s∗n(tn), ti)Φi(t−i|ti)

3∧Consider the Werewolf game. The number of werewolves in the game is common
knowledge (this is, in fact, part of the prior distribution of types). So, if you know that there
is only a single werewolf, and you pick that card, you immediately know that all others are
not werewolf. That is, knowing your type allows you to know more about all the other types,
due to the correlations in the prior distribution.
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Note that i’s beliefs Φi(t−i|ti) about the opponents’ types t−i form the weights
for the utilities (while i’s type is clearly known).

In other words, at a Nash Equilibrium all types of all players do not have regrets,
i.e. no incentive for a unilateral deviation, because there is nothing they can do
by themselves to improve their expected utility:

E[ui(s∗i (ti), s∗−i(t−i), ti)|ti] ≥ E[ui(si, s∗−i(t−i), ti)|ti] ∀si ∈ Si

For dynamic Bayesian games we need this still holds, but in that case we are
more interested to an extension of Subgame Perfect Equilibria (SPEs).

3.3.1 Examples
Chicken Game

Consider the Chicken Game: two players drive towards each other along a
narrow road. Each of them can (C)hicken (i.e. steer) or (D)rive toward the
other. The payoffs are as follows:

• Chickens always get nothing (u = 0)

• Drivers gain respect. If only one drives, and the other chickens, then the
driver will get u = 8. Otherwise, both players share the respect bounty,
receiving 4 each. However, in this case an incident happens, and destroy
their cars. Thus, they incur in a punishment P depending on their parents:

– If parents are (H)ard, P = 16
– If they are (L)enient, P = 4.

Each player knows the type of their parents, and that the opponent’s
parents can be either H or L with equal probabilities (p = 0.5), and they
are all independent. This is common knowledge.

Note that, in this case, the type of players does not refer directly to the players
themselves, but on their parents. In fact, in general a type is any information
that determines the payoffs.

The game’s extensive form is as follows:
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Figure (3.3) – Extensive form for the Chicken Game. The information sets reflect the fact
that each player knows their type. LL and LH both mean that 1’s parents are Lenient, and
1 is aware of that, and will behave the same in both nodes, since 1 does not know the type of
2. Similarly, LH and HH both mean that 2’s parents are Hard, and so they form a unique
information set too.

Each player has 2 types, and so strategies are pairs of actions. Since actions
are binary, each player has a total of 4 pure strategies. We can compute all
combinations of expected utilities and organize them in a table, putting the
game in normal form:

P =

Player 2
CC CD DC DD

P
la
ye
r
1

CC 0, 0 0, 4 0, 4 0, 8
CD 4, 0 −1,−1 −1, 2 −6, 1
DC 4, 0 2,−1 2, 2 1, 1
DD 8, 0 1,−6 1, 1 −6,−6

(Note that the game is symmetrical, which reduces the needed computations).

For example, consider the entry (CD,DC). We have 4 possibilities to consider:

• LL, resulting in the outcome (C,D), with payoff (0, 8).

• LH, leading to (C,C), with payoff (0, 0).

• HL, leading to (D,D), with payoff (−12, 0)

• HH, leading to (D,C), with payoff (8, 0)

Each possibility happens with p = 1/4. We can then compute the expected
utilities:

u1(CD,DC) = 1
4 · 0 +

1
4 · 0 +

1
4 · (−12) + 1

4 · 8 = −1

u2(CD,DC) = 1
4 · 8 +

1
4 · 0 +

1
4 · 0 +

1
4 · 0 = 2

Inspecting the best responses, we see that (DC,DC) is the Bayesian Nash
Equilibrium (BNE).
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Committee Voting

Consider a jury with just two jurors deciding whether to (A)cquit (declare
innocent) or (C)onvict (declare guilty) a defendant. Every juror casts inde-
pendently a sealed vote, and the defendant is convicted if both jurors vote C.
However, it is uncertain whether the defendant is (G)uilty or (I)nnocent: the
prior probability of G is q > 1/2, and this is common knowledge. Jurors want
to make the right decision: their payoff is 1 when they make the right decision
(C if G, or A if I), otherwise they get nothing.
The game’s normal form is:

P =

juror 2
A C

ju
ro
r
1 A 1− q, 1− q 1− q, 1− q

C 1− q, 1− q q, q
(3.2)

Since q > 1/2, each juror prefers to play C, and the NE is indeed (C,C).
Now, let’s make this a Bayesian game by introducing some signaling between
players. Assume each player observes the evidence and independently gets a
private signal, representing his/her idea about the case, denoted by ti ∈ {tG, tI}.
It is more likely to receive a signal tx if the defendant status is x, i.e. the players’
types and that of the defendant are correlated. Specifically:

P[tG|G] = P[tI |I] = p >
1
2 i = 1, 2

Note that there is a non-zero probability of “getting the wrong signal”:

P[tG|I] = P[tI |G] = 1− p < 1
2

Note that the types are here representing something about the knowledge each
player has, which affects his/her payoffs.
Each player has 2 types and 2 actions, so a total of 4 pure strategies: AA, AC,
CA and CC. Note that both players have the same objective, and so this is a
coordination game.
Let’s consider a single juror for now. Without any signal, they know that the
defendant is more likely to be guilty, and so they would choose C.
However, the signal is an additional source of information. Since P[G] = q, we
have:

P[G|tG] = P[G∧ tG]
P[tG] =

p︷ ︸︸ ︷
P[tG|G]

q︷︸︸︷
P[G]

P[tG|G]P[G] + P[tG|Ḡ]P[Ḡ] =
pq

pq+ (1− p)(1− q)

Since p > 1/2, 1− p < p, and so the denominator is qp+ (1− q)(1− p) <
qp+ (1− q)p, meaning that:

qp

qp+ (1− q)(1− p) >
q�p

q�p+ (1− q)�p
= q
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So, if the player receives tG, P[G|tG] > q, i.e. he/she is even surer that the
defendant is guilty.
In case tI is received, the opposite happens:

P[G|ti] =
P[G∧ tI ]

P[tI ]
=

q(1− p)
q(1− p) + (1− q)p < q

and in this case the player is more doubtful. Exactly how much things are
changed depends on the actual values of q and p, which are supposed to be
known. If p = 1, then P[G|ti] = 1, i.e. we know for sure that the defendant
is guilty. If p = 1/2, no new information is obtained. If p > q, P[G|tI ] < 0.5,
i.e. the new information can completely change the result, because it is more
reliable than the prior information.
Knowing this, we can return to the full game. If p > q, we expect to find a
BNE given by (CA,CA), i.e. both players “following what the signal says”. To
see if this is indeed correct, we first need to compute the probability of each
type pair:

juror 1
tG tI

ju
ro
r
1 tG qp2 + (1− q)(1− p)2 p(1− p)

tI p(1− p) q(1− p)2 + (1− q)p2 (3.3)

Now, let’s see if CA is a best response to itself. According to the rules of the
jury, a player is decisive (i.e. pivotal) only if the other juror chooses C. Players
want to be pivotal, because this would let them to know the result of their
actions in advance.
Suppose that 2 plays CA, and 1 knows that 2 has received tI , meaning that
2 will play A. Now 1 is not pivotal, and so he/she can play anything without
changing the outcome. In other words, all actions are best responses if the
other player chooses A, and in particular CA is a best response.
So, we need to check what happens if 2 receives instead tG. Recall that 1
knows his/her type, and can add also this information to compute the posterior
probabilities:

P[G|t1 = tG, t2 = tG] = qp2

qp2 + (1− q)(1− p)2 > q

P[G|t1 = tI , t2 = tG] = qp(1− p)
p(1− p) = q

In both cases, it is more convenient to vote for C. So 1’s best response in this
case would be CC. So, CA is not the best response to CA.
In fact, it can be shown that the real BNE is (CC,CC), and this is so even
if p > q, i.e. when the signal is informative! In other words, the initial prior
information determines the outcome.
Note that this happens in the case where both players act independently. If
we considered them separately, they behave as expected, following informative
signals. However, when they are considered as part of the game, their biases
reinforce each other.
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3.3.2 Beliefs: mixed strategies vs types
Previously, we first discussed beliefs as a compelling interpretation for mixed Mixed strategies

as beliefsstrategies. Briefly, a player is never uncertain about their move, but their
opponents may be. So, mixed strategies express the beliefs an opponent has
about a player’s move.

For a concrete example, consider again the Odd/Even game. Suppose A always
plays Odd, and B knows this. Then B will always win! Clearly, this is not a
good way to play for A. Instead, she should act so that B can’t know in advance
her move, for example by playing “erratically” (i.e. flipping a coin4). Note that
A always knows what she is going to play (she sees the coin). However, B will
react according to his beliefs about A’s move. So, in a sense, A’s strategy is
tied to these beliefs, and not the actual action she takes. Then, basically, A
playing a mixed strategy m means that B’s beliefs about A’s actions are m. In
the above example, m = 0.5Odd+ 0.5 Even means that B believes that A’s
action will be either Odd or Even with equal probabilities.

Note that mixed strategies are not directly important for A: they are necessary
to model how B, i.e. the opponent, will react to A’s move.
This is a prerequisite for achieving the Nash Equilibrium, i.e. a situation where
both players’ beliefs are correct and consistent. For example, A believes
B will play b̄, and so she plays her best response a(b̄). At the same time,
B believes A will play ā, and so he plays his best response b(ā). They are
correct and consistent if b̄ = b(ā) and ā = a(b̄). Correct, because each player
behaves as expected: A believes B will play b̄, and he indeed plays b̄. Consistent,
because their beliefs are “self-fulfilling”. When A plays her best response a(b̄),
she chooses ā, which is exactly what B expects her to do! In other words,
the players making their optimal move according to their beliefs about the
opponents confirms the opponents’ beliefs. Consistency makes all beliefs sustain
each other, as forks balancing on a toothpick, so that the entire structure is held
together.

Now, if A wants to solve ā = a(b̄), she can use b̄ = b(a), but for that she needs
to know b(a), i.e. how does B react to her strategies! In other words, A must
have a “model of B” in her head, which clearly needs to be accurate. Now,
consider that B reacts to A according to his beliefs about A, which are nothing
more than the mixed strategies played by A.
In summary, a normal player thinks in terms of his moves. A really good player
thinks about what the opponent will think about his/her moves. A strategy is
not just moving a piece on the board, but it is changing the state of mind of
your opponent. Pure strategies are in a 1-1 relation with physical states. Mixed
strategies are in a 1-1 relation with mind states.

Now, all this discussion should feel similar to that of types. In fact, we have Player types as
beliefsnoted before how the spectrum of a player’s types is not important for that

player themselves (because each player knows their type), but to model other
4∧Note that no real flipping is necessary. B just needs to believe that the choice will be

random, but maybe A is just following some unknown algorithm in her head to decide what
to do.
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players’ beliefs about that player. In other words, types are just another form of
beliefs, i.e. mixed strategies, as first highlighted by Harsanyi when formalizing
Bayesian games.

So, we expect that a Bayesian Game can be interpreted as a classic static game Pure BNEs of
incomplete info are
Mixed NEs of
complete info

with mixed strategies. Let’s show this explicitly with an example.

Consider the static Battle of Sexes:

P =

Brian
R S

A
nn

R 2, 1 0, 0
S 0, 0 1, 2

(3.4)

A mixed strategy for either player is completely specified by the probability to
play R (for example). We already know that there are 3 NEs in this game, 2 in
pure strategies (0, 0) and (1, 1), and 1 in mixed strategies (2/3, 1/3). We will
now show that this last one can be seen as a pure BNE of a related game with
a bit of incomplete information.

The idea is to make the game Bayesian by introducing uncertainty on the
player’s payoffs:

P =

Brian
R S

A
nn

R 2 + c, 1 0, 0
S 0, 0 1, 2 + d

(3.5)

Each player knows exactly their payoffs, but not the ones of the opponent: Ann
and Brian do not know each other very well. So, Ann knows c but not d, and
Brian knows d but not c. This effectively defines privately-known types for
the players. Suppose that c, d ∈ [0,x] uniformly, where x can be thought as a
“perturbation”.

A simple strategy sA for Ann is to choose R if c is sufficiently big, i.e. over a
certain threshold C, and otherwise play S. Similarly, Brian could choose S if
d > D, and otherwise play R (sB).

This joint strategy is, in fact, a Bayesian Nash Equilibrium (BNE). To prove it,
we simply compute the expected payoffs, and see that Ann’s strategy is the best
response to Brian’s strategy (and the vice versa holds for symmetry reasons).
Note that P[d ≤ D] = D/x, and so:

uA(R, sB) = D

x
(2 + c) +

Å
1− D

x

ã
· 0 = (2 + c)D

x

uA(S, sB) = D

x
· 0 +

Å
1− D

x

ã
· 1 = 1− D

x

So Ann’s best response to sB is to play R if c ≥ x/D− 3, and S otherwise, i.e.
to choose strategy sA with C = x/D− 3.
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We can repeat the same reasoning for Brian:

uB(sA,R) =
Å

1− C

x

ã
· 1 + C

x
(2 + d) · 0 = 1− C

x

uB(sA,S) =
Å

1− C

x

ã
· 0 + C

x
(2 + d) = (2 + d)C

x

And so Brian plays S if d ≥ x/C − 3, meaning that D = x/C − 3.

Combining these two conditions leads to: x
D − 3 = C

x
C − 3 = D

⇒ C = D, C2 + 3C − x = 0⇒ C =
−3 +

√
9 + 4x

2

The probability pR of Ann playing R is then:

pR = 1− C

x
=

2x+ 3−
√

9 + 4x
2x −−−→

x→0
2
3

which is exactly the same as Ann playing the mixed NE from the static game. In
other words, when the “noise” x is eliminated, the BNE (incomplete information)
reduces to the mixed NE (complete information).

3.4 Dynamic Bayesian Games
(Lesson 20 of
04/12/2020)
Compiled: January
1, 2021

Nash Equilibria in Dynamic Games often involve non-credible threats: they are
not “rational”, in the sense that rational players won’t naturally choose them.
To get a “good” solution we need to proceed by backward induction, leading to
the concept of a Subgame Perfect Equilibrium (SPE), which is a special kind of
NE that is still a NE in every subgame.

Bayesian Games are dynamic games in which the first turn is played by Nature,
which selects all players’ types. If all that’s left is a second turn in which all
players act simultaneously, then the game is denoted as static, and we can use
a basic extension of “plain” Nash Equilibria to solve them.

However, what would happen if, after removing the initial Nature’s choice, the
game is still dynamic? Can we just apply the SPE reasoning here?

Unfortunately, this is not so simple. As we will see in the next examples,
the SPE does not guarantee to find a “rational” solution, because of a “clash”
between incomplete information (Nature’s move) and the dynamic structure of
the rest of the game.

Let’s start with a Bayesian game in which the SPE behaves as expected. Consider
the Entry Game, with the following extensive form:
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Figure (3.4) – Extensive form for the Entry Game (dynamic, non-Bayesian)

Backward induction leads to (E,A), which is the SPE. Note that (O,F ) is a
NE, but not a SPE.

We can make it Bayesian by considering two types for Player 2: Crazy (prefer
to fight) or Normal (same as before).

Figure (3.5) – Extensive form for the Bayesian Entry Game (v.1)

There are 4 pure strategies for player 2: AA, AF , FA and FF . So, for p = 2/3,
the game’s normal form is given by:

P =

Player 2
AA AF FA FF

P
la
ye
r
1

O 0, 2 0, 2 0, 2 0, 2
E 1, 1 1/3, 4/3 −1/3,−1/3 −1, 0

There are 3 “plain” NEs: (O,FA), (O,FF ) and (E,AF ). However, note that
it is irrational for 2 to play FA or FF , as this would involve 2’s normal type to
choose fight over accept, which is sustainable only if 1 does not enter the game.
So, basically, 2 is threatening 1 to scare him/her off. However, the threat is
non-credible, as it is inconvenient even for 2. A rational player 2 would always
prefer A over F for the normal type.

So, the only rational strategy for 2 is to always play AF , as confirmed by
backward induction. Then, 1 will play O or E depending on the prior probability
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p of 2 being normal. If p is sufficiently high, as seen in the above, then it is
worth entering the game (E). Otherwise, if p is low, there is a high likelihood
of 2 being crazy, and 1 will prefer to stay out (O).
For p = 2/3, (E,AF ) is the unique SPE, corresponding to the rational solution
as expected. So, at least in this case, a direct application of the SPE definition
works.
However, this breaks down if we consider a variant of the entry game. Suppose
that player 1 has two types: (C)ompetitive, behaving as above, or (W)eak, who
prefers not to enter. The probability of 1 being C is denoted by p, and in the
following we take p = 1/2 as an example.
The game’s extensive form is as follows:

Figure (3.6) – Extensive form for the Bayesian Entry Game (v.2)

Player 1 is aware of his/her type, and can use this information to decide what
to do. For example, if 1 is weak then it is convenient to stay out (and getting 0)
rather than entering (and getting either −1 or −2).
However, 2 does not know this, and must choose a unique strategy for both types,
since he/she has only one information set encompassing two indistinguishable
nodes. In particular, since these are the nodes in the deepest layer, we cannot
apply backward induction.
So, 1 has 4 pure strategies: OO, OE, EO, EE. On the other hand, 2 can either
(A)ccept or (F)ight.
To write the game’s normal form we need to compute the expected utilities for
all possible joint strategies. For example, for (OE,A) we have:

u1(OE,A) = p · 0 + (1− p) · (−1) = p− 1 = −1
2

u2(OE,A) = p · 2 + (1− p) · 1 = 2p+ 1− p = 1 + p =
3
2

Then we gather all results in a table:

P =

player 2
F A

pl
ay
er

1

OO 0, 2 0, 2
OE −1, 1 −1/2, 3/2

EO −1/2, 1/2 1/2, 3/2

EE −1/2,−1/2 0, 1

(3.6)
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There are two NEs in pure strategies:

• (OO,F ): the incumbent (2) threatens to fight

• (EO,A): only a competitive outsider (1) enters the game, and the other
always accepts.

Note that OE and EE are strictly dominated strategies: as expected, a weak
player 1 never decides to enter.
Between the two NEs, (OO,F ) includes a non-credible threat, and so it does
not correspond to our notion of rationality. However, it is an SPE, since the
game has a single subgame, which is exactly the whole game itself.
So, the notion of SPE does not allow distinguishing between the rational (EO,A)
and the non-credible (OO,F ).
The main issue is that, ideally, rational players must play optimally both on
and off the equilibrium path. For (OO,F ), the equilibrium path covers just
the “first layer” of the extensive form. However, the part off the equilibrium
path is merged by the uncertainty about player 1’s type, and we need a way to
understand what the optimal play should be here. Intuitively, we know that 2
should always accept, since this leads to 1 always, while fighting leads to either
0 or −1. However, how can we formalize this in a unique structure?

3.5 Perfect Bayesian Equilibrium
In dynamic games, we defined the Subgame Perfect Equilibrium (SPE) as the
special kind of Nash Equilibrium which is not only rational on the equilibrium
path, but also off the equilibrium path.
The idea is to do the same for Bayesian games. The issue is that, as seen from
the previous example, we cannot simply use subgames for the off equilibrium
part.
First, given a Bayesian NE s∗, an information set is said to be on the equilib-
rium path if, given the distribution of types, it is reached with probability > 0. Bayesian

Equilibrium PathFor example, in (OO,F ), the information set of node 2 is not in the equilibrium
path.
Now, we need a way to somehow split information sets spanning multiple nodes,
so that we can check in each of the resulting parts if the BNE is rational.
The idea is that, in the Bayesian setup, not all nodes in an information set are
the same. Depending on the prior distribution, some of them may be more
probable than others. For example, if p of 1 being competitive is high, then it is
more likely to be on the left part of the graph, and not the other one.
This is formalized by introducing a system of belief µ, which is a probability System of Belief
distribution over decision nodes for every information set, that is a set of condi-
tional probabilities of the form P[being at node x ∈ I|being at information set I].
In a game of perfect information, all information sets are singletons, and so
the system of beliefs are all 1s: a player which is at information set I knows
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for sure that he/she is at the unique decision node inside I. In an incomplete
information game, instead, there are several possibilities, and to compute the
conditional probabilities we can use Bayes’ theorem:

P[node|info set] = P[node]
P[info set]

This additional information is the key ingredient for finding the rational solution
of a Bayesian game.
We are now ready to introduce the analogue of SPEs for Bayesian games,
which is called the Perfect Bayesian Equilibrium (PBE), or sequential
rationality. The idea is to use the systems of belief to make rational moves.
Formally, a PBE is a pair (s∗,µ) of a BNE s∗ and its system of beliefs µ, Definition
meeting the following requirements:

• A system of belief must be defined for all information sets of every player.
In particular:

– On the equilibrium path, the belief systems must follow Bayes’ rule
on conditional probability.

– Off the equilibrium path, the belief systems are arbitrary. They still
have to respect the normalization constraint.

• Players are sequentially rational: given the beliefs, they always play a
best response.

Let’s return to the previous example:

Figure (3.7)

To fully specify a BPE, we need to assign beliefs µ(x1) and µ(x2) to the nodes x1
and x2 (all the others are trivial, since any other information set is a singleton).
Note that they must sum to 1, and so they cannot be both 0: these are
conditional probabilities, not absolute probabilities! The probability of reaching
x1 or x2 may be 0, but if we assume reaching it, then the probability of being
in either x1 or x2 is 1.
If the probability of reaching I = {x1,x2} is non-zero, then we need to apply
Bayes’ rule to compute µ(x1) and µ(x2), starting from the strategy being
considered.

125



For example, consider the BNE (EO,A). Now, only the competitive 1 enters
the game, so if we reach the information set {x1,x2} we are sure to be at x1,
meaning that µ(x1) = 1, µ(x2) = 0.
Note that this reasoning can be extended to mixed strategies. For example,
suppose 1 chooses E with probabilities qC and qW (depending on his/her type).
The probability of reaching x1 is pqC , that of reaching x2 is (1− p)qW , and so
the probability of entering I is the sum pqC + (1− p)qW . Then, according to
Bayes’ rule:

µ(x1) = pqC
pqC + (1− p)qW

Returning to the BNE (EO,A), we can see that all players behave rationally.
In fact, 2 is sure to be at x1 (µ(x1) = 1), and so he/she chooses A, which is the
best response. Player 1 can anticipate this, and so he/she chooses E.
Thus, (EO,A), along with the system of belief with µ(x1) = 1, is a PBE.
On the other hand, consider (OO,F ). Now I = {x1,x2} is outside the equilib-
rium path, and so we cannot use Bayes’ rule to compute µ(x1) or µ(x2), since
the probability of reaching I is 0.
However, we still need to assign some arbitrary beliefs, which cannot be both 0,
since µ(x1) + µ(x2) = 1. However, at both nodes the best response is to play A.
So, if any of the two has a non-zero belief (as it must be), the rational choice
would be to play A. But the BNE specifies to play F , which is different, and so
this is not a PBE.

3.6 Further discussion
More recent literature suggests that the PBE definition could be extended
even more. In particular, the notion of PBE introduced above is denoted as
“weak”, because beliefs off the equilibrium path can be any arbitrary probability
distribution. Additional constraints, such as continuity, may be introduced.
However, a full discussion of these proposals is beyond the scope of this course.
In this section, we will limit ourselves to discussing an example where the PBE
definition seems “odd”.
Consider the following entry game:

Figure (3.8)
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Here Nature draws types for both players, and neither one knows anything.
If 1 plays D with some non-zero probability, then 2 will choose equal beliefs for
x1 and x2, i.e. µ(x1) = µ(x2) = 0.5, since he/she has no more information than
that of the prior distribution. Then, the strategies at x1 and at x2 must be
the same, since both nodes belong to the same information set. The expected
payoff for R is 3 · .5 + 0 · .5 = 1.5, while that for L is 2 · .5 + 2 · .5 = 2, so 2 will
play L. 1 anticipates that, and plays D always, leading to the PBE (D,L).

However, suppose that 1 never plays D. Then x1 and x2 are suddenly off the
equilibrium path, meaning that 2 can decide arbitrary beliefs for them. In
particular µ(x1) > 2/3 is possible, which means that 2’s best response is R, and
so 1 should always play U , leading to another PBE (U ,R).

Between the two, the second PBE seems a bit forced. The threat of choosing
µ(x1) > 2/3 seems non-credible. This suggests that the PBE is still not “specific
enough” to find the “rational solution” of Bayesian games.

3.7 Signaling Games
Bayesian games can be classified in two general categories:

• Games like the one in fig. 3.5, in which a typed player (2) moves after
another player (1), which are called screening games. In this case, 1 can
only guess 2’s reaction based on the prior, and there is no other transfer
of information. Payoffs are hidden from 1 by Nature’s choice.
In this case, the SPE notion suffices.

• Games as the one in fig. 3.6, where a typed player 1 moves before another
player 2. In this case, the action taken by 1 is visible by 2, and 2 can
use it to infer something about 1’s type. In other words, there is a signal
going from 1 to 2, and that is why this kind of games are called signaling
games. Note that it is necessary that the utilities of 2 depend on the
type of 1 (i.e. the game is common values), meaning that 2 is interested
in knowing 1’s type.
In this case, SPE does not suffice to find the rational solution, because
there is a single subgame, which is the whole game. So, we need to use
PBE.

Binary signaling games are often represented as a “butterfly graph”:
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Figure (3.9)

Depending on the choice of 1, there can be different kinds of equilibria:

• Separating equilibria: all types of 1 choose a different action, thus
perfectly revealing 1’s type to 2 (simplest case, since all systems of belief
are degenerate).

• Pooling equilibria: all types of 1 choose the same action, meaning that
2 receives no signal about 1’s type.

• Intermediate cases, also known as “hybrid”, “semi-separating” or “partially-
pooling”.

Let’s consider an example. Brian is inveted by colleague Zöe to a coffee. Ann
has two types:

• Jealous with probability p = 0.8

• Easygoing with probability 1− p = 0.2

and this is common knowledge. Ann can send a signal to Brian, by either
staying (S)ilent about this business or (T)rashing Zöe. Brian observes the signal
and can accept the (C)offee or kindly (D)ecline the offer. Payoffs are as follows:
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Figure (3.10) – Extensive-form for the Bayesian Signaling Game of A coffee for Brian.

If Brian goes out with Zöe, Ann receives a penalty, which is high (−6) if she is
jealous, or lower (−1) if not. However, Ann does not want to clearly signal her
preference by thrashing Zöe. If she does so, and Brian follows her signal, she
will get just 1. But if Brian understands her preference without any need of an
explicit say, she gets a higher 3.

Ann has 4 pure strategies: SS, ST , TS and TT . Brian makes binary choices
on two information sets (the upper part, when Ann plays S and the lower one,
when Ann plays T ), and so has 4 pure strategies too: CC, CD, DC and DD.

For example, a joint strategy can be (TS,CD), meaning that Ann says bad
words about Zöe only if she is jealous, while Brian takes the coffee only if Ann
is silent (or, in other words, Brian “follows the signal”).

To find the PBE, we first need to find all NEs. One simple way is to fall back to
the normal form, which involves a 4× 4 bi-matrix. Filling it may be challenging,
so we proceed in steps.

First, consider the simplest expectations to compute, which are the ones where
both players stick with only one move. For instance, if Brian plays CC, the
payoffs will be the same whatever Ann plays, since the upper/lower part of 3.10
are equal for the C leaves. These will be:

uA(CC, ∗∗) = 0.8 · (−6) + 0.2 · (−1) = −5
uB(CC, ∗∗) = 0.8 · (−3) + 0.2 · 2 = −2

The same happens for (SS,CD), since T is never played, and so Brian will play
only C.

Similarly, for (SS,DD) and (SS,DC), Brian only plays D. In these cases the
payoffs in both branches of the upper part of fig. 3.10 are exactly the same,
meaning that uA(SS,D∗) = 3 and uB(SS,D∗) = 0.
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The same reasoning leads to (TT ,CD) = (TT ,DD), for which the payoffs are
(1, 0), and (TT ,CC) = (TT ,DC), for which we already computed (−5, 2). Note
that, in this case, it is the second letter of Brian’s strategy that gets always
played, since it is the response to Ann’s T .

P =

Brian
CC CD DC DD

A
nn

SS −5,−2 −5,−2 3, 0 3, 0
ST −5,−2
TS −5,−2
TT −5,−2 1, 0 −5,−2 1, 0

All other values need to be carefully computed, leading to:

P =

Brian
CC CD DC DD

A
nn

SS −5,−2 −5,−2 3, 0 3, 0
ST −5,−2 −4.6,−2.4 2.2, 0.4 2.6, 0
TS −5,−2 0.6, 1.6 −4.2,−2.4 1.4, 0
TT −5,−2 1, 0 −5,−2 1, 0

Note that DD strictly dominates CC. There are 5 NEs, 3 in pure strategies
((SS,DC), (SS,DD) and (TT ,CD)) and 2 in mixed strategies5: (TT , 0.5 ·
CD+ 0.5 ·DD) and (1/6SS + 5/6TS, 2/9CD+ 7/9DD).
To find the PBE, we need to add also the information about beliefs. For Ann,
they are trivial, since her information sets are singletons. On the other hand,
Brian has two information sets with two elements, and so needs to know the
conditional probabilities µS , µT of Ann being jealous after seeing the signal
(S)ilent or (T)rashing.

Figure (3.11) – Beliefs in the A coffee for Brian game.

5∧Found with software
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For a separating PBE, these would be easy to compute. For example, for ST
we would have µS = 1, µT = 0.
Unfortunately, all the NEs found are of the pooling type, which are more
difficult to analyze. For instance, consider SS. Since Ann always plays S, the
signal carries no information at all, and so µS = p = 0.8 is given by the prior
knowledge. However, the lower part of the graph is now outside the equilibrium
path, meaning that µT can be arbitrarily chosen, and we need to verify that
whatever the value, the choice is always rational.

1. (SS,DD). Both players are choosing best responses along the equilibrium
path, since this is a NE. The belief µS = 0.8 is taken from the prior. Off
the equilibrium path, i.e. when Ann plays T (which never happens), Brian
has to choose between C and D, and we need to verify that D is the best
response, which is true if:

0 ≥ −3µT + 2(1− µT )⇒ µT ≥ 0.4

Along with these beliefs, (SS,DD) is a PBE.

Figure (3.12)

2. (SS,DC). Brian is still playing rationally, even if he is planning to take
the coffee if Ann talks bad about Zöe. In fact, this is supported by a
different set of beliefs:

µS = 0.8,µT ≤ 0.4

In other words, Brian is thinking that Ann plays T if she is not very jealous
(a sort of anti-correlated signal). Along with these beliefs, (SS,DC) is a
PBE.

3. (TT ,CD). Analogous to the previous one, but with T ↔ S, and so
µT = 0.8 and µS ≤ 0.4. Along with these beliefs, it is a PBE.

4. (TT , 1/2CD + 1/2DD). It is a pooling equilibrium in which Brian is
indifferent between CD and DD. µT = 0.8 is given by the prior. µS can
be arbitrary, but in this case we can fix its values by imposing indifference,
leading to µS = 0.4. Actually, there are infinitely many PBEs where Brian
plays qC + (1− q)D with q ≥ 0.5 and the beliefs µS = 0.4, µT = 0.8.

5. (1/6SS + 5/6TS, 2/9CD+ 7/9DD). This leads to a semi-separating PBE,
in which most of the time Ann’s signal gives full information. Intuitively,
Ann is always silent when she is easygoing, but can become talkative when
she is jealous, since Brian sometimes chooses C when she is silent.
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Note that T is played only when Ann is jealous, and so µT = 1. Depending
on the value of µS , Brian may prefer C or D. But since he plays a mixed
strategy, he must be indifferent between the two, and so µS = 0.4, which
is not the prior. In fact, this can be found through Bayes’ rule. Let
q = P[S|jealous] be the probability that A plays S given that she is
jealous. Then:

µS = P[jealous|S] = P[S, jealous]
P[S] =

pq

pq+ (1− p) ⇒
p=0.8
µS=0.4

q =
1
6

which is consistent with the mixing weights for Ann: 1/6SS+ 5/6TS. Thus,
we can use Bayes’ rule to find semi-separating PBEs, if they exist.
Brian instead plays 2/9CD+ 7/9DD, i.e. always responds to T with D, but
takes a mixed stance after observing S, making Ann indifferent between
her two options S and T . With T , Ann gets always 1, and with S she
gets −6 if C or 3 if D. Imposing indifference:

1 !
= −6P[C] + 3(1−P[C])⇒ P[C] = 2

9

3.8 Exercises
(Lesson 21 of
11/12/2020)
Compiled: January
1, 2021

�� ��Exercise 3.8.1:

Alfred (A) and Barb (B) are new interns of a company, tasked to work
together, and they barely know each other. On their first day, they are sent
to the IT technician who will hand them a laptop to use in the internship.
The technician is asking them what operating system they want installed,
and the available choices are Mac OS (M) or Windows (W ). The two interns
make this choice independently of one another, also based on whether they
prefer “Apple” or “Microsoft” software. Any intern has preference towards
them with respective probabilities p and 1− p. The individual preferences of
A and B are independent and the value of p is common knowledge. Clearly,
the interns know their individual preferences, but can only estimate the
other’s through the common prior p. Using the favorite OS gives a benefit
quantified as +1, while using the lesser preferred one gives 0. However, since
their internship requires working together, both A and B know that they will
get an additional benefit of +2 if they choose the same OS, because it would
be easier to exchange software. Discuss what kind of Nash equilibrium would
you use for this Bayesian game and analyze the values of p for which a joint
strategy where both players follow their types, that is, they choose M if
their favorite OS is Mac OS, and choose W if their favorite OS is Windows,
is a Bayesian NE.

Solution. There are a total of 4 possible combinations of types: mm (prob.
p2), mw (p(1− p)), wm ((1− p)p) and ww ((1− p)2). The game’s extensive
form is as follows:
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Figure (3.13)

However, this is still a static Bayesian game: other than the first Nature’s
move, all moves happen simultaneously. So, it suffices to use a Bayesian
Nash Equilibrium (BNE).
The expected utility for (M ,M) for A is:

uA(M ,M) = 3p2 + 3p(1− p) + 2p(1− p) + 2(1− p)2

Actually, any utility value has a form like:

u(·, ·) = ap2 + bp(1− p) + cp(1− p) + d(1− p)2 =

= (a− b− c+ d)p2 + (b+ c− 2d)p+ d

For player A, the values of A, B, c and d are as follows:

P =

B
MM MW WM WW

A

MM 3, 3, 2, 2 3, 1, 2, 0 1, 3, 0, 2 1, 1, 0, 0
MW 3, 3, 1, 1 3, 1, 1, 3 1, 3, 3, 1 1, 1, 3, 3
WM 0, 0, 2, 2 0, 2, 2, 0 2, 0, 0, 2 2, 2, 0, 0
WW 0, 0, 1, 1 0, 2, 1, 3 2, 0, 3, 1 2, 2, 3, 3

(3.7)

In particular, we are interested in finding when it is a BNE to play
(MW ,MW ), where each player follows his/her type. For symmetry reason,
let’s just consider A. We find:

uA(MW ,MW ) = 4p2 − 4p+ 3

This is a NE if A has no meaningful unilateral deviation (and if this holds
for A, then also B won’t have any incentive to deviate for symmetry reasons).
So, the possible deviations are MM , WM and WW , and we keep B fixed at
MW (unilateral). Effectively, this means that we just need to compute the
second column of (3.7). Then:

• Deviation towards MM : given that uA(MM ,MW ) = 3p, not deviat-
ing is convenient if:

4p2 − 4p+ 3 ≥ 3p⇒ p ≤ 3
4
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• Deviation towards WM . uA(WM ,MW ) = −4p2 + 4p, and so:

4p2 − 4p+ 3 ≥ −4p2 + 4p⇒ Always true

which is expected, since WM corresponds to “always choosing the
least preferred type”.

• Deviation towards WW . uA(WW ,MW ) = −3p+ 3, and so:

4p2 − 4p+ 3 ≥ −3p+ 3⇒ p ≥ 1
4

As a result, (MW ,MW ) is a BNE if 1/4 ≤ p ≤ 3/4. Intuitively, this means
that following the type is convenient only if there is a high uncertainty about
the other player’s type, i.e. if p ∼ 1/2. Otherwise, if p ∼ 1 or p ∼ 0, the
opponent’s type is almost certain, and so it would be better to always pick
the most likely case, even if this is against personal preferences.

�� ��Exercise 3.8.2:

At the saloon, a young cowboy Y is insulted by a black hat outlaw O, that
is feared to be the fastest gun in the state. Y can let it slide (S): in this
case, Y gets utility −20 and O gets utility 0. Or, Y can challenge O to a duel
(C), in which case O can either apologize (A) or accept the duel at high noon
(D). If O apologizes, Y gets utility 10 and O gets utility −10. The outcome
of the duel depends on whether O is really a sharpshooter or not. If O is a
sharpshooter, Y has no chance of winning the duel. The payoffs are −100
for Y and 20 for O. If O is just pretending to be a fast gun, then the duel is
uncertain: the probability of winning is 0.5 for both Y and O, and whoever
wins gets utility 20 and whoever loses gets −100. The probability of O being
a sharpshooter is a common prior equal to p.

1. Represent this Bayesian game in extensive form.

2. Represent this Bayesian game in normal form, with a type-agent
representation of player O.

3. Find the Bayesian Nash equilibria of the game if p = 0.2 and discuss
whether they are SPE and PBE.

Solution.

1. This is a Dynamic Bayesian game. The extensive form is as follows:
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Figure (3.14)

In particular, it is a screeening game, since the first player to move
has no type, and cannot infer any additional information about the
type of the other player.

2. Player Y has only two strategies: S and C. Player O is typed, and must
plan a binary move for each of his two types, leading to 4 strategies: AA,
AD, DA and DD. Every pair XY means “X when sharpshooter, Y
when liar” (it is always best to make the notation’s meaning explicit).

Then, the game’s normal form is as follows:

P =

O

AA AD DA DD

Y

S −20 0 −20 0 −20 0 −20 0
C 10 10 50p−40 30p−40 −110p+10 30p−10 −60p−40 60p−40

3. We set p = 0.2, leading to:

P =

O

AA AD DA DD

Y

S −20 0 −20 0 −20 0 −20 0
C 10 10 −30 34 −12

−4 −52
−28

There are three Bayesian NEs: (S,AD), (S,DD) and (C,DA). Since
this is a screening game, the SPE notion suffices. In particular, only
(C,DA) is an SPE. In fact, the other two involve a non-credible threat:
it is not rational for the liar O to accept the Duel. Another way to see
that is by using backward induction, which reduces the tree to:
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Figure (3.15)

Now, Y knows the prior probability p, and so he can compute the
expected payoff when choosing S or C.

E[uY (S)] = −20 E[uY (C)] = −12

And so C is preferable. Thus, the full strategic choice found through
backward induction is: Y chooses C, then O chooses D if sharpshooter,
and A if liar.

(C,DA) is also a PBE, but showing that is not needed for this exercise.
In any case, it is easy to construct. In fact, O has always information
sets that are singletons, meaning that his beliefs are trivial. Player Y
has a non-singleton information set, but no way to update his beliefs
(he is first to move), and so he just uses the prior.

�� ��Exercise 3.8.3:

A lawyer (L) is representing a defendant in front of a judge (J). The defendant
can be innocent of guilty with probability p = 0.6 or 1− p, respectively.
This is a common prior. However, L gets to know whether the defendant
is really guilty or not, and also possesses some key evidence that can be
definitely exculpate or incriminate the defendant. During the trial, L, can
decide whether to Reveal this key evidence or to keep it Hidden. Choosing
R has a cost for L: for example, the key evidence may be obtained from a
witness that must be protected, or the plaintiff can make an objection to
it. After examining the case, J will eventually reach a decision to either
Acquit or Convict the defendant, and wants to do so fairly, that is, J prefers
to acquit if the defendant is innocent and to convict if guilty. Consider
J’s utility to be either 1 or 0 depending on giving the right sentence or
not, respectively. As for L’s utility, this is 2 if the defendant is acquitted,
regardless of whether the defendant was guilty, or not, since in this case L
gets paid and this is what matters the most. If the defendant is convicted,
L’s utility is 0 if the defendant was anyways guilty, and −1 if he/she was
innocent. Finally, subtract 1 by all of L’s utilities when playing R, since
revealing the key evidence does not come for free.
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1. Represent this game in extensive form.

2. Find all pooling, separating and semi-separating Perfect Bayesian
equilibria.

Solution.

1. This is a signaling game (the typed player acts first), where one
action involves revealing (or not) the private type information. Note
that the lawyer’s type is actually about the nature of the defendant
(guilty/innocent). The extensive form is as follows:

Figure (3.16) – Extensive form for the Lawyer-Judge game.

Note how the non-singleton information set is only present in the lower
part, where L does not reveal (H) his type. In summary: the lawyer L
is rewarded if the defendant is acquitted, but pays a cost if he reveals
evidence. The judge J prefers to make the right decision.

2. The upper (R) part has only singleton information sets, and so it can
be solved directly through backward induction:

Figure (3.17)

In other words, if L reveals the defendant to be innocent/guilty, then
J knows what to do.

After this simplification we can start looking for PBEs.
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L makes a binary decision for each of his types, and so he has 4
strategies: RR, RH, HR and HH. Here XY means that X is chosen
when J knows that the defendant is innocent (p = 0.6) and Y otherwise
(1− p = 0.4).

J, on the other hand, needs to plan only a binary choice (A or C) when
the type is not revealed. If R has been chosen, J automatically knows
what to do, and there are no other possibilities to consider.

For PBEs, we need to set also the beliefs. There is only one non-
singleton information set, containing just two nodes, meaning that
there is only a single belief to be specified: µ = P[innocent|H].

There are two ways to look for PBEs. One is to write the game in
normal form, find all the BNEs and examine each one. This approach
is thorough, but requires many computations.

A quicker way is to reason about possible PBEs: we start from a
“reasonable” strategy of a certain kind (e.g. separating/pooling/etc.)
and see if there is a system of beliefs that supports it. Here the obvious
risk is to miss some equilibria.

As an example, let’s start with the second approach. First, consider
separating strategies. One possibility is RH, i.e. L reveals the infor-
mation when the defendant is innocent, and hides it when he/she is
guilty. In this case, µ = 0: if J sees H, he immediately knows that the
defendant is guilty. The strategies are shown here:

Figure (3.18)

So (RH,C) can be sustained by a set of beliefs. To see if it is really
a PBE, we need to verify that there isn’t any meaningful unilateral
deviation. Clearly, J is making optimal decisions. If L changes R when
innocent to H, then J will think that the defendant is guilty, and L will
get −1 instead of 1. Similarly, changing H when guilty to R reduces
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the L’s utility from 0 to −1. So, also L has no incentive to deviate.
This confirms sequential rationality.
Thus, (RH,C after H) with µ = 0 is a separating PBE.

Instead, (HR, after H), with µ = 1, is not a separating PBE:

Figure (3.19)

In fact, in this case, J plays rationally, but L has incentive to play H
when guilty, which would increase his payoff from −1 to 2.

We can now proceed to search pooling equilibria. There are two
possibilities: RR or HH. The first can be discarded, since revealing
when guilty is never good for L. So, let’s consider (HH, after H). The
belief µ = 0.6 is given by the prior, since L does not signal anything to
J. The situation is the following:

Figure (3.20)

Once again J is playing rationally. If L deviates on the left, then he
would reduce utility from 2 to 1, and deviating on the right reduces
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utility from 2 to −1. So, sequential rationality holds, and this is also a
PBE.

Finally, there is also a semi-separating PBE. The idea is that L always
hides when guilty, but sometimes reveals when innocent, in such a way
that µ = 0.5, i.e. J is maximally confused.
The strategies are as follows: L plays 1/3RH + HH/HH, while J plays
2/3A+ 1/3C. J plays so that L is indifferent of revealing/hiding when
innocent (but L always hides when guilty).

In summary, there are 3 PBEs:

• Separating: (RH,C), µ = 0
• Pooling: (HH,A), µ = 0.6
• Semi-separating: (1/3RH + 2/3HH, 2/3A+ 1/3C), µ = 0.5

These can be found also from the normal form:

P =

player J

A C

pl
ay
er

L

RR 0.2, 1 0.2, 1
RH 1.4, 0.6 0.6, 1
RH 0.8, 1 −1, 0.4
HH 2, 0.6 −0.6, 0.4

(3.8)

Note that RR and HR are strictly dominated.

�� ��Exercise 3.8.4:

Ania (A) and Bruno (B) are two students of Game theory who are engaged.
They plan to meet at the movies and recreate a Battle of Sexes scenario.
Quite conveniently, the movie theater has two options: “Romantic happiness
in the kingdom” (R) and “Space mutant empires” (S). Still, while B is
definitely a nerdy character, also A is not really a girly-girl, but more of a
nerd herself too. So, while their priority is meeting at the same movie, B
is definitely preferring movie S over R. About A instead, things get more
uncertain: B believes that A prefers R with probability p: Obviously, A knows
what she prefers: but she is also aware that B is not sure, and she knows
the value of p, that is a common prior. In the end, if they go to different
movies, both end up with payoff equal to 0. If they go to see either movie
together, B’s payoff is 1 or 2 depending on the movie they watch being R or
S, respectively. A’s payoff instead will be also either 2 or 1 depending on the
preference. These payoff values are common knowledge too.

1. Represent this game in extensive form.

2. Represent the game in normal form with the Bayesian player as type
agent.
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3. Find the Bayesian Nash equilibria.

Solution.

1. This is a static Bayesian game, so we will need only BNEs to solve it.
The extensive form is as follows:

Figure (3.21)

2. The Bayesian player is the typed one, i.e. A. Her strategies are binary
for each type (type agent representation), and so they are tuples (what
to do when girly, what to do when nerdy). They are RR, RS, SR and
SS. B is a regular player, so his strategy is just R or S.

P =

player B

A C

pl
ay
er

A

RR 1+p 1 0 0
RS 2p

p
2−2p 2−2p

SR 1−p 1−p p 2p
SS 0 0 2−p 2

(3.9)

SR, i.e. the strategy when A goes against her type, is strictly dominated
by a mixture of RR and SS. That is, there is a coefficient ρ so that
strategy m : ρRR+ (1− ρ)SS is better than SR:ρ · (1 + p) + (1− ρ) · 0 > 1− p B plays A

ρ · 0 + (1− ρ) · (2− p) > p B plays C
⇒

ρ > 1−p
1+p

ρ < 2(p−1)
p−2

In general, best responses depend on the value of p. However, since
p ∈ [0, 1], in some cases one move is always a best response: for example
2− p is always strictly bigger than 0. There is only one ambiguity:
when A plays RS, B’s best response is either A or C, depending on p.
However, neither one can be a pure NE, so this is not a problem.
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3. From the normal form, we see that there are two pure NE: (RR,R)
and (SS,S). Both do not depend on the value of p.

From the original Battle of Sexes, we know that there should also
be a mixed NE. First, the strictly dominated strategy can’t be part
of the NE. Also, the NE can’t involve a mixture of RR and SS: by
the indifference principle, such a mixture must satisfy uA(RR, ·) =
uA(SS, ·) ≥ uA(RS, ·), which is not possible. For the same reason,
there is no mixed NE combining all 3 strategies RR, RS and SS.

So, let’s consider a mixture of RR and RS. Let’s consider a strategy
q : q RS + (1− q)RR for A and c : cR+ (1− c)S for B, and apply the
indifference principle.

uA(RR, c) = (1 + p)c !
= 2pc+ (2− 2p)(1− c) = uA(RS, c)⇒ c =

2
3

uB(q,A) = p · q+ 1 · (1− q) !
= (2− 2p) · q+ 0 · (1− q) = uB(q,C)

⇒ q =
1

3(1− p)

Since q ∈ [0, 1] (it must be a proper probability), we need to impose
also:

1
3(1− p) ≤ 1⇒ p ≤ 2

3

Similarly, we can consider a mixture of RS and SS, with A playing
q : qRS + (1− q)SS, and B c : cR+ (1− c)S. Imposing indifference
leads to:

c =
1
3; q =

2
3p p ≥ 2

3

So, there are always at least 3 NEs: 2 pure and 1 mixed. If p = 2/3,
there are 4: 2 pure and 2 mixed.

Note that when p is sufficiently high, then A behaves as in the original
Battle of Sexes, and so does B. If, instead, p < 2/3, then A is different,
and her strategy changes, adding SS. However, note that in all these
mixed NEs, A goes to R with probability 2/3 always, independent of p.
This is because A plans her strategy as a response to B, so that he will
be indifferent about his options.
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Chapter 4

Classic problems

4.1 The Master degree
(Lesson 22 of
15/12/2020)
Compiled: January
1, 2021

A freshly graduated Bachelor Student (player 1) is uncertain about pursuing an
MS degree. He can be a (H)ighly or (L)owly skilled student, and he is aware of
which one is it. Depending on his talent, there is a different cost of gettin an
MS: if 1 is skilled the cost is lower cH = 2, otherwise it is higher cL = 5. 1 can
either get the (D)egree, or remain (U)ndergraduate.

Player 2 is an employer that can either give 1 a (M)anager or (B)lue collar
job, with different wages: wM = 10, wB = 6. 1’s utility is the difference
between wage and cost. On the other hand, the employer’s net profit depends
on the assignment/skill match. Let’s assume that the degree has no impact on
that. Instead, a higher payoff is given if 2 assigns 1 to the correct position (e.g.
Manager if Skilled, Blue collar if not):

M B

H 10 5
L 0 3 (4.1)

The game’s extensive form is as follows:

Figure (4.1)
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Note that the choice taken by 1 acts as a signal for player 2.

In general, 2 believes that 1 is choosing a mixed strategy where:

• U is chosen with probability σH when type is H

• U is chosen with probability σL when type is L

Applying Bayes’ rule we can compute 2’s beliefs:

µU =
pσH

pσH + (1− p)σL µD =
p(1− σH)

p(1− σH) + (1− p)(1− σL)

Note that if D is never chosen, σH = σL = 1, and so only the first belief µU
can be computed from the above formulas, while µD is arbitrary.

Both players have 4 possible pure strategies. In fact, 1 is typed, and has to
choose a binary action for each type. 2 is not type, but has to choose a binary
response to either U or D.
Let’s fix p = 1/4 and write the game’s normal form:

P =

Player 2
MM MB BM BB

P
la
ye
r
1

UU 10, 2.5 10, 2.5 6, 3.5 6, 3.5
UD 6.25, 2.5 3.25, 4.75 5.25, 1.25 2.25, 3.5
DU 9.5, 2.5 8.5, 1.25 6.5, 4.75 4.5, 3.5
DD 5.75, 2.5 1.75, 3.5 5.75, 2.5 1.75, 3.5

There are two pure NEs, and also a mixed NE which is harder to find, and
won’t be discussed here.

• (DU ,BM) is a separating NE, in which getting the degree is perfectly
correlated with having high skill. All highly skilled students get the degree
and are hired as managers, while the other ones remain undergraduate
and get the blue collar jobs. Beliefs are µU = 0 and µD = 1.

• (UU ,BB) is a pooling NE, where nobody gets a degree and everyone does
menial jobs. In this case µU = 1/4 is directly from the prior, while µD
is arbitrary. Surely it can’t be µD = 1, since 2 is choosing B over M for
graduates, which can happen only if:

5µD + 3(1− µD) > 10µD + 0 · (1− µD)⇒ µD <
3
8

This equilibrium is a PBE, i.e. it is a sustainable rational solution, only if
2 believes that less than 3/8 of graduates are highly skilled.

4.2 Reputation building
Uncertainty over players’ types can lead to cooperative behaviors.
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For example, consider a finitely repeated version of the Prisoner’s Dilemma.
From previous discussions, we have seen that the only SPE is that where nobody
cooperates.
Cooperation can be established by considering infinite repetitions, since in that
case there is a grim trigger strategy providing an infinite punishment for any
deviation.
Can this be done by using incomplete information over a finite number of
rounds?
The basic setup of a round is as follows:

P =

player B
C D

pl
ay
er

A

C 1, 1 −1, 2
D 2,−1 0, 0

(4.2)

Either player can (C)ooperate or (D)efect. Only player A is typed, and can be
either strategic (with probability 1− p), behaving normally, or grim-trigger (p),
who starts playing C and switches forever to D if the opponent does not always
play C. Clearly, this can happen only if payoffs for the grim-trigger version of
B are different from the above ones.
Effectively, one way to think of this setup is as if there were 3 players: a
strategic B, a strategic A and the grim-trigger A.
If the game is repeated once, then B’s strategy will be D, and A’s will play C One round
if grim-trigger and D if strategic, i.e. CD.
If the game is repeated twice, there is a unique PBE in which, at the second Two rounds
round, the strategic player A and player B both choose D. This is because
strategic players must play a NE at the last round.
However, at the first round, strategic A will still behave normally and defect,
but B does not know A’s type. So, if p > 1/2, i.e. if there is a high probability
of A being the grim-trigger, it is more convenient for B to play C.
Let’s formalize this. In the second round, rational players must play a NE.
There are two possibilities: (D,CD) if B has not defected in the first round,
and (D,DD) if the grim-trigger has been angered. The expected utilities for B
in both cases are:

uB(D,CD) = 2 · p+ 0 · (1− p) = 2p
uB(D,DD) = 0 · p+ 0 · (1− p) = 0

In the first round, A still plays CD, and so B’s expected utilities over the whole
game are as follows:

uB(C,CD) = 1 · p+ (−1) · (1− p) + 2p = 4p− 1
uB(D,CD) = 2 · p+ 0 · (1− p) + 0 = 2p

Comparing the two:

uB(C,CD) = 4p− 1 > 2p = uB(D,CD)⇒ p >
1
2
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If the game is repeated over 3 stages, and p > 1/2, then there is a unique PBE Three or more
roundsin which everybody starts the game with cooperation: (C,CC).

In fact, consider 3 rounds. If B plays D at the start, all subsequent rounds will
be played as (D,DD), which is not in the best interest of B. But if B plays
C at the start, then the second and third round are exactly the same as the
two-round game examined above.
Note that also the strategic A plays C, because he/she does not want to reveal
A’s type to B. In fact, only strategic A can play D at the first round, and if
this happens all subsequent rounds will be played as (D,DD).

Let’s check this computationally. Denote with µG B’s belief that A is a grim
trigger. Suppose B plays C at the first round. There are two possibilities:

• Also strategic A plays C, i.e. the join strategy is (C,CC), a pooling
strategy. In this case, no signal is passed to B, who can only exploit the
prior to set µG = p > 1/2, and so will be lead to believe that A is the
grim-trigger (more likely). Thus, strategic A will get 1 in the first round.
Then, the game proceeds as the two-rounds version, with B playing C
again, and strategic A switching to D, and getting 2. Then in the last
round both B and strategic A play D, and get 0. So, by not revealing
themselves at the start, strategic A gets the maximum total payoff of
1 + 2 + 0.

• The strategic player A choosesD, revealing themselves: µG = 0. Following
rounds are all Ds, and so the overall payoff for strategic A is 2 + 0 + 0,
which is less than the other possibility.

So if B plays C at the start, the game will be played as (C,CC), (C,CD),
(D,CD). The expected payoff for B is then:

p · (1 + 1 + 2)︸ ︷︷ ︸
Grim-trigger

+(1− p) · (1− 1 + 0) · (1− p) = 4p

Instead, if B plays D at the start, the grim-trigger is activated immediately, and
all subsequent rounds are played as (D,DD), with 0 utilities for both players.
There are two cases:

• Strategic A plays C, leading to the joint strategy (D,CC), where B gets
2 for sure, and strategic B gets −1.

• Strategic A plays D, leading to (D,CD). Here B gets 2p ≤ 2, and
strategic B gets 0.

The best case gives 2, and comparing that with the payoff of playing C leads to
4p > 2⇒ p > 1/2, and so B will choose to start with C.

In fact, this happens even if B believs strategic A will still play D. In this case,
the 3 rounds are (C,CD), (C,CD) and (D,CD), with an expected utility for
B:

p · (1 + 1 + 2) + (1− p) · (−1− 1 + 0) = 5p− 1
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And if B plays D, the 3 rounds are (D,CD), (D,DD) and (D,DD), with
expected payoff for B equal to 2p. Comparing the two:

uB(C) = 5p− 1 > 2p = uB(D)⇒ p >
1
3

So, cooperation is stable!

The interesting thing is that also strategic A has incentive to play C at the first
round, to “build a reputation” for the following rounds. The final betrayal is
inevitable, but it is delayed.

This result is generalized by Kreps, who finds that for finitely repeated games
with T � 1 stages, the number of rounds with defection of a strategic player is
< M , where M depends only on p, and not T .

4.3 The tough negotiator
Consider a ultimatum game with just two offers from player 1: a (H)igh share
or a (M)oderate share for him/herself. Player 2, the responder, can (A)ccept or
(R)efuse.

Figure (4.2)

The only SPE is (H,AA), i.e. 2 always accepts. There are two others NEs
(non-SPE):

• (H,AR), which is the same as (H,AA), with a irrational choice off the
equilibrium path.

• (M ,RA), with a non-credible threat, in which 2 plans to refuse H, i.e.
a bad share for him/her. Still, H is better than receiving nothing, so a
rational 2 should accept it.

Let’s introduce types to model some kind of irrationality for player 2, who can
be either (N)ormal (rational) or a (J)erk (thinking H is worse than receiving
nothing).
The extensive form is as follows:
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Figure (4.3) – Extensive form for the Bayesian Ultimatum game.

This is a screening game, since the typed player acts at the end, “hiding”
the payoffs beyond a layer of uncertainty. In this case beliefs require few
computations. In fact, for 1, the beliefs are just given by the prior. Then, if
p > 1/2, 1 should offer M : if the left branch is the more likely one, then 2
will probably refuse H and accept M . This PBE can be found directly from
backward induction, since this is a screening game, and so we can use effectively
just the SPE definition.

So, let’s make the game more complex by including a second round. If the first Two rounds
offer is rejected, 1 can give another offer, which 2 can accept/refuse. We also
include a discount δ for payoffs, so that if 1 offers the same amount during
the second round it will be refused: if it was acceptable, it would have been
accepted at the start.

In this case, 2’s action in the first round forms a signal from which 1 can infer
something about 2’s type. Let µH the probability of 2 being a jerk if he refuses
a H share, and similarly µM for the M share.
The game’s extensive form is quite complex:

Figure (4.4)

and the normal form is non-tractable by hand. This complexity is required to
make the game more interesting. In fact, suppose 2 is always normal. Then
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at the final round 2 will accept everything. Knowing this, 1 offers always H,
and 2 will accept it at the first round to avoid paying the discount. There is no
way for 2 to refuse the first offer and get something better, since the threat of
refusing at the end is non-credible.
However, if 2 is typed, the added uncertainty makes bargaining possible. In
fact, if 2 refuses the first offer, 1 cannot know exactly 2’s type. He/she may be
a jerk, who refuses by nature, or a rational player who is emulating a jerk, and
tries to avoid 1 discovering his/her type. In other words, when types are added,
even the rational 2 may not accept everything, contrary to the non-typed game.

Even if we understand the need for such complexity, we still need a way to
simplify the game in order to analyze it. In particular:

• If M is offered, 2 always accepts it: refusing it cannot lead to a better
outcome (and this is common knowledge). More precisely, accepting M at
the first round gives u2 = 2, but the maximum payoff at the second round
is 2δ ≤ 2. This is a consequence of sequential rationality. Clearly, M
is always accepted even at round 2, since both 2’s types prefer it.

• Backward induction can be applied to solve 2’s last move.

The simplified1 extensive form is as follows:

Figure (4.5)

The only remaining belief is µH , i.e. the conditional probability of 2 being a
jerk if he/she refused H.
Player 1 makes two binary offers, and so has 4 pure strategies. Player 2 plans
only his/her binary response to H for each of his/her two types, and so has 4
pure strategies too.

This simplified game can be put in normal form, where we let δ = 0.9 and
1∧Effectively, this is a different game, since we are entirely removing some actions.
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p = 0.1:

P =

Player 2
AA AR RA RR

P
la
ye
r
1

HH 2, 0.8 1.82, 0.71 1.8, 0.9 1.62, 0.81
HM 2, 0.8 1.01, 1.52 1.89, 1.08 0.9, 1.8
MH 1, 2 1, 2 1, 2 1, 2
MM 1, 2 1, 2 1, 2 1, 2

Note that MH and MM are strictly dominated strategies: offering M in the
first round is a bad choice, it is always better to “probe the waters” and see if 2
can accept something lower. Interestingly, HH is one of the viable strategies:
this is because 2 is unlikely to be a jerk, meaning that an early refusal is unlikely,
and also the discount factor is close to 1, so it is not too bad to go to the second
round anyways.
Then, AA and AR are dominated strategies (but not strictly). Intuitively, when
2 is a jerk, he/she will not accept H. However, after removing MH and MM ,
we can remove also AA and AR. The simplified normal form is:

P =

Player 2
RA RR

P
la
ye
r
1

MH 1.8, 0.9 1.62, 0.81
MM 1.89, 1.08 0.9, 1.8

(4.3)

There is no NE in pure strategies, so there must be one in mixed strategies,
due to Nash Theorem, which is 1 playing 8/9HH + 1/9HM and 2 playing
8/9RA+ 1/9RR.
This is a PBE, at least for the reduced game, and in fact it makes the belief
µH = 0.5, i.e. maximizes 1’s uncertainty about 2’s type. Since we have used
sequential rationality, this is also the core of the PBE for the full game: we
just need to add all the information off the equilibrium path. In particular,
µM is arbitrary, but must be in [0, 0.5].
Note that H is always offered at the first round. Jerk always rejects it, and
normal does so 8/9 times. Player 1 has a probability 8/9 of sticking to H also
during the second round, and 1/9 of changing it to M .
This is a semi-separating PBE: pooling and separating strategies are inconvenient
per se. In fact:

• Pooling on accept (AA) is not convenient, since jerk would accept H, but
wants to reject it. Pooling on reject (RR) means that 1’s beliefs follow
the prior, and so since jerks are rare, 1 will never offer M in the second
round, and normal 2 will need to accept H. But this is suboptimal: if
the game was to end this way, why not accept at the first round, avoiding
the discount δ?

• The only considerable separating strategy is RA, so normal 2 accepts H
at the first round, while jerk continues to the second one, and gets offered
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M . However, it is slightly better for normal 2 to “pretend being jerk” so
that he/she has a chance of accepting M in the second round (since the
discount is not too severe).

4.4 Auctions
(Lesson 23 of
18/12/2020)
Compiled: January
1, 2021

Auctions seen in movies are dynamic: several players respond to each other
bids, raising the value until the object is sold. However, this is very difficult to
analyze, and so in this section we will limit ourselves to sealed-bid auctions, in
which bids are sent in closed envelopes, and revealed simultaneously.

More precisely, there is one seller and N bidders. Each bidder i has a personal
valuation vi ∈ R+ of the object, and takes a move bi ∈ R+. All moves happen
simultaneously, and the highest bid wins. In case of a tie, the object is shared
between all winners.

4.4.1 First price auction
The simplest way to model a sealed-bid auction is to let winners pay their bids
to the seller. Their payoffs are given by the difference between their personal
valuation of the object and the bid they placed (shared in case there are multiple
winners):

ui(b1, . . . , bn) =


vi − bi i is a single winner

(vi − bi)/W i is among W > 1 winners

0 i is not a winner

Note that bidding bi ≥ vi always yields ui ≤ 0, so rational players will not ever
do that. In fact this is a dominated strategy (but not strictly dominated). Also,
bi = 0 is weakly dominated by any other b′i > 0 with arbitrarily small b′i. So, a
rational choice is to bid something 0 < bi < vi, but there is no further indication
on what choice to make.

Note that, in general, bidders will try to stay significantly under their valuations
vi, meaning that the object will be sold at a discounted price, which is bad for
the seller.

4.4.2 Second price auction
A model that is better for the seller is the one proposed by Vickrey in 1961. In
this case, the winner pays the second highest bid. Let the maximum of all
other bids (of −i) be S = maxbj 6=bi

bj . Then, i’s payoffs are as follows:

ui(b1, . . . , bn) =


vi − S bi > S

(vi − S)/W bi = S

0 bi < S
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In fact, if bi < S, then bi is not the highest bid, and so i is not the winner.
Otherwise, if bi > S, then S is the second highest bid, and i pays it. Finally,
bi = S means that i has the highest bid, but there are other players that bid
the same, and so the cost is shared.

At a first glance, paying the second highest bid would seem to lead to even less
money going to the seller. However, note that now bidding bi = vi always yields
ui ≥ 0, or even ui > 0 if the winner is unique.
In fact, bidding vi is a weakly dominant strategy for i. We can see that by first
proving that bidding bi < vi is not a good move. In general ui depends on S,
and so we compare the payoff of playing bi with that of playing vi in all possible
cases:

• If S < bi < vi, then both bi and vi are unique winning bids, and for both
ui = vi − S.

• If S = bi < vi, then bi is a non-unique winning bid with payoff ui =
(vi − S)/W , which is less than the payoff vi − S of playing the unique
winning bid vi.

• If S > bi, bi loses (ui = 0), but vi may win (ui ≥ 0).

Similarly, playing bi > vi is also not a good move:

• If S < vi < bi, both bi and vi are unique winning bids, with the same
payoff ui = vi − S.

• If S = vi < bi, vi is a non-unique winning bid with payoff 0, while bi is a
unique winning bid with the same payoff 0.

• If S > vi, vi loses (ui(vi) = 0). Now, either bi loses (ui(bi) = 0) or it is
one of W ∗ ≥ 1 winning bids, with a bad payoff ui(bi) = (vi − S)/W ∗ < 0.

Then, a joint strategy made of dominant strategies is a Nash Equilibrium. So,
the second price auction has a NE given by (vi, v2, . . . , vn), and so this model
encourages bidders to offer what they think it is the real object’s value. In fact,
if a player wins, they will still play something less than their valuation.

This strategy is even Pareto efficient. The utility of the bidder is v−S, and that
of the seller is S, meaning that the total utility is v, i.e. exactly the highest
evaluation of the object. So, total utility (social surplus) is naturally maximized
by a second price auction.

4.4.3 Vickrey-Clarke-Groves auction
A second price auction can be generalized to sell multiple object with the
Vickrey-Clarke-Groves (VCG) model. The idea is that each bidder submits to
the seller a different value for each combination of the items. This is because
sometimes a combination of items is worth more than the sum of the values of
its parts, and this changes the players’ strategies.
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A player wins an object if his/her bid for that set of objects is the highest
between all other possible bids for that set, including also “joint bids” of different
players.
For example, consider two objects A and B. 1 offers 5 for A and 3 for B, while
2 offers 10 for A+B, while 3 offers 4 for A and 6 for B. Then, 1 wins A and
3 wins B, because the combined bid for A+B obtained by joining 1’s bid for
A and 3’s bid for B reaches 11, which is better than 2’s bid for A+B (10).
Note that if objects are many, finding the best combination requires a lengthy
combinatorial search (NP-hard).
Then, each player pays according to “how he/she hurt the others”. If i gets
item x, the price paid for it is:

V (N \ {i},M)− V (N \ {i},M \ {x})

where N is the set of all players, and M that of objects in the auction. Then V
is the total valuation made by all the players to the current best outcome. In
other words, payment is equal to the difference between the added valuation by
i and the loss of valuation if x were not present.
For example, consider 3 players bidding for two objects:

• A bids 5 for one object.

• B bids 4 for one object.

• C bids 7 for the pair, but does not want a single object.

(All bids correspond to the players’ valuations for the objects)
The optimal allocation is selling one object to A and one to B (5 + 4 > 7).
To compute what A should pay, note that without A, the total valuation would
be 7 (C wins), and without A and the object, B would have won (4), so we get
7− 4 = 3. In other words, if A were not present, B would have lost (−4) the
single object (which has thanks to A), but C would have gained the pair (+7).
Similarly, without B, A loses the object (−5) but C gains the pair (+7), and
so B pays 7− 5 = 2. Finally, C has lost, and so he/she pays nothing.
However, the VCG is not commonly used in practice for the following reasons:

• Non-monotonic behavior: increasing the bid can improve the utility of
some other player, since this can “kick out” some other players. For
example, suppose that in the above example C offers 10 for the pair, and
so he/she is the winner. However, if A changes the bid from 5 to 7, C
is kicked out from the auction, and suddenly B is winning too, without
having to change anything, and has to pay his/her share!

• Vulnerable to collusions: some players can group and share their valuations,
find a common-ground and use that to gain an advantage in the auction,
acting as if they had different valuations.

• In general players will tend to estimate valuations of the others, leading
to low revenues for the seller.
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4.5 Mechanism design
Consider n players that choose among a set of public alternativesX according
to their privately known types t = (t1, t2, . . . , tn), denoted as state of the
world. The prior distribution of types is common knowledge.
In general, players might not want to reveal their type to others. A mechanism
is a game specifically designed to discover the players’ types. In this way,
“appropriate goods” can be assigned to each type, obtaining a “globally optimal
solution” (i.e. Pareto efficient).
In a sense, this is very similar to what happens in a second price auction:
rational players naturally reveal their types (i.e. their valuation), the object is
assigned to the most appropriate player, and the social surplus is maximized.
Let’s formalize this. Given an outcome o ∈ O, player i gets a utility ui(o, ti),
depending on their type ti. In mechanism design, we want to fix the final
outcome as a function of the types: any joint type t = (t1, . . . , tn) of the players
is mapped to a desired outcome f(t) by the so-called social choice function
f : T1 × · · · × Tn → O.
A mechanism is a game constructed so that rational players of types t are lead at
equilibrium to the desired outcome f(t). More precisely, the types t determine
the joint strategy s∗ which is played at the Bayesian Nash Equilibrium. Given
any strategy s, its outcome is denoted as g(s), where g is the appropriately
named outcome function. Thus, a mechanism implementing f is a game
with a BNE s∗ such that g(s∗(t)) = f(t). In other words, players behaving
rationally, who only try to maximize their own utilities, are lead to a designed
outcome.
Mechanism design is often used for constructing auctions. In this case, we
consider an allocation game. An outcome o consists of an allocation x ∈ X (i.e.
who gets the object) and a vector of payments m = (m1, . . . ,mn) made by all
players to the seller. Following the formalism from the above analysis of second
price auctions, we assume utilities to be quasi-linear :

ui((x, m)︸ ︷︷ ︸
o

, ti) = vi(x, ti)−mi

That is, each player has a valuation function vi(x, ti), determining the value
of x. For an auction, vi(i, ti) = v and vi(j, ti) = 0 for j 6= i, i.e. each player
wants the object for him/herself.
With this notation, the social choice function can be written as f : T → Y ,
where T = T1 × · · · × Tn, and Y is the set of outcomes given by:

Y = {(x,m1, . . . ,mn) : x ∈ X,
∑
i

mi ≤ 0}

The outcome function g(s) can be decomposed in a pair (x(s), m(s)), where Why negative?
x(s) is the decision rule, i.e. how to assign the correct x given a joint strategy s,
and m(s) is the transfer rule, i.e. how to decide how much each player should
pay given a joint strategy s.
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The simplest way to implement a mechanism is to just ask the types. That is,
introduce an action for each available type, and design the equilibrium to be
fully separating. In this way each action corresponds to a type (Ai = Ti), and a
joint strategy s is the same as a type vector t. Then we set g(t) = f(t). This
kind of game is denoted as a direct revelation mechanism Γ.
We say that a choice rule f is truthfully implementable in a Bayesian Nash
Equilibrium if, for all t ∈ T , the direct revelation mechanism Γ(T , f) has a
BNE s∗ where s∗i (ti) = ti for all i.

An interesting result is the revelation principle, which says that a mechanism
implementing a choice rule f exists if and only if f is truthfully implementable
in a Bayesian Nash equilibrium. In other words, if Γ does not work for a certain
f , there is no other “clever” mechanism that will work.

4.5.1 Coalitional games
Most games we analyzed involved competition between different players. How-
ever, Game Theory can be used also for collaborative games.

For example, consider a set N of players. We define a coalition S as any subset
of N . Each player i can choose any combination of coalitions to join, i.e. a set
of elements from the parts of N (P(N )). For example, if i chooses {i} then
he/she will be a loner.
Each coalition S has a value v(S) given by the value function v : P(N )→ R,
which is split among all the participants to the coalition. So, denoting with xi
the individual payoff of i ∈ S, the following holds:∑

i∈S
xi = v(S)

This is the case of transferrable utilities. A different kind of coalitional
games involve indivisible values v(S), and are said to be non-transferrable
utility games.

In simple coalitional games the value v(S) of any coalition S is either 1 or
0: some coalitions win, the others lose. A veto player is a player that must
belong to a coalition for it to be winning.
The set N is also called the grand coalition, and an interesting question is
whether all players will cooperate, i.e. if they form a grand coalition.
Superadditive games are a famous type of coalitional games where bigger
coalitions have a value that is higher than that of the sub-coalitions forming it:

v(S1 ∪ S2) ≥ v(S1) + v(S2) ∀S1,S2 ⊆ N , S1 ∩ S2 = ∅

In this case cooperation is always beneficial, and the grand coalition is guaranteed
to form.
An interesting question is then whether the grand coalition is stable over time,
i.e. if the share of each player suffices to hold them inside the coalition. This
can be explored through the notion of core.
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The core is the set of allocations (x1,x2, . . . ,xN ) such that:∑
i∈N

xi = V (N )
∑
i∈S

xi ≥ v(S) ∀S ⊆ N

In other words, the core consists of the ways to split the value of the grand
coalition (v(N )) between all players so that nobody has incentive to form
different coalitions, because this would decrease their share xi. The core is
non-empty if and only if the grand coalition is stable.
Often it is empty, and when it is not it holds many elements, and there is no
way to choose which one is “better”. Many allocations, in fact, can be unfair.

One way to find if the core is non-empty is by examining if a game is balanced.
Suppose that players can change coalitions over time, and let a(S) be the
fraction of time that player i ∈ S should spend inside S. It must hold:∑

S : i∈S
a(S) = 1 ∀i ∈ N

since i will spend 100% of the time in some coalition.

The game is balanced if: ∑
S∈P(N )\∅

a(S)v(S) ≤ v(N )

that is if the average value obtained by sharing time over any combination
of coalitions S is less than the value obtained by staying always in the grand
coalition.
A theorem by Bondareva-Shapley shows that a game has a non-empty core (and
thus a stable grand coalition) if and only if it is balanced.

Another way of ensuring a non-empty core is to examine convexity. For any
S1,S2 ⊆ N , the game is convex if:

v(S1 ∪ S2) + v(S1 ∩ S2) ≥ v(S1) + v(S2)

A convex game has a non-empty core. This can be used to prove that a simple
coalitional game with a veto player has a non-empty core, because everyone
wants to be with the veto player.

In engineering, one can simply try to see if some specific allocations (e.g. fair
shares) lie inside the core. Finding even a single example proves that the core
is non empty, and so that the grand coalition is stable.

4.5.2 Nash bargaining
Nash bargaining, contrary to the name, is a non-game theoretic approach to
solve bargaining problems. The game-theoretic approach is dynamic bargaining,
which was seen in sec. 2.7.

Nash bargaining is a purely static approach, based on a set of axioms specifying
how a share is fair.
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As an example, consider two players: (R)ich and (P)oor. They share 1 unit,
and keep their share only if both agree on the division. The idea is that for
R a single unit is an insignificant fraction of his/her fortune, while for P even
receiving a fraction of 1 would be a very good outcome. So R can easily refuse
a share, getting nothing without any real penalty, while P has a high incentive
of accepting even unfair shares, as long as he/she gets something.

First, we define the utility region S, i.e. the compact and convex set of
all joint utilities for the players. For a 2 player game, this would be a plane,
containing all points (u1,u2) of possible shares. The disagreement point d

is the minimum outcome achievable in the game. In the above example, it is
(0, 0), reached by players refusing the share.

Now, the idea is to define a set of axioms that, given a pair (S, d), leads to find
the game’s solution.

1. Feasibility. Clearly the solution s∗ must be in S, and in particular:
(s∗1, s∗2) ≥ (d1, d2).

2. Pareto efficiency: nobody can improve their share without lowering
that of others.

3. Symmetry: if d1 = d2 and S is symmetric, then s∗1 = s∗2. This is not the
case for the above example, but there will be a way to adapt it nonetheless.

4. Invariance to linear transformation of utilities

5. Independence of Irrelevant Alternatives (IIA). If U ⊂ S is a com-
pact and convex set, and s∗(S, d) ∈ U , then s∗(S, d) = s∗(U , d), that
is adding more “irrelevant” options does not change the solution. For
example, giving more options with a better u for 1 does not change the
solution.

Nash showed that the only s∗ satisfying all the above is:

s∗ = (s∗1, s∗2) = max
(s1,s2)∈S

(s1 − d1)(s2 − d2)

In particular, if d1 = d2 = 0, this is the same as maximizing the product of
utilities:
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Figure (4.6) – Graphical representation of a Nash Bargaining Solution in the case of
asymmetric S. Note that u1 has a higher range of acceptable shares d1, and so will receive
more at equilibrium (s∗

1 > s∗
2). In other words, 1 is (R)ich and has more bargaining power.

Note that the solution is unique only if S is convex (as required).

This can be generalized (as in the figure) to cases where S is not symmetric,
leading to the generalized Nash Bargaining Solution (NBS). The idea is to apply
linear transformations to make S symmetric.
NBS is not the only possible approach for solving static bargaining problems.
For example, Kalai and Smorodisnky (1974) suggests replacing the IIA axiom
with an axiom of individual monotonicity. the idea is that if one player has
more options, this should matter more at equilibrium. The unique bargaining
equilibrium is then found to be:

(s∗1, s∗2) = max
λ : (s1,s2)∈S

{(d1, d2) + λ[(i1, i2)− (d1, d2)]}

where (i1, i2) is the ideal point of max utilities:

Figure (4.7) – Graphical representation of the Nash Bargaining Solution with the Kalai
and Smorodinsky approach (KSBS).

In all cases the solution lies on the black line at the edge of S, representing the
Pareto efficient solutions.
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One advantage of KSBS is that it can be extended also to games with non-convex
S. However, in general, the choice between using NBS or KSBS is philosophical:
mathematically they are both “equivalently good” solutions.

4.5.3 Bayesian cooperative games
(Lesson 24 of
22/12/2020)
Compiled: January
1, 2021

Consider two students participating in a joint project for a course exam. They
can either put (E)ffort, or (S)hirk. The payoff of each student is the difference
between the project’s value and the cost of doing it. The cost is a fixed constant
c, equal for both students, and is paid only by who is putting effort. However,
the two assign different values to the project, which are modelled as the students’
types. Specifically, ti is uniform in [0, 1], and this prior is common knowledge.
Then, the value for player i is t2i if the project is successful, which happens if at
least one student plays E.
The payoff matrix is given by:

student B
E S

st
ud

en
t
A

E t2A − c, t2B − c t2A − c, t2B
S t2A, t2B − c 0, 0

(4.4)

Note that this is not the game’s normal form, which would include an infinite
number of strategies, since type space is continuous.
Fortunately, we can simplify the description by noting the following:

• If i plays E, her payoff is t2i − c, regardless of what −i does.

• If i plays S, her payoff is 6= 0 only if −i chooses E. The expected payoff
is then t2iP[s−i(t−i) = E].

So, i prefers E over S if:

t2i − c ≥ t2iP[sj(tj) = E]

Solving for ti leads to:

ti ≥
…

c

1−P[sj(tj) = E]

This is a threshold behavior: i plays E only if her type is beyond a threshold,
i.e. if she sufficiently values the project.
For comparison, let’s imagine that i is playing alone. In this case, there is no
other player that can “save” i: if i plays S, she will get 0. Still, it is convenient
to play E if the cost can be justified:

t2i − c ≥ 0⇒ ti ≥
√
c

which is again a threshold behavior. Note that in the two-player case the
threshold is increased by the presence of the other player.
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So, we can focus just on the thresholds qi, since the only viable strategies are
the ones in which ti > qi leads to playing E, and ti ≤ qi leads to S.
A belief held by player i is also a value qj for the threshold that i believes that
j will use. So, if i believes qj , this means that P[sj(tj) = E] = 1− qj , and i
plays E if and only if ti >

√
c/qj .

To have a NE, this must also be the best response played by i, and the converse
must be true for j, so that: »

c/qj = qi

And for symmetry reasons: √
c/qi = qj

which leads to qi = qj = c1/3 >
√
c since c < 1. So, at the NE the threshold to

play E is bigger for both players than the alone case.

Figure (4.8)

4.5.4 Cheap talk
An extreme signaling game is one in which Nature chooses a state of the world
and discloses it only to player 1, who can then communicate it to player 2.
Finally, 2 takes action, and the game ends, with no direct payback for player 1.
For example, consider the following. 1 lives in city B, 2 is a friend of 1 and has
found a job in city A. However, since commuting takes time, 2 wants to move
to a different place. She has 5 options: 1, go to city A, 2− 4, move in some city
in between A and B, or 5, stay at B. She does not know which city is better,
and she asks 1 his/her suggestion. However, 1 is biased, because prefers 2 living
close.
The utility of 2 depends on the type of the chosen city, which can be t ∈ T =
{1, 3, 5}, and is given by:

u2(a2, t) = 5− (t− a2)2

However, only 1 knows t, but he is biased towards 5:

u1(a2, t) = 5− (t+ b− a2)2
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where b denotes the bias.

Let the prior distribution of types be uniform (P[1] = P[3] = P[5] = 1/3), and
b = 1.1.

We avoid discussing a full solution of this game, and only highlight the interesting
results:

• There is no PBE in which 1 reports the true state of the world: 1 has
incentive (bias) to lie.

• There is a “babbling equilibrium” corresponding to a pooling equilibrium
in which 1 always sends the same message, and 2 ignores it and just uses
the prior.

• There is a PBE where 1 partially reports the true state of the world.
Specifically, he is truthtelling if t = 1, but pools information of t = 3 and
t = 5. However, this happens only if the bias is sufficiently low.

4.5.5 Utility transformations
When setting the payoffs (utilities), most of the time we do not have a precise
definition, but just an intuitive notion of “preference” which is often difficult
to quantify. We are interested to see if NEs are stable with respect to utilities.
That is, if we consider a game G = (S1, . . . ,Sn;u1, . . . ,un) with certain NEs,
what can be said about a different game G′ = (S1, . . . ,Sn;u′1, . . . ,u′n) where
utilities are assigned in a slightly different manner?

Suppose ui and u′i differ through some affine transformation with positive ai:

u′i = aiui + bi ai ∈ R+, bi ∈ R

then G and G′ have the same best responses, dominant strategies, etc. Thus
they have the same set of NEs.

The same holds if a constant k ∈ R is added to all utility values of player i that
share the same opponent strategy s∗−i:

u′i(si, s∗−i) = ui(si, s∗−i) + k

u′i(si, s−i) = ui(si, s−i) s−i 6= s∗−i

Let’s see this in practice. Consider an entry game with normal form:

P =

Pri
E O

Se
c E 0, 0 2, 2

O 1, 4 1, 4
(4.5)

and extensive form:
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Figure (4.9)

There are two NEs:

• (E,A), which is also an SPE

• (O,F ), including a non-credible threat.

The same results hold if we subtract 1 to the payoff of player 1 for the same
action (A) of the second player:

P =

Pri
E O

Se
c E 0, 0 1, 2

O 1, 4 0, 4
(4.6)

Likewise, we can subtract 4 from player 2’s entry of row O:

P =

Pri
E O

Se
c E 0, 0 1, 2

O 1, 0 0, 0
(4.7)

And finally we can apply an affine transformation, dividing all payoffs of Pri by
2:

P =

Pri
E O

Se
c E 0, 0 1, 1

O 1, 0 0, 0
(4.8)

While the NEs are the same as before, now it is more difficult to get an intuition
about the game.

However, these transformations can be used to fully classify symmetric two-
players games, i.e. games G = {S1,S2;u1,u2} with S1 = S2 and u1(a, b) =
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u2(b, a). In this case, the normal form is as follows:

P =

Pri
1 2

Se
c 1 a, a b, c

2 c, b d, d
(4.9)

Note that we can report only 1’s payoffs, since 2’s payoffs can be immediately
deduced from them:

P =

Pri
1 2

Se
c 1 a b

2 c d
(4.10)

If b = c, the game is said to be doubly symmetric. Any symmetric game can
be reduced in such form by applying the above transformations:

P =

Pri
1 2

Se
c 1 a− c 0

2 0 d− b
(4.11)

Then, the signs of a− c and d− b fully determine the kind of NEs. There are 4
cases:

• a− c < 0, but d− b > 0. Then 2 is strictly dominant. The game can be
solved by IESDS, and the game is analogous to the Prisoner’s dilemma.

• a− c > 0 and d− b > 0. This is a coordination game (such as the Battle
of Sexes), with two pure NEs, and one mixed NE.

• a− c < 0 and d− b < 0: same as before, but this time it is an anti-
coordination game (Hawk-Dove game). There are again two pure NEs,
and one mixed.

• a− c > 0 and d− b < 0. This is the same as the first case, but with the
other strategy as dominant.

A discoordination game is not symmetric, and so it does not appear in the
above cases.
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