
Chapter 1

Complex Systems Exercises

�� ��Exercise 1.0.1 (Ising Model):

Consider a 1-dimensional Ising Model with nearest-neighbour ferromagnetic interaction in
an external uniform field with energy function given by:

H(σ) = −J
N∑
x=1

σxσx+1 −B
N∑
x=1

σx J > 0

where periodic boundary conditions are used, i.e. σN+1 ≡ σ1. Define K ≡ βJ and h ≡ βB.
Part A. Using the transfer matrix T(σ,σ′) = exp(Kσσ′ + h(σ+ σ′)/2) and its spectral
decomposition, determine:

1. The partition function Z(K,h)

2. The free energy per node in the thermodynamic limit and its plot for h = 0 versus
1/K

3. The entropy per node in the thermodynamic limit and its plot for h = 0 versus 1/K

4. The mean energy per node in the thermodynamic limit and its plot for h = 0 versus
1/K

5. The specific heat per node in the thermodynamic limit and its plot for h = 0 versus
1/K

6. The average magnetization at x, 〈σx〉, in the thermodynamic limit and its plot for
h = 0, 0.1, 0.2, 0.5, 1 versus 1/K and for K = 1 versus h in the range (−5, 5)

7. The two-point correlation function 〈σxσx+y〉 in the thermodynamic limit and its
plot for h = 0 and K = 1 versus y.

Part B. Consider the same model with open boundary conditions (node 1 is linked only to
node 2, and node N only to node N − 1):

H(σ) = −J
N−1∑
x=1

σxσx+1 −B
N∑
x=1

σx

Show that the partition function for this case can be formally written as:

Z(K,h) = vTTNv ≡
∑

σ1=±1
σN=±1

v(σ1)TN (σ1,σN )v(σN )
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where v(σ) = ehσ/2. Show that the free energy per node in the thermodynamic limit is the
same as above.

Part C. Same as in part B with fixed boundary conditions σ1 = 1 = σN , and v(σ) = eh/2

for both σ = ±1.

Part D. How would you try to solve the Ising model in 1-dimension with nearest neighbour
and next-to-nearest neighbour interaction and periodic boundary condition (σN+1 = σ1 and
σN+2 = σ2):

H(σ) = −
N∑
x=1

(J1σxσx+1 + J2σxσx+2)−B
N∑
x=1

σx

1.1 Solution

1.1.1 Part A
Consider a d = 1 system with N spins. The periodic boundary conditions are σN+1 = σ1.

1. The partition function is given by:

Z(K,h) =
∑
{σ}

e−βH(σ) =
∑
{σ}

exp
Ç
K

N∑
x=1

σxσx+1 + h
N∑
x=1

σx

å
=

=
∑
{σ}

N∏
x=1

exp
Å
Kσxσx+1 + h

σx + σx+1
2

ã
︸ ︷︷ ︸

Tσx,σx+1

=

=
∑

σ1=±1
· · ·

∑
σN=±1

Tσ1σ2Tσ2σ3 · · ·TσN−1σNTσNσ1 =

=
∑

σ1=±1
(T · · ·T︸ ︷︷ ︸
N times

)σ1σ1 =
∑

σ1=±1
(TN )σ1σ1 = Tr TN

where T is a 2× 2 matrix given by:

T =

σ′=+1 σ′=−1ï ò
eK+h e−K σ=+1
e−K eK−h σ=−1

(1.1)

As the trace is basis-independent, we can compute it in the basis that diagonalizes T. Let
λ1 and λ2 be the eigenvalues of T, with λ1 < λ2. By solving:

det(T− λI) !
= 0

we find:

λ1,2 = eK cosh h∓
√
e2K sinh2 h+ e−2K (1.2)

When diagonalized, T = diag(λ1,λ2), and so:

Z(K,h) = Tr TN = (λN1 + λN2 ) (1.3)
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2. The free energy per node f(K,h) is defined by the relation:

Z = e−βNf(K,h) =
(1.3)

(λN1 + λN2 )

Taking the ln of both sides and dividing by N leads to:

lnZ
N

= −βf(K,h) = 1
N

ln
Ä
λN1 + λN2

ä
In the thermodynamic limit N → +∞ only the greatest eigenvalue (λ1) will dominate:

=
1
N

ln
(
λN2

[
1 +

(λ1
λ2

)N])
=

−−−−−→
N→+∞

1
��N

��N ln λ2 = ln λ2

Thus:

f(K,h) = − 1
β

ln λ2 = − 1
β

ln[eK cosh h+
√
e2K sinh2 h+ e−2K ] (1.4)

When h = 0:

f(K,h = 0) = − 1
β

ln[eK · 1 +
√
e2K · 0 + e−2K ] =

= − J

βJ
ln 2[eK + e−K ]

2 = − J
K

ln(2 coshK) (1.5)

where K = βJ = J/(kBT ), and so 1/K ∝ T .

As a function of T (or 1/K), we have that:

f(K, 0) −−−−→
T→0+

−J

And for large T :

f(K, 0) ∼
T�1
−JT log 2

So, if J = kB = 1, f(K, 0) stationarizes at −1 for T → 0+, and goes to −∞ linearly
(with a log 2 factor) as T → +∞.
A plot of f(1/K) is shown in fig. 1.1a.

3. The entropy per node is obtained by differentiating the free energy per node:

s ≡ − ∂f
∂T

= −∂f
∂β

∂β

∂T
=

1
kBT 2

∂f

∂β
(1.6)

Using (1.4) we get:

∂f

∂β
= +

1
β2 ln[eK cosh h+

√
e2K sinh2 h+ e−2K ]·(

eKJ cosh h+ eKB sinh h+ 1
2
√
e2K sinh2 h+ e−2K

·
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·
[
2e2KJ sinh2 h+ 2e2KB cosh h sinh h− 2Je−2K

])
Taking h = 0:

∂f

∂β

∣∣∣
h=0

=
1
β2 ln 2[eK + e−K ]

2 − Jβ

β · β
eK − e−K

eK + e−K
=

=
1
β2 ln[2 cosh(K)]− K

β2 tanh(K)

The result is the same we would have obtained by directly differentiating (1.5), since:
∂f

∂β
(K,h) = ∂f

∂K

∂K

∂β
+
∂f

∂h

∂h

∂β︸︷︷︸
B

and h = 0⇒ B = 0, meaning that the rightmost term vanishes (assuming that ∂f
∂h is well

behaved).

Substituing back in (1.6) we get:

s = kB

[
ln(2 coshK)−K tanhK

]
(1.7)

A plot of s(1/K) is shown in fig. 1.1b.

4. The mean energy is given by:

〈ε〉 = − ∂

∂β

lnZ
N

= − ∂

∂β
(βf(K,h)) =

=
1

eK cosh h+
√
e2K sinh2 h+ e−2K

(
eKJ cosh h+ eKB sinh h+

+
1

2
√
e2K sinh2 h+ e−2K

·
[
2e2KJ sinh2 h+ 2e2KB sinh h cosh h− 2Je−2K

])

When h = 0:

ε(K,h = 0) = −J e
K − e−K

eK + e−K
= −J tanhK (1.8)

which is plotted in fig. 1.1c.
Note that, alternatively, we could have used the free energy definition to determine ε:

f = ε− Ts

5. The specific heat per node is defined as:

c ≡ ∂ε

∂T
= − ∂ε

∂β

∂β

∂T
= −kBβ2 ∂ε

∂β

Since the expression is quite complicated, we use the argument we made when computing
the entropy to take h = 0 before computing the derivative:

c(h = 0) = −kBβ2 ∂

∂β
(−J tanhK) = kBK

2

cosh2K

A plot of c(1/K) is shown in fig. 1.1d.
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6. The magnetization can be directly computed by differentiating the free energy:

〈σx〉 = −β
∂

∂h
f(K,h) = ∂

∂h
(−βf(K,h)) =

=
(1.4)

∂

∂h
ln
(
eK cosh h+

√
e2K sinh2 h+ e−2K

)
=

=
1

eK cosh h+
√
e2K sinh2 h+ e−2K

(
eK sinh h+ 2e2K sinh h cosh h

2
√
e2K sinh2 h+ e−2K

)
=

= eK sinh h
[
1 + eK cosh h√

e2K sinh2 h+ e−2K

] 1
eK cosh h+

√
e2K sinh2 h+ e−2K

=

= eK sinh h
√
e2K sinh2 h+ e−2K + eK cosh h√

e2K sinh2 h+ e−2K

1
eK cosh h+

√
e2K sinh2 h+ e−2K

=

=
eK sinh h√

e2K sinh2 h+ e−2K
(1.9)

For h = 0:

〈σx〉 ≡ 0

Plots of 〈σx〉 as function of h and K are shown in fig. 1.1e and 1.1f.

Alternatively, we can use the transfer matrix T. We start by writing explicitly the average:

〈σx〉 =
1
Z

∑
{σ}

σxe
−βH(σ) =

1
Z

∑
σ1=±1

· · ·
∑

σN=±1
Tσ1σ2 · · ·Tσx−1σxσxTσxσx+1 · · ·TσNσ1

If we define:

T′σiσj ≡ σiTσiσj (1.10)

We can still write the sum over all spin configurations as the trace of a matrix product:

〈σx〉 =
1
Z

Tr(Tx−1T′TN−x)

Then, using the cyclic property of the trace:

Tr(ABC) = Tr(CAB) = Tr(BCA)

we get:

〈σx〉 =
1
Z

Tr(T′TN−xTx−1) = 1
Z

Tr(T′TN−1) ∀x

As expected, 〈σx〉 does not depend on x, since the system is translational invariant.

Explicitly, T′ is given by:

T′ =
σ′=+1 σ′=−1ï ò
eK+h e−K σ=+1
−e−K −eK−h σ=−1
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Note that it can be written as:

T′ =
(

1 0
0 −1

)
T = σzT

where σz is the third Pauli matrix (not to be confused with the z-th spin). Thus:

〈σx〉 =
1
Z

Tr(σzTN )

As before, since the trace is basis independent, this computation is easier in the basis that
diagonalizes T. Let |v1,2〉 be the two eigenvectors of T, with eigenvalues λ1,2. In the basis
{|v1,2〉}, TN = diag(λN1 ,λN2 ), while σz becomes:

V−1σzV =

(
〈v1|σz |v1〉 〈v1|σz |v2〉
〈v2|σz |v1〉 〈v2|σz |v2〉

)
(1.11)

So, the argument of the trace in the {|v±〉} basis is:

V−1σzV diag(λN1 ,λN2 ) =
(
λN1 〈v1|σz |v1〉 λN2 〈v1|σz |v2〉
λN1 〈v1|σz |v1〉 λN2 〈v2|σz |v2〉

)

Thus:

〈σz〉 =
1
Z

[
λN1 〈v1|σz |v1〉+ λN2 〈v2|σz |v2〉

]
(1.12)

Z(K,h) is given by (1.3), which in the thermodynamic limit becomes:

Z(K,h) = (λN1 + λN2 ) = λN2

(
1 +

(λ1
λ2

)N)
−−−−−→
N→+∞

λN2 λ1 < λ2

Substituting back in (1.12) we get:

〈σz〉 =
1
λN2

[
λN1 〈v1|σz |v1〉+ λN2 〈v2|σz |v2〉

]
−−−−−→
N→+∞

〈v2|σz |v2〉 (1.13)

All that’s left is to find the eigenvectors {|v1,2〉} and compute the required matrix element.

Since T is a 2× 2 matrix, we can write it as a linear combination of the Pauli Matrices
σx,y,z, which, together with the identity 1, form a basis ofM2×2(C). In other words, any
2× 2 matrix M can be written as:

M = a01 + a1σx + a2σy + a3σz

with:

σx ≡

(
0 1
1 0

)
; σy ≡

(
0 −i
i 0

)
; σz ≡

(
1 0
0 −1

)

We can define a vector of matrices σ ≡ (σx,σy,σz)T , and write:

M = a01 + a ·σ = a01 + ‖a‖︸︷︷︸
a

(n̂ ·σ)
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where n̂ = (nx,ny,nz)T is a unitary vector (‖n̂‖ = 1), and:

n̂ ·σ =

(
nz nx − iny

nx + iny −nz

)

This makes it simpler to find eigenvalues and eigenvectors of M. In fact, if v is an
eigenvector of n̂ ·σ with eigenvalue λ:

(n ·σ)v = λv

then v is an eigenvector also of M, but with eigenvalue a0 + aλ:

Mv = [a01 + a(n̂ ·σ)]v = a0v + aλv = (a0 + aλ)v

The eigenvalues of n̂ ·σ are ±1:

det(n̂ ·σ− λ1) = λ2 − ‖n̂‖2 ⇒ λ2 = 1⇒ λ = ±1

If we parametrize the unit vector n̂ in spherical coordinates:

nx = sin θ cosϕ (1.14)
ny = sin θ sinϕ (1.15)
nz = cos θ

Then a pair of orthonormal eigenvactors of n̂ ·σ is given by:

|v1〉 =

(
− sin θ

2
cos θ2

)
|v2〉 =

(
cos θ2
sin θ

2

)

|v1〉 corresponds to λ = −1 and |v2〉 to λ2 = +1.

So, let’s write T in the Pauli basis, using the Hilbert-Schmidt inner product (〈A, B〉 =
Tr(AB∗)) to find the coefficients a0,1,2,3:

T =
Tr(T1)

2︸ ︷︷ ︸
a0

1 +
Tr(Tσx)

2︸ ︷︷ ︸
a1

σx +
Tr(Tσy)

2︸ ︷︷ ︸
a2

σy +
Tr(Tσz)

2︸ ︷︷ ︸
a3

σz

In our case:

a0 = eK
eh + e−h

2 = eK cosh h (1.16)

a1 =
2e−K

2 = e−K

a2 = 0

a3 = eK
eh − e−h

2 = eK sinh h

Thus:

a = ‖a‖2 =
»
a2

1 + a2
2 + a2

3 =
√
e−2K + e2K sinh2 h
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n̂ =
a

a

Since the eigenvectors of T are the same of n̂ ·σ we can evaluate (1.13):

〈v2|σz |v2〉 = cos2 θ

2 − sin2 θ

2 = cos θ = nz =
a3
a

=
eK sinh h√

e−2K + e2K sinh2 h

which coincides with the result we got in (1.9).

7. Two-point correlation
The same spectral method used to compute the magnetization can be used also for the
two-point correlation 〈σxσx+y〉. As before, we start by explicitly writing the average:

〈σxσx+y〉 =
1
Z

∑
{σ}

σxσx+ye
−βH(σ) =

=
1
Z

∑
σ1=±1

· · ·
∑

σN=±1
Tσ1σ2 · · ·Tσx−1σxσxTσxσx+1 · · ·

· · ·Tσx+y−1σx+yσx+yTσx+yσx+y+1 · · ·TσNσ1=

=
1
Z

Tr(Tx−1σxTyσx+yTN−x−y+1) =

=
(a)

1
Z

Tr(σzTyσzTN−y)

where in (a) we used the cyclic property of the trace, and the fact that σnTσnσn+1 is
equivalent to T′ = σzT, where σz is the third Pauli matrix.

In the continuum limit Z = λN2 . If we compute the trace in the basis |v1,2〉 that diagonalizes
T, we get:

〈σxσx+y〉 =
1
λN2

[
〈v1|σzTyσz |v1〉λN−y1 + 〈v2|σzTyσz |v2〉λN−y2

]
and since λ1 < λ2, when N → +∞ the first term vanishes, leaving:

〈σxσx+y〉 =
〈v2|σzTyσz |v2〉

λy2

Be careful not to mix different bases! The matrix product can be done in the canonical basis
- but it’s difficult since here T has the form (1.1), thus making Ty quite hard to compute.
A better choice is to compute everything in the |v1,2〉 basis, where T = diag(λ1,λ2),
|v1〉 = (1, 0)T , |v2〉 = (0, 1)T and σz is given by (1.11), i.e.:

σz =

(
− cos θ − sin θ
− sin θ cos θ

)
An even better choice is to use completeness:

〈v2|σzTyσz |v2〉 =
2∑

i,j=1
〈v2|σz |vi〉 〈vi|Ty |vj〉 〈vj |σz |v2〉

Since |v1,2〉 diagonalize T, we have:

〈v1|Ty |v1〉 = λy1 〈v2|Ty |v2〉 = λy2 〈v1|Ty |v2〉 = 〈v2|Ty |v1〉 = 0
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Thus:

〈v2|σzTyσz |v2〉 = 〈v2|σz |v1〉λy1 〈v1|σz |v2〉+ 〈v2|σz |v2〉λy2 〈v2|σz |v2〉

Note that we already computed 〈v2|σz |v2〉 = cos θ, and so we just need 〈v2|σz |v1〉, which
is equal to 〈v1|σz |v2〉 since σz is symmetric in the canonical basis, and symmetry is
preserved in an orthonormal change of basis. We then find 〈v1|σz |v2〉 = − sin θ and so:

〈σxσx+y〉 =
λy1 sin2 θ+ λy2 cos2 θ

λy2
= cos2 θ+

Å
λ1
λ2

ãy
sin2 θ

λ1,2 have been computed in (1.2), and from the parameterization of n̂ (1.14) we have
cos2 θ = n2

3 = (a3/a)2 and sin2 θ = n2
x + n2

y = (a1/a)2, with the values found in (1.16).
Since λ1 < λ2, when y → +∞ the second term vanishes, and:

〈σxσx+y〉 −−−→y→∞ cos2 θ = cos θ · cos θ = 〈σx〉〈σx+y〉

This means that two spins that are infinitely far apart are effectively independent.

When h = 0, the two-point correlation reduces to:

〈σxσx+y〉 =
Ç
eK + e−K

eK + e−K

åy
= (tanhK)y

which coincides with the result already found in section 4.3.1 of the main notes, where we
used open boundary conditions instead of periodic ones (in the thermodynamic limit they
are effectively the same, as we will see in part B).

A plot of 〈σxσx+y〉 as a function of y is shown in fig. 1.1g.
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(b) Entropy s per node (h = 0).
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(d) Specific heat c per node (h = 0).
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(g) Two-point correlation function 〈σxσx+y〉 for h = 0 and K = 1.

Figure (1.1) – Plots of various quantities of interest. Note that KBT/J = 1/K.
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1.1.2 Part B
Let’s consider the same model with open boundary conditions. The Hamiltonian is given
by:

H(σ) = −J
N−1∑
x=1

σxσx+1 −B
N∑
x=1

σx

We begin by computing the partition function Z:

Z =
∑
{σ}

e−βH(σ) =
∑
{σ}

exp
Ç
K

N−1∑
x=1

σxσx+1 + h
N∑
x=1

σx

å
We rewrite the sum ∑

x σx in as follows:

N∑
x=1

σx =
1
22

N∑
x=1

σx =
1
2

[
σ1 + σ2 + · · ·+ σN−1 + σN (1.17)

σ1 + σ2 + σ3 + · · ·+ σN

]
=

=
1
2

Ñ
N−1∑
x=1

(σx + σx+1) + σ1 + σN

é
Substituting back:

Z =
∑
{σ}

N−1∏
x=1

exp
Å
Kσxσx+1 + h

σx + σx+1
2

ã
︸ ︷︷ ︸

Tσxσx+1

exp
(
h
σ1
2

)
exp

(
h
σN
2

)

We define the 2× 2 transfer matrix T as:

Tσσ′ = exp
Å
Kσσ′ + h

σx + σx+1
2

ã
and the vector v = (v(+1), v(−1)) as:

v(σ) = exp
(
h
σ

2

)
Leading to:

Z =
∑
{σ}

N−1∏
x=1

Tσxσx+1v(σ1)v(σN ) =

=
∑

σ1=±1

∑
σ2=±1

· · ·
∑

σN−1=±1

∑
σN=±1

v(σ1)Tσ1σ2 · · ·TσN−1σN v(σN ) =

=
∑

σ1=±1

∑
σN=±1

v(σ1)(TN−1)σ1σN v(σN ) = vTTN−1v = 〈v|Tn−1 |v〉

The scalar product can be computed in the basis |v1,2〉 where T = diag(λ1,λ2). The change of
basis can be done quickly by using completeness:

〈v|Tn−1 |v〉 =
2∑

i,j=1
〈v|vi〉λN−1

1 〈vj |v〉 = 〈v|v1〉2 λN−1
1 + 〈v|v2〉2 λN−1

2
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There is no necessity of computing 〈v|v1〉 or 〈v|v2〉, as they won’t be significant in the thermo-
dynamic limit.

In fact, let’s consider the free energy per node f :

lnZ
N
≡ −βf =

1
N

ln
[
〈v|v1〉2 λN−1

1 + 〈v|v2〉2 λN−1
2

]
= (1.18)

=
1
N

ln
[
λN−1

2

(
〈v|v1〉2

(λ1
λ2

)N−1
+ 〈v|v2〉2

)]
Since λ1 < λ2, when N � 1, the first term vanishes, leaving:

−βf =
N − 1
N

ln λ2 +
2
N

ln 〈v|v2〉 −−−−−→
N→+∞

ln λ2

which is exactly the same result we found in (1.4). This also means that all the thermodynamic
quantities we computed in part A have the same expression for the IM with o.b.c.

Intuitively, since in the thermodynamic limit the system is infinite, periodic and open boundary
conditions are effectively the same.

1.1.3 Part C
We now consider the case with + boundary conditions: σ1 = σN = +1. The partition function
becomes:

Z =
∑
{σ}

e−βH(σ) =
∑

σ2=±1
· · ·

∑
σN−1=±1

exp
Ç
K

N−1∑
x=1

σxσx+1 + h
N∑
x=1

σx

å
σ1 = σN ≡ +1

We can repeat the argument we used in (1.17), leading to:

Z =
∑

σ2=±1
· · ·

∑
σN−1=±1

exp
Å
h

2σ1

ã
Tσ1σ2 · · ·TσN−1σN exp

Å
h

2σN
ã
=

= eh/2(TN−1)1,1e
h/2 =

= eh/2
Ä

1 0
ä

TN−1

(
1
0

)
eh/2 =

Ä
eh/2 0

ä
TN−1

(
eh/2

0

)
=

= ṽTTN−1ṽ = 〈ṽ|TN−1 |ṽ〉

where ṽ = (eh/2, 0)T . To compute the scalar product we use again completeness:

〈ṽ|TN−1 |ṽ〉 = 〈ṽ|v1〉2 λN−1
1 + 〈ṽ|v2〉2 λN−1

2

In the thermodynamic limit, the term λ2 dominates, and everything else (including the prefactors)
can be neglected. In fact, by repeating the same computation we did in (1.18), we obtain for
the free energy:

−βf −−−−−→
N→+∞

ln λ2
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1.1.4 Part D
Consider the Ising Model with both nearest-neighbours and next-nearest-neighbours interactions
in d = 1:

H(σ) = −
N∑
x=1

(J1σxσx+1 + J2σxσx+2)−B
N∑
x=1

σx

To compute the partition function Z, we can still use the same logic from before, i.e. construct
a transfer matrix T. However, we first need to rewrite the Hamiltonian as the product of terms
Tσ,σ′ , depending on only two (consecutive) indices. As of now, this is not possible - since we
have 3 different indices: x, x+ 1 and x+ 2. There is no way to remove one of them if we want
to account for both kind of interactions. So, the trick is to add a fourth index, and group them
by 2, forming some kind of multi-index (or binary index).
We can do this by reasoning with parity. In fact, note that the nearest-neighbour interactions
always involve spins with different parity, while the next-to-nearest-neighbour interactions only
connect spins with the same parity. So, let’s group the spins in two different chains depending
on their parity. The first chain will contain all the odd spins σ(1)

i ≡ σ2i+1, and the second one all
the even spins σ(2)

i ≡ σ2i. With this notation, the nearest neighbours interactions involve always
spins of different chains (i.e. different parities), and the next-to-nearest-neighbours interaction
always spins from the same chain.
We can then rewrite the Hamiltonian as follows (suppose, for simplicity, that N is even):

H(σ) = −J1[
N/2∑
x=1

σ(1)
x σ(2)

x + σ(2)
x σ

(1)
x+1]− J2

N/2∑
x=1

[σ(1)
x σ

(1)
x+1 + σ(2)

x σ
(2)
x+1]−B

N/2∑
x=1

[σ(1)
x + σ(2)

x ]

(1.19)

σ
(1)
1 σ

(1)
2 σ

(1)
3

σ
(2)
1 σ

(2)
2 σ

(2)
3

Even

Odd

Figure (1.2) – Graphical representation of the IM model with both nearest-neighbour and
next-to-nearest-neighbour interactions. Spins are represented as black dots, and ordered in two lines (chains)
depending on their parity. The red continuous lines connect nearest-neighbours (J1 terms), while the black
dashed lines join next-to-nearest-neighbours (J2 terms). The interactions described by the first term (x = 1) of
(1.19) are highlighted in bold.

The two multi-indices of the transfer matrix will be (σ(1)
x ,σ(2)

x ) and (σ(1)
x+1,σ(2)

x+1), and so we
need all terms to contain both of them:

H(σ) = −
[J1

2

N/2∑
x=1

[σ(1)
x σ(2)

x + 2σ(2)
x σ

(1)
x+1 + σ

(1)
x+1σ

(2)
x+1] + J2

N/2∑
x=1

[σ(1)
x σ

(1)
x+1 + σ(2)

x σ
(2)
x+1]+

+
B

2

N/2∑
x=1

[σ(1)
x + σ(2)

x + σ
(1)
x+1 + σ

(2)
x+1]

]
13



The partition function is given by:

Z =
∑
{σ}

e−βH(σ) =
∑

σ
(1)
1 =±1
σ

(2)
1 =±1

· · ·
∑

σ
(1)
N/2=±1

σ
(2)
N/2=±1

N/2∏
i=1

exp
(
K1
2

[
σ(1)
x σ(2)

x + 2σ(2)
x σ

(1)
x+1 + σ

(1)
x+1σ

(2)
x+1

]

K2
[
σ(1)
x σ

(1)
x+1 + σ(2)

x σ
(2)
x+1

]
+
B

2

[
σ(1)
x + σ(2)

x + σ
(1)
x+1 + σ

(2)
x+1

])

The exponential term is one entry of a 4× 4 transfer matrix T:

T(σ(1)
x ,σ(2)

x ),(σ(1)
x+1,σ(2)

x+1)

By mapping σx = ±1→ {0, 1}, each “multi-index” is a binary number, defining a position in
the matrix. For example, when σ

(1)
x = σ

(2)
x = σ

(1)
x+1 = σ

(2)
x+1 = +1, the matrix entry will be

T(1,1),(1,1) ≡ T4,4. In this way, the sum of the product of exponentials can be interpreted as a
matrix product, leading to:

Z = Tr(TN/2)
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