Models of Theoretical Physics

Prof. Amos Maritan, Marco Baiesi
University of Padova

Written by: Francesco Manzali

Academic Year 2019/20

Compiled on October 13, 2020

Contents

| Maritan's Lectures 5
1 The Diffusion problem 6
1.1 Introduction 6
1.2 Diffusion: a macroscopic approach 6
1.2.1 The diffusion equation 7
1.3 Microscopical approach 12
1.3.1 Probability Generating Functions 14
1.3 .2 Moments of the diffusion distribution 15
1.3 .3 Continulum Limit 18
1.4 The Link between Macroscopic and Microscopic 22
1.5 Solution of the Diffusion Equation 23
1.5.1 Propagators 26
2 The Wiener Path Integral 29
2.1 Average over paths 29
2.1.1 Functions of a discrete number of points 30
2.1.2 Functionals of the whole trajectory 31
2.1.3 Change of random variables 34
2.2 Examples of path integrals 35
2.2.1 Transition probabilities 35
2.2 .2 Integral functional 39
2.2.3 Potential-like functionall 46
2.3 Properties of Brownian Paths 53
2.3.1 Continuity 53
2.3.2 Differentiability 54
3 Diffusion with Forces 55
3.1 Fokker-Planck equation 55
3.2 Langevin equation 60
3.3 Summary 62
3.4 Stochastic integrals 63
3.4.1 Limits of sequences of random variables 64
3.4 .2 Prescriptions 68
3.4.3 Ito's calculus 72
3.5 Stochastic Differential Calculus 73
3.5.1 Ito's rules of integration 73
3.6 Derivation of the Fokker-Planck equation 77
3.7 The role of temperature 79
3.8 Harmonic overdamped oscillator 80
3.8.1 Equilibrium distribution 85
3.8.2 High dimensional generalization 85
3.8.3 Underdamped Harmonic Oscillator 86
3.9 Particle in a conservative force-field 86
3.10 Feynman-Kac formula 89
3.10.1 Application to Quantum Mechanics 93
3.11 Variational methods 93
4 Variational Methods for Path Integrals 99
4.1 Variational methods 99
$4.2 \quad$ Diffusion with obstacles 105
4.2.1 Escape from a potential well 112
4.3 Feynman Path Integral 113
Il Baiesi's Lectures 117
5 Gaussian integrals 118
5.1 Moments and Generating Functions 118
5.2 Multivariate Gaussian 119
5.3 Moments and Gaussians 120
5.3.1 Gaussian expectation values 123
5.3.2 Wick's Theorem 124
5.4 Steepest Descent Integrals 125
6 Integrals of complex variables 130
6.1 Fourier Transform 130
6.1.1 Refresher on functional analysis 130
6.1.2 Fourier transform of distributions 132
6.2 Fresnel integral 139
6.2.1 Schrödinger Equation 141
6.3 Indented Integrals 142
7 Limit Distributions 145
7. 1 Characteristic functions 145
7.2 Centrallimit Theorem 147
7.3 Subdiffusion and superdiffusion 149
7.4 Levy Flights 149
III Gradenigo's Lectures 152

Introduction

Part I

Maritan's Lectures

The Diffusion problem

1.1 Introduction

In classical mechanics, if we know all forces \boldsymbol{F} that act on a certain particle, along with its initial condition (e.g. position $\boldsymbol{x}(t=0)$ and velocity $\boldsymbol{v}(t=0)$), we can compute its trajectory $\boldsymbol{x}(t) \forall t$ by integrating the equations of motion. This is indeed true even for ensembles of particles - but it becomes very impractical for macroscopic objects. For example, a drop of water contains something in the order of 10^{23} molecules, and so to completely describe its motion it is needed to integrate six times that many equations (3 for position, 3 for velocity for each single particle). Even if we had the computational capacity to do so, it would not be possible to know the necessary initial conditions with the required precision.
On the other hand, it is not very interesting to solve this kind of problem, because one could not possibly understand the intricacy of this motion, and so the task doesn't give much insight in the relevant physics. In fact, often we are most interested in the macroscopic properties of the object. That is the aim of statistical mechanics.

1.2 Diffusion: a macroscopic approach

In this course, we will examine one of the most important problems in statistical mechanics: the diffusion problem. Take a drop of ink immersed in water and it will mix over time, apply heat to the edge of a bar and it will propagate to the entire thing. Spray a bit of perfume and it will spread over the entire room, place a sugar cube in a cub of tea and it will dissolve without the need of stirring it. The diffusion mechanism is key to many aspects of everyday life, and it is yet one of the most striking direct consequences of the invisible microscopical motion of molecules. Thus, studying diffusion can provide a link between these two very different worlds.
The first advances in the analysis of the diffusion motion were made in the 19th century, and were all based on a macroscopic approach. For example Fick's Law, that roughly motivates diffusion as the motion of fluids from regions of high concentrations to regions of low concentration, dates back to 1856 .

The link with the microscopical world, however, was made only in 1905, in a groundbreaking article on Brownian motion published by Einstein - which also served as a striking proof of the atomic nature of matter.
Brownian motion is the erratic motion exhibited by granules of fine powder when suspended in still water. It was already known that this was due to physical reasons, as repeated experiments ruled out every possible explanation requiring living organism.
Einstein proposed a solution based on molecules, and statistics. If we assume that water is composed of particles, the single grains of powder behave like large objects hit by smaller particles. The number of hits on each side is almost the same, so the total force which acts on the large object is almost 0 . However, if the grains are sufficiently small, the slight unbalance in the number of collisions can produce a significant acceleration, leading to a kind of random motion.

For example, let's consider a spherical grain submerged in the liquid. Let's call U the upper hemisphere, and L the lower one. Denote with \bar{N}_{c} the average number of collisions per second per surface unit. Then the number of hits on U is almost the same to that of L, up to a certain (binomial) error:

$$
\bar{N}_{c} \cdot U=\bar{N}_{c} \cdot L \pm \sqrt{\bar{N}_{c}}
$$

Thus, the relative error is given by:

$$
\frac{\sqrt{\bar{N}_{c}}}{\bar{N}_{c}}=\frac{1}{\sqrt{\bar{N}_{c}}}
$$

Note that if the grains are small, \bar{N}_{c} will be small too, and so the relative error will be high.

1.2.1 The diffusion equation

Let's try to give a quantitative description of this kind of motion. We start by specifying the initial conditions as a starting distribution, i.e. a function $\rho: \mathbb{R}^{3} \times \mathbb{R} \rightarrow R$ such that $\rho(\boldsymbol{r}, t)$ is the probability to find a particle in position \boldsymbol{r} at the instant t.

1. For a discrete, point particle we have $\rho(\boldsymbol{r}, 0)=\delta^{3}\left(\boldsymbol{r}-\boldsymbol{r}_{0}\right)$, i.e. the particle is at the starting position with certainty.
2. For some quantity of matter (for example a droplet of ink), we have some uniform initial density, such as:

$$
\rho(\boldsymbol{r}, 0)=\rho_{0}(\boldsymbol{r})= \begin{cases}\bar{\rho}_{0} & |\boldsymbol{r}|<R \\ 0 & \text { otherwise }\end{cases}
$$

Note that $\rho(\boldsymbol{r}, t)$ is a probability density, and not a usual density of matter. The difference is merely of normalization. If N is the total number of particles

Motion due to statistical fluctuations

Starting
distribution
in ink, then $N \rho(\boldsymbol{r}, t)$ is the density of ink particles at the specific position \boldsymbol{r} and time t, which will be denoted with $\rho_{n}(\boldsymbol{r}, t)$:

$$
\begin{aligned}
1 & =\int_{V} \mathrm{~d}^{3} r \rho(\boldsymbol{r}, t) \\
N & =\int_{V} \mathrm{~d}^{3} r \underbrace{N \rho(\boldsymbol{r}, t)}_{\text {density at } \boldsymbol{r}}
\end{aligned}
$$

The meaning of a point-wise density can be understood as a limit:
Point-wise density

$$
N \rho(\boldsymbol{r}, t)=\text { density at } \boldsymbol{r}, \text { time } t=\lim _{\Delta V \downarrow 0} \frac{\Delta N}{\Delta V}
$$

Consider a patch of liquid of volume ΔV, that contains a number ΔN of ink particles. By letting it shrink "enough", $\Delta N / \Delta V$ reaches a constant value that is the density in a macroscopically small patch of liquid. Of course, ΔV cannot reach 0 , because in that case $\Delta N=0$. So, the limit is to be interpreted in a macroscopical sense (ΔV is macroscopically vanishing, $\Delta V \downarrow 0$) and not in a mathematical sense $(\Delta V \rightarrow 0)$.

Figure (1.1) - Density (ratio $\Delta N / \Delta V$) as function of patch size ΔV for a region centered around the ink distribution ρ_{0} $(|\boldsymbol{r}|<R$ at $t=0)$. If ΔV is sufficiently large, the patch comprises also some space without ink, and so the density is lower.

Figure (1.2) - Density for a patch centered on a point $|\boldsymbol{r}|>R$. Here the density is higher for high ΔV, as in these cases the patch comprises also the ink's initial distribution $\left(\rho_{0}\right)$.

We now want to compute $\rho(\boldsymbol{r}, t)$ for $t>0$, given $\rho(\boldsymbol{r}, 0)$.
We start by considering the continuity equation. The idea is that particles do not move by "jumping" between far positions, but travel in a continuous way.

Continuity
equation

Consider a box of volume V, that contains a fixed number N of particles, with (matter) density:

$$
N \rho(\boldsymbol{r}, t) \equiv \rho_{n}(\boldsymbol{r}, t)
$$

Let A be a patch of V, with boundary ∂A. The number of particles inside A at time t is given by the integral of the density:

$$
\begin{equation*}
\int_{A} \mathrm{~d}^{3} r \rho_{n}(\boldsymbol{r}, t)=N_{A}(t) \tag{1.1}
\end{equation*}
$$

And at a later time $t+\Delta t$:

$$
\begin{equation*}
\int_{A} \mathrm{~d}^{3} r \rho_{n}(\boldsymbol{r}, t+\Delta t)=N_{A}(t+\Delta t) \tag{1.2}
\end{equation*}
$$

Let's introduce a new quantity, the current $\boldsymbol{j}(\boldsymbol{r}, t)$ at position \boldsymbol{r} and time t. Consider a small area $\mathrm{d} S$ centered on a point \boldsymbol{r}, with $\hat{n}(\boldsymbol{r}) \perp \mathrm{d} S$. The number of particles flowing through $\mathrm{d} S$ during an interval Δt is defined as:

$$
\Delta t \boldsymbol{j}(\boldsymbol{r}, t) \cdot \hat{n}(\boldsymbol{r}) \mathrm{d} S
$$

and this can be used to compute \boldsymbol{j}.
For example, for a uniform flow of particles with density ρ_{n} and velocity \boldsymbol{v}, the current is $\boldsymbol{j}=\rho_{n} \boldsymbol{v}$.

Returning to the problem, we note that the change of N_{A} over time is explained by the flux of particles through the closed boundary ∂A, i.e. the surface integral of the current \boldsymbol{j} :

$$
\begin{equation*}
N_{A}(t+\Delta t)-N_{A}(t)=-\int_{\partial A} \mathrm{~d} S \hat{n} \cdot \boldsymbol{j}(\boldsymbol{r}, t) \Delta t \tag{1.3}
\end{equation*}
$$

Here we define, by convention, the sign of $\boldsymbol{j}(\boldsymbol{r}, t)$ to be positive if the current is outward, that is from A to $V \backslash A$. So, a positive current means that particles are leaving A, and this explains the - in ((L.3).

$$
\int_{A} \mathrm{~d}^{3} r \frac{1}{\Delta t}\left[\rho_{n}(\boldsymbol{r}, t+\Delta t)-\rho_{n}(\boldsymbol{r}, t)\right]=-\int_{\partial A} \mathrm{~d} S(\boldsymbol{r}) \boldsymbol{j}(\boldsymbol{r}, t) \cdot \hat{n}(\boldsymbol{r}) \Delta t
$$

Taking the limit $\Delta t \rightarrow 0$:

$$
\int_{A} \mathrm{~d}^{3} r \frac{\partial}{\partial t} \rho_{n}(\boldsymbol{r}, t)=-\int_{\partial A} \mathrm{~d} S \hat{n} \cdot \boldsymbol{j}(\boldsymbol{r}, t) \underset{(a)}{=}-\int_{A} \mathrm{~d}^{3} r \boldsymbol{\nabla} \cdot \boldsymbol{j}(\boldsymbol{r}, t)
$$

where in (a) we applied the Gauss divergence theorem.
Rearranging:

$$
\int_{A} d^{3} r\left[\dot{\rho}_{n}(\boldsymbol{r}, t)+\boldsymbol{\nabla} \cdot \boldsymbol{j}(\boldsymbol{r}, t)\right]=0
$$

This is the continuity equation in integral form. Note that it holds for any choice of volume $A \subseteq \mathbb{R}^{3}$. So, knowing that \boldsymbol{j} and $\dot{\rho}$ are continuous functions, by the fundamental theorem of calculus we know that the same relation must hold everywhere for the integrand, meaning that:

$$
\begin{equation*}
\dot{\rho}_{n}(\boldsymbol{r}, t)+\boldsymbol{\nabla} \cdot \boldsymbol{j}(\boldsymbol{r}, t)=0 \quad \forall \boldsymbol{r}, \forall t \tag{1.4}
\end{equation*}
$$

That is the continuity equation in differential form .

Integral form

Differential form

Now we need a formula to compute the current $\boldsymbol{j}(\boldsymbol{r}, t)$ produced by the diffusion motion. If there are no other fields (EM, gravity, etc.), but we still observe a non-zero \boldsymbol{j}, where could it possibly be from?

The only other relevant physical vector in this situation, i.e. not depending on an arbitrary choice of reference frame, is the "spatial" rate of change of density, i.e. its gradient $\boldsymbol{\nabla} \rho_{n}$. In fact, it is observed that particles tend to move opposite to that gradient - from regions where there are more particles to regions where there are less. This can be summarized by Fick's Law:

$$
\begin{equation*}
\boldsymbol{j}(\boldsymbol{r}, t)=-D \boldsymbol{\nabla} \rho_{n}(\boldsymbol{r}, t) \tag{1.5}
\end{equation*}
$$

Of course, there could be some other terms in this expression:

$$
\boldsymbol{j}(\boldsymbol{r}, t)=-D \boldsymbol{\nabla} \rho_{n}(\boldsymbol{r}, t)+C \boldsymbol{\nabla}\left(\boldsymbol{\nabla} \rho_{n}\right)+\ldots
$$

However, by dimensional analysis, $\partial_{x}^{k} \rho_{n} \sim \rho_{n} / L^{k}$, where L is the macroscopic dimension of the container. So, the higher order terms can be considered negligible.
Substituting ([.5) in ([.4) we arrive finally at the diffusion equation:

$$
\begin{equation*}
\dot{\rho}_{n}(\boldsymbol{r}, t)=\boldsymbol{\nabla}\left(D \cdot \boldsymbol{\nabla} \rho_{n}(\boldsymbol{r}, t)\right) \tag{1.6}
\end{equation*}
$$

Knowing the initial density $\rho_{n}(\boldsymbol{r}, 0)$ and some macroscopical details for the fluids (all contained in the diffusion parameter D), we can now compute the density after a small interval Δt. For example, we can start by expanding $\rho_{n}(\boldsymbol{r}, \Delta t)$ around $\Delta t=0$:

$$
\rho_{n}(\boldsymbol{r}, \Delta t)=\rho_{n}(\boldsymbol{r}, 0)+\Delta t \dot{\rho}_{n}(\boldsymbol{r}, 0)+O\left(\Delta t^{2}\right)
$$

Ignoring the higher order terms, we can use ($\mathbb{L} .6)$ and compute $\rho_{n}(\boldsymbol{r}, \Delta t)$. This is the gist of the Euler algorithm for numerically approximating differential equations.

This may be more or less doable depending on the form of D, that can depend on both \boldsymbol{r} and t. The \boldsymbol{r}-dependence is characteristic of problems that are not translational invariant (e.g. a crystal). In fact, if D does not depend on \boldsymbol{r}, the diffusion equation becomes:

$$
\begin{equation*}
\dot{\rho}_{n}(\boldsymbol{r}, t)=D \nabla^{2} \rho_{n}(\boldsymbol{r}, t) \tag{1.7}
\end{equation*}
$$

Because the only spatial derivatives are of second order, then if $\rho(\boldsymbol{r}, t)$ is a solution, also $\rho(\boldsymbol{r}+\boldsymbol{R}, t)$ is a solution, for any choice of \boldsymbol{R}.

Note that ($\mathbb{L} .7$) is quite similar to the Schrödinger equation for a free particle:

$$
-i \partial_{t} \psi=+\frac{\hbar}{2 m} \nabla^{2} \psi
$$

The yellow term is analogous to D, and the only difference is given by the green term. This can be resolved by a substitution $\tau=i t$ (passing to "imaginary time").

Fick's Law

Diffusion Equation

Translational invariance

Quantum correspondence

Example 1 (Particle diffusing in $\boldsymbol{d}=1$):
Consider the simplest case of a single particle moving in one dimension, with D constant. Let $\rho(x, 0)=\delta(x)$, that is consider the particle as being perfectly localized in $x=0$ at the start.
The diffusion equation in $d=1$ is:

$$
\begin{equation*}
\dot{\rho}(x, t)=D \rho^{\prime \prime}(x, t) \tag{1.8}
\end{equation*}
$$

The macroscopic quantities of interest are the expected position and velocity, defined as:

$$
\langle x\rangle_{t}=\int_{-\infty}^{+\infty} \rho(x, t) x \mathrm{~d} x \quad \frac{d\langle x\rangle_{t}}{d t}=\int_{-\infty}^{+\infty} \dot{\rho}(x, t) x \mathrm{~d} x
$$

From the normalization condition:

$$
\int_{-\infty}^{+\infty} \rho(x, t) d x=1
$$

we note that $\rho(\pm \infty, t)=0$, and also $\rho^{\prime}(x, t) \rightarrow 0$ for $|x| \rightarrow \infty$ (otherwise, the density would diverge).
These limits allow us to compute the velocity by repeated integration by parts:

$$
\begin{aligned}
\frac{\mathrm{d}\langle x\rangle_{t}}{\mathrm{~d} t} & =\frac{\mathrm{d}}{\mathrm{~d} t} \int_{-\infty}^{+\infty} \rho(x, t) x \mathrm{~d} x=\int_{-\infty}^{+\infty} \dot{\rho}(x, t) x \mathrm{~d} x \underset{(\underline{L L .8)}}{=} D \int_{-\infty}^{+\infty} \rho^{\prime \prime}(x, t) x \mathrm{~d} x= \\
& =\underbrace{\left.x \rho^{\prime}(x, t)\right|_{x=-\infty} ^{x=+\infty}}_{=0} \underbrace{-\left.\left(\frac{\mathrm{d} x}{\mathrm{~d} x}\right) \rho(x, t)\right|_{x=-\infty} ^{x=+\infty}}_{=0}+D \int_{-\infty}^{+\infty} \rho(x, t) \underbrace{\left(\frac{\mathrm{d}^{2} x}{\mathrm{~d} x^{2}}\right)}_{=0} \mathrm{~d} x=0
\end{aligned}
$$

Note that a similar calculation can be done in the more general case of computing the expected value of the time derivative of any function $f(x)$:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\langle f(x)\rangle=D \int_{-\infty}^{\infty} \rho(x, t)\left(\frac{\mathrm{d}^{2} f(x)}{\mathrm{d} x^{2}}\right) \mathrm{d} x \tag{1.9}
\end{equation*}
$$

We found that the mean velocity is 0 , meaning that the mean position must be constant:

$$
\langle x\rangle_{t}=\langle x\rangle_{t=0}=\int_{-\infty}^{+\infty} \mathrm{d} x x \rho(x, 0)=0
$$

However, if we consider $f(x)=x^{2}$, thanks to ((LT) we arrive at:

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left\langle x^{2}\right\rangle_{t}=\int_{-\infty}^{+\infty} \dot{\rho}(x, t) x^{2} \mathrm{~d} x=D \int_{-\infty}^{+\infty} 2 \rho(x, t) \mathrm{d} x
$$

As $\rho(x, 0)=\delta(x)$, we have:

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left\langle x^{2}\right\rangle_{0}=D \int_{-\infty}^{+\infty} 2 \delta(x) \mathrm{d} x=2 D
$$

And integrating with respect to t :

$$
\left\langle x^{2}\right\rangle_{t}=2 D t+\left\langle x^{2}\right\rangle_{0}=2 D t
$$

This allows us to compute the variance of x :

$$
\operatorname{Var}(x)_{t}=\left\langle x^{2}\right\rangle_{t}-\langle x\rangle_{t}^{2}=2 D t
$$

So the width of the distribution of x, which is $\sqrt{\operatorname{Var}(x)}$, expands $\propto \sqrt{D t}$. The dependence on \sqrt{t} is a defining characteristic of the diffusion motion.

1.3 Microscopical approach

Let's tackle the diffusion problem with a different approach, studying the motion of single particles rather than changes of densities in an ensemble. The correspondence with the results obtained in the previous section will be key to understand the link between the microscopic and the macroscopic - that is the main goal of statistical mechanics.

Consider a particle moving in $d=1$. To simplify the problem, we allow only discrete steps, both in time and position:

$$
\begin{equation*}
x_{i} \equiv i \cdot l \quad t_{n} \equiv n \cdot \varepsilon \tag{1.10}
\end{equation*}
$$

In other words, the particle may occupy only points in this defined lattice - and nothing in between. We also look at the system evolution after discrete time steps, each of length ϵ.

We already discussed how the diffusion process is intrinsically stochastic, meaning that the motion of grains is given by collisions at the microscopical level, which are essentially random.
So, suppose that the particle lies in a certain known position at $t=0$. After an instant, the particle may have moved to the right (with probability P_{+}) or to the left $\left(P_{-}\right)$, or have remained in the same position as before $\left(P_{0}\right)$. As these cases cover all the possibilities, it holds:

$$
P_{+}+P_{-}+P_{0}=1
$$

Denote with $w_{i}\left(t_{n}\right)$ the probability that the particle lies at position x_{i} at time t_{n}. The probability for the next timestep is then given by the Master Equation:
(Lesson 2 of
07/10/19)
Compiled: October 13, 2020

Discretization

Master Equation

$$
\begin{equation*}
w_{i}\left(t_{n+1}\right)=P_{0} w_{i}\left(t_{n}\right)+P_{+} w_{i-1}\left(t_{n}\right)+P_{-} w_{i+1}\left(t_{n}\right) \tag{1.11}
\end{equation*}
$$

In fact, if the particle were at position i at time t_{n}, then it will remain in the same position with probability P_{0}. Otherwise, it could have been one position left and moved to the right $\left(P_{+}\right)$, or one position right and moved to the left (P_{-}).
Here we supposed that ε is sufficiently small, so that the particle will only take
one step at a time.

Stochastic systems for which the state at a certain time depends only on the state one instant before are called Markov's Processes.

Note that, as the particle cannot "escape from the system", its probability to be in any position is conserved at any given time:

$$
\sum_{i=-\infty}^{\infty} w_{i}\left(t_{n+1}\right)=\sum_{i=-\infty}^{\infty} w_{i}\left(t_{n}\right)=\cdots=\sum_{i=-\infty}^{\infty} w_{i}(0)
$$

Suppose that the particle "always moves", that is $P_{0}=0$, and also that it does so without any preferred direction $\left(P_{+}=P_{-}=0.5\right)$. Then, the final position i at time t_{n} is given by the number of steps to the right n_{+}minus the number of steps to the left $n_{-} \in \mathbb{N}$:

$$
\mathbb{Z} \ni i=n_{+}-n_{-}
$$

This process can be simulated by flipping a coin at each timestep: if it lands on heads the particle will move to the right, otherwise to the left. So, denoting the total number of steps as $n=n_{+}+n_{-}$, then the probability for the particle to be in position x_{i} is given by a binomial distribution:

$$
\begin{equation*}
w_{i}\left(t_{n}\right)=\binom{n}{n_{+}} \frac{1}{2^{n_{+}}} \frac{1}{2^{n_{-}}}=\frac{1}{2^{n}}\binom{n}{n_{+}}=\binom{n}{n_{-}} \frac{1}{2^{n}} \tag{1.12}
\end{equation*}
$$

This can be generalized to the case where $P_{+} \neq P_{-}$:

$$
\begin{equation*}
w_{i}\left(t_{n}\right)=\binom{n}{n_{-}} P_{+}^{n_{+}} P_{-}^{n_{-}} \tag{1.13}
\end{equation*}
$$

Note that (■.โ2) satisfies the Master Equation (■.Ш), that is:

$$
w_{i}\left(t_{n+1}\right)=\frac{1}{2}\left(w_{i+1}\left(t_{n}\right)+w_{i-1}\left(t_{n}\right)\right)
$$

We start by noting that if $i=n_{+}-n_{-}$and $n=n_{+}+n_{-}$, then:

$$
\begin{equation*}
n_{+}=\frac{n+i}{2} \quad n_{-}=\frac{n-i}{2} \tag{1.14}
\end{equation*}
$$

And so:

$$
\begin{equation*}
\frac{1}{2}\left(w_{i+1}\left(t_{n}\right)+w_{i-1}\left(t_{n}\right)\right)=\frac{1}{2^{n+1}}\left[\binom{n}{\frac{n+i+1}{2}}+\binom{n}{\frac{n+i-1}{2}}\right] \tag{1.15}
\end{equation*}
$$

Recall now the recurrence relation for the binomial coefficient:

$$
\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}
$$

which leads to the desired result:

$$
(\mathbb{L . 5})=\frac{1}{2^{n+1}}\binom{n+1}{\frac{n+i+1}{2}}=w_{i}\left(t_{n+1}\right)
$$

1.3.1 Probability Generating Functions

Let's introduce a useful mathematical tool to deal with the binomial coefficient. Let X be a discrete random variables taking values in the non-negative integers (\mathbb{N}). The probability generating function ${ }^{\square}$ of X is defined as:

$$
\begin{equation*}
G(z) \equiv \mathbb{E}\left[z^{X}\right]=\sum_{x=0}^{+\infty} p(x) z^{x} \tag{1.16}
\end{equation*}
$$

where p is the probability mass function of X, i.e. $p(x)$ is the probability that $X=x(p(x)=\mathbb{P}(X=x))$.
$G(z)$ is useful because we can retrieve $p(k)$ for any $k \in \mathbb{N}$ by simply differentiating k times $G(z)$ with respect to z and setting $z=0$. In fact, by expanding the sum in the definition (■.]) and then differentiating:

$$
G(z)=p(0)+p(1) z+p(2) z^{2}+\left.\cdots \Rightarrow \frac{\mathrm{d}^{k}}{\mathrm{~d} z^{k}} G(z)\right|_{z=0}=p(k)
$$

Note that $G(1)=1$ because of the normalization:

$$
G(1)=\sum_{x=0}^{+\infty} p(x) 1^{x}=\sum_{x=0}^{+\infty} p(x)=1
$$

This suggests a way to use $G(z)$ to compute also the moments of X. In fact, if we evaluate the first derivative for $z=1$ we get:

$$
\begin{align*}
G^{\prime}(1) & =p(1)+2 p(2) z+3 p(3) z^{2}+\left.\cdots\right|_{z=1}=\left.\sum_{x=1}^{+\infty} p(x) x z^{x-1}\right|_{z=1}= \tag{1.17}\\
& =\sum_{x=1}^{+\infty} x p(x)=(0 \cdot p(0))+1 \cdot p(1)+2 \cdot p(2)+\cdots=\mathbb{E}[X] \tag{1.18}
\end{align*}
$$

However, the second derivative of G evaluated at $z=1$ does not give the second moment:

$$
\begin{aligned}
G^{\prime \prime}(1) & =2 \cdot 1 p(2)+3 \cdot 2 p(3) z+4 \cdot 3 p(4) z^{2}+\left.\ldots\right|_{z=1}=\left.\sum_{x=2}^{+\infty} x(x-1) z^{x-2} p(x)\right|_{z=1}= \\
& =\mathbb{E}(X(X-1))
\end{aligned}
$$

More generally:

Factorial moment generation

$$
G^{(k)}(1)=\mathbb{E}(X(X-1) \ldots(X-k+1))=\mathbb{E}\left(\frac{X!}{(X-k)!}\right)
$$

[^0]which is called the k-th factorial moment of X.
But how can we get the "usual" moments from G ? One possibility is to "compensate" the difference between a factorial moment and a usual one by adding other terms. For example, note that:
$$
G^{\prime \prime}(1)=\mathbb{E}(X(X-1))=\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)
$$
and so:
$$
G^{\prime \prime}(1)+G^{\prime}(1)=\left(\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)\right)+\mathbb{E}(X)=\mathbb{E}\left(X^{2}\right)
$$

A more clever way is to consider the operator $\theta(z)$ defined as:

$$
\theta(z) \equiv z \frac{\partial}{\partial z}
$$

on G. In fact:

$$
\theta(z) G(z)=z \frac{\partial}{\partial z} \sum_{x=0}^{+\infty} p(x) z^{x}=z \sum_{x=1}^{+\infty} x p(x) z^{x-1}=\sum_{x=1}^{+\infty} x p(x) z^{x}
$$

And setting $z=1$ leads back to the $\mathbb{E}[X]$. If we apply $\theta(z)$ again, however, something interesting happens:

$$
\begin{equation*}
\theta(z)^{2} G(z)=\left(z \frac{\partial}{\partial z}\right)\left(z \frac{\partial}{\partial z}\right) G(z)=z \frac{\partial}{\partial z} \sum_{x=1}^{+\infty} x p(x) z^{x}=\sum_{x=1}^{+\infty} x^{2} p(x) z^{x} \tag{1.19}
\end{equation*}
$$

Now setting $z=1$ leads to $\mathbb{E}\left[X^{2}\right]$. In general:

$$
\left.\theta(z)^{k} G(z)\right|_{z=1}=\mathbb{E}\left[X^{k}\right]
$$

Note how the exponent of z never changes, as it is lowered by 1 by the ∂_{z}, and then rised back by the z factor. So, every new application of the $\theta(z)$ operator merely brings down another x factor, rising the x exponent inside the sum which is exactly what we want to compute moments.

1.3.2 Moments of the diffusion distribution

Let's focus on our specific (discrete) case, with the particle moving on a discretized line. At any given time t_{n} we can compute the mass probability function $W_{t_{n}}: \mathbb{Z} \rightarrow \mathbb{R}_{+}$, with $W_{t_{n}}\left(x_{i}\right) \equiv w_{i}\left(t_{n}\right)$. In other words, this is the function that maps every position x_{i} to the probability of containing a particle at time t_{n} (we focus on the spatial distribution at a fixed time rather than the temporal distribution at a fixed position).
We are interested in knowing the shape of $W_{t_{n}}$, that is its moments:

$$
\left\langle x^{q}\right\rangle_{t_{n}}=\sum_{i=-\infty}^{+\infty} W_{t_{n}}\left(x_{i}\right) x_{i}^{q} \underset{(\text { (In) })}{=} \sum_{i=-\infty}^{+\infty} w_{i}\left(t_{n}\right)(l \cdot i)^{q} \quad q \in \mathbb{N}
$$

The first moment ($q=1$) gives the average position:

First moment of x as function of $\left\langle n_{+}\right\rangle$

$$
\begin{align*}
\langle x\rangle_{t_{n}} & =l \cdot \sum_{i=-\infty}^{+\infty} w_{i}\left(t_{n}\right) i= \\
& =l \sum_{i=-\infty}^{+\infty} w_{i}\left(t_{n}\right)\left(2 n_{+}-n\right)= \\
& =l\left(2\left\langle n_{+}\right\rangle_{t_{n}}-n\right) \tag{1.20}
\end{align*}
$$

where in (a) we used the normalization condition $\left(\forall n \in \mathbb{N}, \sum_{i} w_{i}\left(t_{n}\right)=1\right)$. Thus, we found that the average position $\langle x\rangle_{t}$ of the particle at time t_{n} is related to the value of n_{+}.

So, let n_{+}be the random variable of interest. Recall that n_{+}is sampled from a binomial distribution ([.].3), and that $n_{+}=(n+i) / 2$ (ㄸ.]4) and so $i=2 n_{+}-n$.
Then, the probability generating function of n_{+}is given by:

$$
\begin{aligned}
& \underset{(a)}{=}\left(P_{+} z+P_{-}\right)^{n}
\end{aligned}
$$

where in (a) we used the binomial theorem.
We can now use the property ($[. \mathbb{\square}$) of the probability generating function to compute $\left\langle n_{+}\right\rangle$:

$$
\begin{equation*}
\left\langle n_{+}\right\rangle=\left.\frac{\partial}{\partial z} \widetilde{W}(z, n)\right|_{z=1}=\left.n\left(P_{+} z+P_{-}\right)^{n-1} P_{+}\right|_{z=1}=n \underbrace{\left(P_{+}+P_{-}\right)}_{=1} P_{+}=n P_{+} \tag{1.21}
\end{equation*}
$$

For computing the second moment, we apply the $\theta(z)$ operator, as seen in ([.]T) :

$$
\begin{align*}
\left\langle n_{+}^{2}\right\rangle & =\left.\left(z \frac{\partial}{\partial z}\right)^{2} \widetilde{W}(z, n)\right|_{z=1}=\left.z \frac{\partial}{\partial z} z n\left(P_{+} z+P_{-}\right)^{n-1} P_{+}\right|_{z=1}= \\
& =\left.z\left(n\left(P_{+} z+P_{-}\right)^{n-1} P_{+}+z n P_{+}^{2}(n-1)\left(P_{+} z+P_{-}\right)^{n-2}\right)\right|_{z=1}= \\
& =n P_{+}\left(1+(n-1) P_{+}\right) \tag{1.22}
\end{align*}
$$

We can now compute $\operatorname{Var}\left(n_{+}\right)$recalling that:

$$
\operatorname{Var}[X]=\mathbb{E}\left[X^{2}\right]-(E[X])^{2}
$$

Thus:

$$
\begin{equation*}
\operatorname{Var}\left[n_{+}\right]=\left\langle n_{+}^{2}\right\rangle-\left\langle n_{+}\right\rangle^{2}=n P_{+}\left(1-P_{+}\right) \tag{1.23}
\end{equation*}
$$

We now go back to $\langle x\rangle_{t_{n}}$, recalling the relation (([.20]):

$$
\langle x\rangle_{t_{n}}=l\left(2\left\langle n_{+}\right\rangle_{t_{n}}-n\right) \underset{(1 \times 21)}{=} n l\left(2 P_{+}-1\right) \underset{(a)}{\overline{(1)}} n l\left(P_{+}-P_{-}\right)
$$

First moment of n_{+}

Second moment of n_{+}

Moments of x
where in (a) we used $P_{+}+P_{-}=1$.
For the variance, recall that:

$$
\operatorname{Var}[a X+b]=a^{2} \operatorname{Var}[X]
$$

and so, starting again from ($\mathbb{L} .20 \mathrm{Z})$:

$$
\operatorname{Var}[x]_{t_{n}}=4 l^{2} \operatorname{Var}\left[n_{+}\right] \underset{(\mathbb{L L - 2 3 1)}}{=} 4 n l^{2} P_{+}\left(1-P_{+}\right)=4 n l^{2} P_{+} P_{-}
$$

Note that the variance is always proportional to time (n), even if $P_{+} \neq P_{-}$. However, if we go back and compute the $\left\langle x^{2}\right\rangle_{t_{n}}$, we will note that it is not linear in time:

$$
\begin{aligned}
\left\langle x^{2}\right\rangle_{t_{n}} & =\operatorname{Var}[x]_{t_{n}}+\langle x\rangle_{t_{n}}^{2}=4 n l^{2} P_{+}\left(1-P_{+}\right)+\left(n l\left(P_{+}-P_{-}\right)\right)^{2}= \\
& =n l^{2}\left(4 P_{+} P_{-}+n\left(P_{+}-P_{-}\right)^{2}\right)
\end{aligned}
$$

Let's evaluate the previous quantities for the simple symmetrical case, where $P_{+}=P_{-}=1 / 2$:

$$
\left.\begin{array}{rlrl}
\left\langle n_{+}\right\rangle & =\frac{n}{2} & \left\langle n_{+}^{2}\right\rangle & =\frac{n}{4}(n+1) \\
\langle x\rangle_{t_{n}} & =0 & \left\langle x^{2}\right\rangle_{t_{n}} & =n l^{2}
\end{array} r \operatorname{Var}\left[n_{+}\right]=\frac{3}{4} n\right\}
$$

As expected, the average number of steps to the right is half the total steps (as $\left.P_{+}=1 / 2\right)$, and the average position is 0 .

Alternative derivation for the \boldsymbol{x} moments. These last results can be also obtained in a simpler way.
The idea is to represent the final state of the random walk at time t_{n} as the sum of n steps:

$$
x\left(t_{n}\right)=u_{1}+u_{2}+\cdots+u_{n}
$$

Each step can be on the right or on the left according to some probability distribution. In other words, u_{i} is a random variable. If we suppose steps of unit length symmetrically distributed (i.e. $P_{+}=P_{-}=1 / 2$) we get:

$$
u_{n}= \begin{cases}+1 & p=1 / 2 \\ -1 & p=1 / 2\end{cases}
$$

We can now compute the average position (first moment):

$$
\begin{aligned}
\left\langle x\left(t_{n}\right)\right\rangle & =n\langle u\rangle=0 \\
\langle u\rangle & =\frac{1}{2}(+1)+\frac{1}{2}(-1)=0
\end{aligned}
$$

And the second moment:

$$
\left\langle x^{2}\left(t_{n}\right)\right\rangle=\left\langle\left(u_{1}+\cdots+u_{n}\right)^{2}\right\rangle=n \cdot \underbrace{\left\langle u^{2}\right\rangle}_{1}+\sum_{i \neq j} \underbrace{\left\langle u_{i} \cdot u_{j}\right\rangle}_{\left\langle u_{i}\right\rangle\left\langle u_{j}\right\rangle=0}=n
$$

$$
\left\langle u^{2}\right\rangle=\frac{1}{2}(+1)^{2}+\frac{1}{2}(-1)^{2}=1
$$

Note that $\left\langle u_{i} \cdot u_{j}\right\rangle=\left\langle u_{i}\right\rangle\left\langle u_{j}\right\rangle$ because u_{i} and u_{j} are statistically independent. So we showed that $\left\langle x^{2}\right\rangle_{t_{n}}$ is linear in the number of time steps (n). Here, the l^{2} factor from ([.24) is missing because the spatial step size is set to 1 .

1.3.3 Continuum Limit

Recall that $t_{n}=n \varepsilon$. Inserting this relation in the results we got for the x moments in the previous section (for the symmetrical case $P_{+}=P_{-}$) we get:

$$
\begin{equation*}
\langle x\rangle_{t_{n}}=0 ; \quad\left\langle x^{2}\right\rangle_{t_{n}}=l^{2} n=\frac{l^{2}}{\varepsilon} t_{n} \tag{1.24}
\end{equation*}
$$

The analysis of the diffusion equation in $d=1$ showed that, for a particle starting at $x(t=0)=0$:

$$
\begin{equation*}
\left\langle x^{2}\right\rangle_{t}=2 D t \tag{1.25}
\end{equation*}
$$

The correct continuum limit should reproduce the result of ([.25) from ($[.24)$). Notice that if we simply let $\varepsilon \rightarrow 0$ and $l \rightarrow 0,\left\langle x^{2}\right\rangle$ becomes undefined. Therefore, we need to fix the ratio $l^{2} \varepsilon^{-1}$ during the limit. If we define this ratio as:

$$
\frac{l^{2}}{\varepsilon} \equiv 2 D
$$

then the limit of ($[.244)$ leads to ($[.25)$ as desired:

$$
\left\langle x^{2}\right\rangle_{t_{n}}=\frac{l^{2}}{\varepsilon} t_{n} \xrightarrow[l, \varepsilon \rightarrow 0]{l^{2} / \varepsilon=2 D} 2 D t=\left\langle x^{2}\right\rangle_{t}
$$

Note that $[D]=\mathrm{m}^{2} \mathrm{~s}^{-1}$, and so the previous expression is dimensionally correct. We now know the basic shape that the distribution must have in the continuum limit - but we still don't know its explicit form. So, let's start by considering the spatial distribution at a fixed time t_{n} :

$$
\begin{equation*}
W_{t_{n}}\left(x_{i}\right) \equiv w_{i}\left(t_{n}\right)=\frac{n!}{\left(\frac{n+i}{2}\right)!\left(\frac{n-i}{2}\right)!} \frac{1}{2^{n}} \tag{1.26}
\end{equation*}
$$

For $n=0$ (starting time), all the particles are at x_{0}. Then, after each timestep the probability distribution "expands", meaning that more and more positions have a non-zero probability of being explored.

In particular, recall that:
i and n have the same parity

$$
i=2 n_{+}-n
$$

Note how i and n must have the same parity, as $2 n_{+}$is always even. So the particle will always be at an even position (x_{i} with i even) after an even number n of time steps, and at an odd x_{i} after an odd time t_{n}.

To proceed, we note that in the continuum limit, as the timestep ϵ vanishes, every finite time t will be reached after a really big number of steps. So, we want to examine the asymptotic behaviour of ([.266) as $n \rightarrow \infty$. We start by computing its logarithm:

$$
\ln w_{i}\left(t_{n}\right)=-n \ln 2+\ln n!-\ln \left(\frac{n+i}{2}\right)!-\ln \left(\frac{n-i}{2}\right)!
$$

In this way, we can use the Stirling approximation:

$$
\begin{aligned}
\ln k! & =\ln k+\ln (k-1)+\cdots+\ln 2+\ln 1= \\
& \approx k \ln k-k+\frac{1}{2} \ln (2 \pi k)
\end{aligned}
$$

Thus arriving at a complicated expression:

$$
\begin{aligned}
\ln w_{i}\left(t_{n}\right) \underset{n \gg 1}{\approx} & -n \ln 2+n \ln n-\not x+\frac{1}{2} \ln (2 \pi n) \\
& -\frac{n+i}{2} \ln \left(\frac{n+i}{2}\right)+\frac{n+/ 2}{2}-\frac{1}{2} \ln \left(2 \pi \frac{n+i}{2}\right) \\
& -\frac{n-i}{2} \ln \left(\frac{n-i}{2}\right)+\frac{n-/}{2}-\frac{1}{2} \ln \left(2 \pi \frac{n-i}{2}\right)
\end{aligned}
$$

Let's gradually simplify it. We start by collecting all the n :

$$
\begin{align*}
& n\left(-\ln 2+\ln n-\frac{1}{2} \ln \left(\frac{n+i}{2}\right)-\frac{1}{2} \ln \left(\frac{n-i}{2}\right)\right) \\
= & n \ln \left(\frac{n}{2 \sqrt{\frac{n+i}{2}} \sqrt{\frac{n-i}{2}}}\right)=n \ln \left(\frac{n}{\sqrt{n^{2}-i^{2}}}\right)=n \ln \left(\frac{1}{\sqrt{1-i^{2} / n^{2}}}\right)= \\
= & n \ln \left(1+\frac{1}{2} \frac{i^{2}}{n^{2}}+O\left(\frac{i^{4}}{n^{4}}\right)\right)=\frac{n}{(b)} \frac{i^{2}}{2}+O\left(\frac{i^{4}}{n^{4}}\right) \approx \frac{i^{2}}{2 n} \tag{1.27}
\end{align*}
$$

where in (a) and in (b) we used respectively the following Taylor expansions (as $n \rightarrow \infty$ and so $1 / n \rightarrow 0$):

$$
\begin{equation*}
(1 \pm x)^{n}=1 \pm n x+O\left(x^{2}\right) \quad \ln (1+x)=x+O\left(x^{2}\right) \tag{1.28}
\end{equation*}
$$

Then we collect the $i / 2$:

$$
\begin{align*}
& -\frac{i}{2}\left[\ln \left(\frac{n+i}{2}\right)-\ln \left(\frac{n-i}{2}\right)\right]=-\frac{i}{2} \ln \left(\frac{n+i}{n-i}\right) \\
= & -\frac{i}{2} \ln \left(\frac{1+i / n}{1-i / n}\right)=-\frac{i}{2} \ln \left(\left(1+\frac{i}{n}\right)\left(1+\frac{i}{n}+O\left(\frac{i^{2}}{n^{2}}\right)\right)\right) \\
= & -\frac{i}{2} \ln \left(1+\frac{2 i}{n}+O\left(\frac{i^{2}}{n^{2}}\right)\right)= \tag{1.29}\\
\overline{(b)} & -\frac{i}{2}\left(\frac{2 i}{n}+O\left(\frac{i^{2}}{n^{2}}\right)\right) \approx-\frac{i^{2}}{n}
\end{align*}
$$

And finally we consider the remaining terms:

$$
\frac{1}{2}\left[\ln (2 \pi n)-\frac{1}{2} \ln \left(2 \pi \frac{n+i}{2}\right)-\ln \left(2 \pi \frac{n-i}{2}\right)\right]
$$

$$
\begin{align*}
& =\frac{1}{2} \ln \left(\frac{2 \pi n}{2 \pi \frac{n+i}{2} 2 \pi \frac{n-i}{2}}\right)=\frac{1}{2} \ln \left(\frac{2 n}{\pi\left(n^{2}-i^{2}\right)}\right)=\frac{1}{2} \ln \left(\frac{2}{\pi n} \frac{1}{1-\frac{i^{2}}{n^{2}}}\right)= \\
& =\frac{1}{2} \ln \left(\frac{2}{\pi n}+O\left(\frac{i^{2}}{n^{2}}\right)\right) \approx \frac{1}{2} \ln \left(\frac{2}{\pi n}\right) \tag{1.30}
\end{align*}
$$

Putting it all back together:

$$
\ln w_{i}\left(t_{n}\right) \underset{n \gg 1}{\approx}(\llbracket .27)+(\llbracket .2 .2 \rrbracket)+(\mathbb{L} .3 \pi)=\frac{1}{2} \ln \left(\frac{2}{\pi n}\right)-\frac{i^{2}}{2 n}
$$

And by exponentiating we get:

$$
\begin{equation*}
w_{i}\left(t_{n}\right) \underset{n \gg 1}{\approx} \sqrt{\frac{2}{\pi n}} \exp \left(-\frac{i^{2}}{2 n}\right) \tag{1.31}
\end{equation*}
$$

We now want to obtain a continuous pdf from the mass probability $w_{i}\left(t_{n}\right)$. Note that if we regard $w_{i}\left(t_{n}\right)$ as a function of position at a fixed time $W_{t_{n}}\left(x_{i}\right)$, and extend the domain to all \mathbb{R} we get a really "bumpy" function, as it is non-zero only on $x_{i}=l \cdot i$ with $i \in \mathbb{Z}$. However, if we integrate over every small patch of $W_{t_{n}}\left(x_{i}\right)$, we can "smooth" all the "bumpyness", and get a nice pdf - especially in the continuum limit.
Let's formalize that more carefully. Starting from $W_{t_{n}}\left(x_{i}\right)$, we can compute the probability to find a particle in an interval $I \subseteq \mathbb{R}$ by simply summing the mass probabilities $w_{j}\left(t_{n}\right)$ for all the $x_{j} \in I$.
The idea is now to define a continuous pdf $W(x, t)$ as follows:

$$
W\left(x, t_{n}\right) \Delta x=\mathbb{P}\left(x \in\left[x-\frac{\Delta x}{2} ; x+\frac{\Delta x}{2}\right], t_{n}\right) \quad l \ll \Delta x \ll 1
$$

That is, $W\left(x, t_{n}\right) \Delta x$ is the probability that a particle lies "near" a certain position $x \in \mathbb{R}$ at an instant t_{n} (i.e. within an interval I centered on x with width Δx sufficiently small, but large with respect to the discretization). We will then "cure" the discreteness of time by considering the asymptotic behaviour for $t \rightarrow \infty$.
By expanding the previous expression we get:
$\mathbb{P}\left(x \in\left[x-\frac{\Delta x}{2}, x+\frac{\Delta x}{2}\right]\right) \underset{(a)}{\approx} \mathbb{P}\left(i \in\left[i_{0}-\frac{\Delta x}{2 l} ; i_{0}+\frac{\Delta x}{2 l}\right]\right)=\sum_{j=i_{0}-\Delta x /(2 l)}^{i_{0}+\Delta x /(2 l)} w_{j}\left(t_{n}\right)$
where in (a) i_{0} is such that $x_{i_{0}}$ is closest to x_{i}, that is $i_{0}=\lfloor x / l\rceil$ (recall that $\left.x_{i}=i l \Rightarrow i=x_{i} / l\right)$.
Note that this specific choice of I contains $\Delta x / l$ points (supposing $\Delta x \gg l$). However, depending on the parity of n (fixed by the choice of the instant t_{n}), only half of the positions x_{j} can be explored, as n and j must have the same parity. This means that half of the $w_{j}\left(t_{n}\right)$ with x_{j} inside the interval, $w_{j}\left(t_{n}\right)=0$. For the other half, we suppose that $w_{j}\left(t_{n}\right)$ does not vary much
inside the small interval, and so we approximate their value with the center point $j=i_{0}$, i.e. $w_{j}\left(t_{n}\right) \approx w_{i_{0}}\left(t_{n}\right)$. So, averaging over these two halves:

$$
\begin{equation*}
(\mathbb{L} .32) \approx \frac{\Delta x}{l}\left(\frac{1}{2} \cdot 0+\frac{1}{2} w_{i_{0}}\left(t_{n}\right)\right)=\frac{\Delta x}{2 l} w_{i_{0}}\left(t_{n}\right) \tag{1.33}
\end{equation*}
$$

We have now an expression for $W\left(x, t_{n}\right)$, which is continuous with respect to x :

$$
\begin{equation*}
W\left(x, t_{n}\right) \Delta x=\frac{\Delta x}{2 l} w_{i}\left(t_{n}\right) \tag{1.34}
\end{equation*}
$$

If we now take the limit $n \rightarrow \infty$ we can substitute ([L.37) in ([.34), leading to:

Continuous distribution

$$
W(x, t)=\frac{1}{2 l} \sqrt{\frac{2}{\pi n}} \exp \left(-\frac{i^{2}}{2 n}\right)
$$

Substituting $x=i l$ and $t=n \varepsilon$ we get:

$$
\begin{equation*}
W(x, t)=\sqrt{\frac{2 \varepsilon}{4 l^{2} \pi t}} \exp \left(-\frac{x^{2}}{2 \frac{l^{2}}{\varepsilon} t}\right) \tag{1.35}
\end{equation*}
$$

As $l^{2} \varepsilon^{-1}=2 D$:

$$
\begin{equation*}
W(x, t)=\frac{1}{\sqrt{4 \pi D t}} \exp \left(-\frac{x^{2}}{4 D t}\right) \tag{1.36}
\end{equation*}
$$

We can now compute the first two moments of x :

$$
\begin{aligned}
\langle x\rangle_{t} & =\int_{\mathbb{R}} W(x, t) x \mathrm{~d} x=0 \\
\left\langle x^{2}\right\rangle_{t} & =\int_{\mathbb{R}} W(x, t) x^{2} \mathrm{~d} x=2 D t
\end{aligned}
$$

This last integral can be done in many ways. For example, recall the gaussian integral:

$$
I=\sqrt{\frac{\pi}{\mu}}=\int_{-\infty}^{\infty} e^{-\mu y^{2}} \mathrm{~d} y
$$

Differentiating (according to Leibniz integral rule) with respect to μ :

$$
\begin{equation*}
\frac{\partial I}{\partial \mu}=-\int_{\mathbb{R}} e^{-\mu y^{2}} y^{2} \mathrm{~d} y=-\frac{1}{2} \sqrt{\frac{\pi}{\mu^{3}}} \tag{1.37}
\end{equation*}
$$

and so:

$$
\begin{aligned}
\left\langle x^{2}\right\rangle_{t} & =\frac{1}{\sqrt{4 \pi D t}} \int_{-\infty}^{+\infty} x^{2} \exp \left(-\frac{x^{2}}{4 D t}\right) \mathrm{d} x= \\
& =\left.\frac{1}{\sqrt{4 \pi D t}} \int_{-\infty}^{+\infty} e^{-\mu x^{2}} x^{2} \mathrm{~d} x\right|_{\mu=(4 D t)^{-1}(\mathbb{L \sim 3 7})} \frac{1}{\sqrt{4 \pi D t}} \frac{1}{2} \sqrt{\pi(4 D t)^{3}}=2 D t
\end{aligned}
$$

1.4 The Link between Macroscopic and Microscopic

We will now show that the continuum limit of the Master Equation (ㄴ..[1) produces the diffusion equation ($[.6)$), in the case of constant D, thus establishing a link between the interpretation in terms of densities and that in term of paths of random motion.
Then, we will show that ([.36) is the solution of that equation for a starting distribution of δx (particle initially at 0), and derive the general solution for any initial condition.
So, we start by recalling that, for a fine discretization, $w_{i}\left(t_{n}\right)$ is approximately equal to the probability of being around a generic (x, t) (i.e. $W(x, t) \Delta x)$, up to a normalization constant:

$$
W\left(x_{0}, t_{n}\right) \Delta x=\mathbb{P}\left(x \in\left[x_{0}-\Delta x / 2, x_{0}+\Delta x / 2\right]\right) \approx \frac{\Delta x}{2 l} w_{i_{0}}\left(t_{n}\right) \quad i_{0}=\lfloor\Delta x / l\rceil
$$

And so, with a slight abuse of notation:

$$
w_{i}\left(t_{n}\right) \approx 2 l W(x, t) \quad i=\lfloor x / l\rceil, n=\lfloor t / \epsilon\rceil
$$

Substituting in the Master Equation (L. $\mathbb{\square}$) leads to:

$$
\begin{equation*}
2 \nmid W(x, t+\epsilon)=\mathscr{A} \frac{1}{2}(W(x-l, t)+W(x+l, t)) \tag{1.38}
\end{equation*}
$$

which means that an analogous Master Equation holds even for $W(x, t)$, which is a continuous pdf, and thus can be differentiated.
The idea is now to use Taylor expansions to express everything in terms of the derivatives of W evaluated at the same point (x, t). So, we compute $W(x, t+\epsilon)$ in terms of $W(x, t)$ (and derivatives) by expanding around $\epsilon=0$:

$$
\begin{equation*}
W(x, t+\epsilon)=W(x, t)+\left.\epsilon \frac{\partial}{\partial \tau} W(\chi, \tau)\right|_{(x, t)}+\left.\frac{\epsilon^{2}}{2} \frac{\partial^{2}}{\partial \tau^{2}} W(\chi, \tau)\right|_{(x, t)}+O\left(\epsilon^{3}\right) \tag{1.39}
\end{equation*}
$$

The same is done for $W(x \pm l, t)$ by expanding around $l=0$:

$$
\begin{equation*}
W(x \pm l, t)=W(x, t) \pm\left. l \frac{\partial}{\partial \chi} W(\chi, \tau)\right|_{(x, t)}+\left.\frac{l^{2}}{2} \frac{\partial^{2}}{\partial \chi^{2}} W(\chi, \tau)\right|_{(x, t)}+O\left(l^{3}\right) \tag{1.40}
\end{equation*}
$$

We then introduce the following notation for the space and time derivatives:

$$
\dot{W}(x, t)=\left.\frac{\partial}{\partial \tau} W(\chi, \tau)\right|_{(x, t)} \quad W^{\prime}(x, t)=\left.\frac{\partial}{\partial \chi} W(\chi, \tau)\right|_{(x, t)}
$$

so that a space derivative is denoted with a^{\prime} ($a^{\prime \prime}$ for the second derivative), and a time derivative with \dot{a} (\ddot{a} for the second derivative).
We can now substitute everything back in ([..38). We start with the right side:

$$
W(x+l, t)+W(x-l, t)=2 W(x, t)+l^{2} W^{\prime \prime}(x, t)+O\left(l^{4}\right)
$$

where the $O\left(l^{4}\right)$ is given by the cancellation of the odd powers (including l^{3}). Equating to the left side of ($\mathbb{L} \cdot 38)$ leads to:

$$
W(x, t)+\epsilon \dot{W}(x, t)+\frac{\epsilon^{2}}{2} \ddot{W}(x, t)=\underline{W}(x, t)+\frac{l^{2}}{2} W^{\prime \prime}(x, t)+O\left(l^{4}\right)
$$

Dividing by ϵ :

$$
\begin{aligned}
\dot{W}(x, t)+\frac{\epsilon}{2} \ddot{W}(x, t) & =\underbrace{\frac{l^{2}}{2 \epsilon}}_{D} W^{\prime \prime}(x, t)+O\left(\frac{l^{4}}{\epsilon}\right) \\
& =D W^{\prime \prime}(x, t)+O\left(4 \epsilon D^{2}\right)
\end{aligned}
$$

If we now take the continuum limit, then $\epsilon, l \rightarrow 0$ with the ratio $D=l^{2} /(2 \epsilon)$ fixed, both $\ddot{W}(x, t)$ and the error term vanish, leading to the diffusion equation:

$$
\begin{equation*}
\dot{W}(x, t)=D W^{\prime \prime}(x, t) \tag{1.41}
\end{equation*}
$$

Which is indeed the same ${ }^{D}$ of ([.6) with D constant.

1.5 Solution of the Diffusion Equation

We want now to solve ([.4D), and show that the solution will be the same we previously derived in ([..36).
So, we start from:

$$
\partial_{t} W(x, t)=D \partial_{x}^{2} W(x, t)
$$

This is a second order partial differential equation. To be able to solve it, we must first define its boundary conditions. In this case, we suppose that the particle is unconstrained, and so the spatial domain coincides with \mathbb{R}.
As $W(x, t)$ is a pdf, the following conditions must hold:

$$
W(x, t) \geq 0 \quad \forall(x, t) \quad \int_{\mathbb{R}} W(x, t)=1
$$

From the normalization, it follows that $W(x, t)$ - and its spatial derivative $W^{\prime}(x, t)$ - must vanish as $|x| \rightarrow \infty$, so that the integral does not diverge:

$$
\begin{equation*}
\lim _{|x| \rightarrow \infty} W(x, t)=0 \quad \lim _{|x| \rightarrow \infty} W^{\prime}(x, t)=0 \tag{1.42}
\end{equation*}
$$

However, it is not obvious that $W(x, t) \geq 0$ will always hold, assuming we choose an initial condition $W\left(x, t_{0}\right) \geq 0$. This will be obvious a posteriori and in fact can justified by the peculiar properties of this differential equation.

To solve ($\mathbb{L} 4 \mathrm{4}$), as the spatial domain is all \mathbb{R}, one standard technique is that of the Fourier integral transform, which allows us to "remove" derivatives by replacing $\partial_{x} \psi \rightarrow i k \psi, \partial_{x x} \rightarrow-k^{2} \psi$. Thus, if we can "remove" the second-order space derivative, we will be left with a much more simpler first order differential equation in the time variable.

[^1]Translational invariance. This approach is suggested by the translational invariance of solutions of (4.4 T). In fact, if $W(x, t)$ is a solution, then also $\tilde{W}(x, t)=W(x-a, t)$ is a solution.
The generator of the translations is the momentum, and its eigenfunctions are the plane waves, i.e. the Fourier basis. So, by expressing a function in this base, we will harness the equation's symmetry - simplifying the problem.
In other words, the Fourier basis diagonalizes the Laplacian operator which appears in (L.4I):

$$
\partial_{x}^{2} \varphi_{k}(x)=\lambda_{k} \varphi_{k}(x) \quad \lambda_{k} \equiv-k^{2} \quad \varphi_{k}(x)=A_{k} e^{ \pm i k x}, k \in \mathbb{R}
$$

In a general case, the Fourier integral trick can be tried for every variable, starting from the one with the higher order derivative, and then the case which leads to the most simplification can be pursued.

We start by rewriting $W(x, t)$ as a (infinite) linear combination of vectors of the Fourier basis:

$$
\begin{equation*}
W(x, t)=\int_{\mathbb{R}} \frac{\mathrm{d} k}{2 \pi} e^{i k x} c_{k}(t) \tag{1.43}
\end{equation*}
$$

where the 2π factor is just a normalization convention.
Let $\varphi_{k}(x)=e^{i k x}$. Then, as the Fourier basis is orthonormal, the following holds (recalling the Fourier transform of the δ function):

$$
\begin{align*}
& \left\langle\varphi_{k}, \varphi_{k^{\prime}}\right\rangle=\int_{\mathbb{R}} \mathrm{d} x \varphi_{k}^{*}(x) \varphi_{k^{\prime}}(x)=\int_{\mathbb{R}} \mathrm{d} x e^{i\left(k^{\prime}-k\right) x}=2 \pi \delta\left(k-k^{\prime}\right) \tag{1.44}\\
& \left\langle\tilde{\varphi}_{x}, \tilde{\varphi}_{x^{\prime}}\right\rangle=\int_{\mathbb{R}} \mathrm{d} k \varphi_{k}^{*}(x) \varphi_{k}\left(x^{\prime}\right)=2 \pi \delta\left(x-x^{\prime}\right)
\end{align*}
$$

We then apply a Fourier transform to both members of (L.4.3), by multiplying by $e^{-i k^{\prime} x}$ and integrating over x :

$$
\int_{\mathbb{R}} W(x, t) e^{-i k^{\prime} x} \mathrm{~d} x=\int_{\mathbb{R}} \frac{\mathrm{d} k}{2 \pi} \int_{\mathbb{R}} \mathrm{d} x e^{i\left(k-k^{\prime}\right) x} c_{k}(t)
$$

If we now apply the ON relation ((L.44) we can solve the integral in the right side:

$$
\int_{\mathbb{R}} W(x, t) e^{-i k^{\prime} x} \mathrm{~d} x=\int_{\mathbb{R}} \mathrm{d} k \delta\left(k-k^{\prime}\right) c_{k}(t)=c_{k^{\prime}}(t)
$$

And substituting $k^{\prime} \rightarrow k$ we arrive at an expression for $c_{k}(t)$:

$$
\begin{equation*}
c_{k}(t)=\int_{\mathbb{R}} \mathrm{d} x e^{-i k x} W(x, t) \tag{1.45}
\end{equation*}
$$

Starting from (L.4D) we can write a corresponding differential equation for the coefficients $c_{k}(t)$ in the Fourier basis, and then solve it.

Braket notation. Let the solution be $|W(t)\rangle$, so that $\langle x \mid W(t)\rangle=W(x, t)$. Then in ([.431) we just did a change of basis (by using Dirac completeness):

$$
|W(t)\rangle=\mathbb{I}|W(t)\rangle=\int_{k}|k\rangle \underbrace{\langle k \mid W(t)\rangle}_{c_{k}(t)}
$$

where $|k\rangle$ are elements of the Fourier basis $\left(\langle x \mid k\rangle=e^{i k x}\right)$ and so：

$$
c_{k}(t)=\langle k \mid W(t)\rangle=\int_{x}\langle k \mid x\rangle\langle x \mid W(t)\rangle=\int_{\mathbb{R}} \mathrm{d} x e^{-i k x} W(x, t)
$$

So the initial differential equation（ $\mathbb{L . 4}$ ）is expressed in the position basis，while the following equation involving $c_{k}(t)$ is expressed in the Fourier basis．

So，we start by differentiating（［1．45）with respect to t ：

$$
\begin{aligned}
\dot{c}_{k}(t) & =\int_{\mathbb{R}} \mathrm{d} x e^{-i k x} \dot{W}(x, t) \underset{(a)}{=} D \int_{-\infty}^{\infty} e^{-i k x} W^{\prime \prime}(x, t) \mathrm{d} x= \\
& =\left.D W^{\prime}(x, t) e^{-i k x}\right|_{-\infty} ^{\infty}-D \int_{-\infty}^{\infty} \partial_{x}\left(e^{-i k x}\right) W^{\prime}(x, t) \mathrm{d} x= \\
& =-D \underbrace{\left(\partial_{x} e^{-i k x}\right)}_{-i k e^{-i k x}} \underline{\left.W(x, t)\right|_{-\infty} ^{\infty}+D \int_{\mathbb{R}} \underbrace{\partial_{x}^{2}\left(e^{-i k x}\right)}_{-k^{2} e^{-i k x}} W(x, t) \mathrm{d} x=} \\
& =-D k^{2} \underbrace{\int_{-\infty}^{+\infty} \mathrm{d} x e^{-i k x} W(x, t)}_{c_{k}(t)}=-D k^{2} c_{k}(t)
\end{aligned}
$$

where in（a）we substituted（ㄴ．47），and in（b）and（c）we performed two inte－ grations by parts．Note that the $W(x, t)$ and $W^{\prime}(x, t)$ terms vanish because of the boundary conditions（ $\mathbb{L}, 42$ ）．
Summarizing：

$$
\dot{c}_{k}(t)=\int_{\mathbb{R}} \mathrm{d} x e^{-i k x} \dot{W}(x, t)=-D k^{2} c_{k}(t)
$$

This is a first－order ordinary differential equation，which can be solved by sep－ aration of variables：

$$
\frac{\mathrm{d}}{\mathrm{~d} t} c_{k}(t)=-D k^{2} c_{k}(t) \Rightarrow \int \frac{\mathrm{d} c_{k}(t)}{c_{k}(t)}=\int-D k^{2} \mathrm{~d} t \Rightarrow \ln c_{k}(t)=-D k^{2} t+C
$$

And rearranging：

$$
\begin{equation*}
c_{k}(t)=A e^{-D k^{2} t} \tag{1.46}
\end{equation*}
$$

To find the integration constant A we impose the initial conditions，i．e．that $c_{k}(t)$ be equal to a known $c_{k}\left(t_{0}\right)$ at time t_{0} ：

$$
\begin{equation*}
c_{k}\left(t_{0}\right) \stackrel{!}{=} A e^{-D k^{2} t_{0}} \Rightarrow A=c_{k}\left(t_{0}\right) e^{D k^{2} t_{0}} \tag{1.47}
\end{equation*}
$$

And substituting（【．47）back in（【．46）we arrive at the general integral：

$$
\begin{equation*}
c_{k}(t)=c_{k}\left(t_{0}\right) e^{-D k^{2}\left(t-t_{0}\right)} \tag{1.48}
\end{equation*}
$$

We can now go back to $W(x, t)$ by plugging（【．48）into（【．43）：

$$
W(x, t)=\int_{\mathbb{R}} \frac{\mathrm{d} k}{2 \pi} e^{i k x} c_{k}(t)=\int_{\mathbb{R}} \frac{\mathrm{d} k}{2 \pi} e^{i k x-D k^{2}\left(t-t_{0}\right)} c_{k}\left(t_{0}\right)=
$$

$$
\begin{align*}
& =\int_{\mathbb{R}} \frac{\mathrm{d} k}{2 \pi} e^{i k x-D k^{2}\left(t-t_{0}\right)} \int_{\mathbb{R}} \mathrm{d} y e^{-i k y} W\left(y, t_{0}\right)= \\
& =\int_{\mathbb{R}} \mathrm{d} y W\left(y, t_{0}\right) \int_{\mathbb{R}} \frac{\mathrm{d} k}{2 \pi} \exp \left(-D k^{2}\left(t-t_{0}\right)+i k(x-y)\right) \tag{1.49}
\end{align*}
$$

Recall that:

$$
\int_{-\infty}^{+\infty} \frac{\mathrm{d} k}{2 \pi} e^{-i a k^{2}-i b k}=\frac{1}{\sqrt{4 \pi a i}} \exp \left(\frac{i b^{2}}{4 a}\right)
$$

and so with $i a=D\left(t-t_{0}\right)$ and $b=-(x-y)$ we arrive at:

$$
\int_{\mathbb{R}} \frac{\mathrm{d} k}{2 \pi} \exp \left(-D k^{2}\left(t-t_{0}\right)+i k(x-y)\right)=\frac{1}{\sqrt{4 \pi D\left(t-t_{0}\right)}} \exp \left(-\frac{(x-y)^{2}}{4 D\left(t-t_{0}\right)}\right)
$$

Substituting back in ([.49)):

$$
\begin{equation*}
W(x, t)=\frac{1}{\sqrt{4 \pi D\left(t-t_{0}\right)}} \int_{\mathbb{R}} \mathrm{d} y W\left(y, t_{0}\right) \exp \left(-\frac{(x-y)^{2}}{4 D\left(t-t_{0}\right)}\right) \tag{1.50}
\end{equation*}
$$

Note that with $t_{0}=0$ and $W\left(y, t_{0}\right)=\delta(y)$ we retrieve the solution (■.36) that we already found.

1.5.1 Propagators

Suppose we know with certainty that the particle is in $y=x_{0}$ at time $t=t_{0}$, that is:

$$
W\left(y, t_{0}\right)=\delta\left(y-x_{0}\right)
$$

Then, substituting in ([.5(0) leads to:

$$
\begin{equation*}
W\left(x, t \mid x_{0}, t_{0}\right) \equiv \frac{1}{\sqrt{4 \pi D\left(t-t_{0}\right)}} \exp \left(-\frac{\left(x-x_{0}\right)^{2}}{4 D\left(t-t_{0}\right)}\right) \tag{1.51}
\end{equation*}
$$

where with $W\left(x, t \mid x_{0}, t_{0}\right)$ we denote the probability that the particle will be around position x at time t, given it was certainly in x_{0} at time t_{0}. $W\left(x, t \mid x_{0}, t_{0}\right)$ is also called propagator, as it "propagates" the particle from $\left(x_{0}, t_{0}\right)$ to (x, t) as a sort of continuous transition probability. This is much more evident if we rewrite ($\mathbb{L . 5 0}$) as follows (with $y \rightarrow x_{0}$ for simplicity):

$$
\begin{equation*}
W(x, t)=\int_{\mathbb{R}} \mathrm{d} x_{0} W\left(x, t \mid x_{0}, t_{0}\right) W\left(x_{0}, t_{0}\right) \tag{1.52}
\end{equation*}
$$

Let's explorer some properties of ([.5.57).

1. ESCK property. Let's propagate a particle from a starting point ESCK property $\left(x_{0}, t_{0}\right)$ to two different end points $\left(x_{1}, t_{1}\right)$ and $\left(x_{2}, t_{2}\right)$:

$$
\begin{equation*}
W\left(x_{1}, t_{1}\right)=\int_{\mathbb{R}} \mathrm{d} x_{0} W\left(x_{1}, t_{1} \mid x_{0}, t_{0}\right) W\left(x_{0}, t_{0}\right) \tag{1.53}
\end{equation*}
$$

$$
\begin{equation*}
W\left(x_{2}, t_{2}\right)=\int_{\mathbb{R}} \mathrm{d} x_{0} W\left(x_{2}, t_{2} \mid x_{0}, t_{0}\right) W\left(x_{0}, t_{0}\right) \tag{1.54}
\end{equation*}
$$

We can also propagate to $\left(x_{2}, t_{2}\right)$ starting from $\left(x_{1}, t_{1}\right)$:

$$
\begin{equation*}
W\left(x_{2}, t_{2}\right)=\int_{\mathbb{R}} \mathrm{d} x_{1} W\left(x_{2}, t_{2} \mid x_{1}, t_{1}\right) W\left(x_{1}, t_{1}\right) \tag{1.55}
\end{equation*}
$$

Now, if we substitute ($[.5 .31)$ in ($[.5 .5)$ we get:

$$
W\left(x_{2}, t_{2}\right)=\iint_{\mathbb{R}^{2}} \mathrm{~d} x_{1} \mathrm{~d} x_{0} W\left(x_{2}, t_{2} \mid x_{1}, t_{1}\right) W\left(x_{1}, t_{1} \mid x_{0}, t_{0}\right) W\left(x_{0}, t_{0}\right)
$$

By comparing this expression with ($\square .54)$, we find that:

$$
W\left(x_{2}, t_{2} \mid x_{0}, t_{0}\right)=\int_{\mathbb{R}} \mathrm{d} x_{1} W\left(x_{2}, t_{2} \mid x_{1}, t_{1}\right) W\left(x_{1}, t_{1} \mid x_{0}, t_{0}\right)
$$

That is, the propagator between two points A and B can be obtained by multiplying the propagators between $A \rightarrow C$ and $C \rightarrow B$ and summing over all possible choices of C. This property is the Einstein-Smoluchowski-Kolmogorov-Chapman relation (ESCK).
2. Correlator. Consider two instants $t_{1} \neq t_{2}$, and suppose we want to compute $\left\langle x\left(t_{2}\right) x\left(t_{1}\right)\right\rangle$, supposing that the particle started in $x=0$ at

Two-point correlator $t=0$. Applying the definition of an expected value:

$$
\left\langle x\left(t_{2}\right) x\left(t_{1}\right)\right\rangle=\iint_{\mathbb{R}^{2}} \mathrm{~d} x_{1} \mathrm{~d} x_{2} \mathbb{P}\left(x_{2}, t_{2} ; x_{1}, t_{1} \mid 0,0\right) x_{2} x_{1}
$$

where $\mathbb{P}\left(x_{2}, t_{2} ; x_{1}, t_{1} \mid 0,0\right)$ is the joint $p d f$ of a particle being around x_{1} at t_{1} and around x_{2} at t_{2}, given the initial position in $x=0$ at $t=0$.
Recall from probability theory that:

$$
\begin{aligned}
\mathbb{P}\left(x_{2}, t_{2} ; x_{1}, t_{1} ; 0,0\right) & =\mathbb{P}\left(x_{2}, t_{2} ; x_{1}, t_{1} \mid 0,0\right) \mathbb{P}(0,0) \\
\Rightarrow \mathbb{P}\left(x_{2}, t_{2} ; x_{1}, t_{1} \mid 0,0\right) & =\frac{\mathbb{P}\left(x_{2}, t_{2} ; x_{1}, t_{1} ; 0,0\right)}{\mathbb{P}(0,0)}= \\
& =\frac{W\left(x_{2}, t_{2} \mid x_{1}, t_{1}\right) W\left(x_{1}, t_{1} \mid 0,0\right) \underline{W}(\theta, 0)}{W(0, \theta)}= \\
& =W\left(x_{2}, t_{2} \mid x_{1}, t_{1}\right) W\left(x_{1}, t_{1} \mid 0,0\right)
\end{aligned}
$$

Recalling the result in ($\square .5 \mathbb{D})$ we can now compute:

$$
\left\langle x\left(t_{2}\right) x\left(t_{1}\right)\right\rangle=\iint_{\mathbb{R}^{2}} \mathrm{~d} x_{1} \mathrm{~d} x_{2} x_{1} x_{2} \frac{\exp \left(-\frac{\left(x_{2}-x_{1}\right)^{2}}{4 D\left(t_{2}-t_{1}\right)}\right)}{\sqrt{4 \pi D\left(t_{2}-t_{1}\right)}} \frac{\exp \left(-\frac{x_{1}^{2}}{4 D t_{1}}\right)}{\sqrt{4 \pi D t_{1}}}
$$

By changing variables ($x_{1}=y_{1}, x_{2}-x_{1}=y_{2}$) we arrive at:

$$
\begin{aligned}
= & \frac{1}{\sqrt{4 \pi D\left(t_{2}-t_{1}\right)}} \frac{1}{\sqrt{4 \pi D t_{1}}} \iint_{\mathbb{R}^{2}} \mathrm{~d} y_{1} \mathrm{~d} y_{2} y_{1}\left(y_{1}+y_{2}\right) . \\
& \cdot \exp \left(-\frac{y_{2}^{2}}{4 D\left(t_{2}-t_{1}\right)}-\frac{y_{1}^{2}}{4 D t_{1}}\right)=
\end{aligned}
$$

$$
\begin{aligned}
& \underset{(a)}{=} \frac{1}{\sqrt{4 \pi D\left(t_{2}-t_{1}\right)}} \frac{1}{\sqrt{4 \pi D t_{1}}} \int_{\mathbb{R}} \mathrm{d} y_{1} y_{1}^{2} \exp \left(-\frac{y_{1}^{2}}{4 D t_{1}}\right) \\
& \quad \cdot \int_{\mathbb{R}} \mathrm{d} y_{2} \exp \left(-\frac{y_{2}^{2}}{4 D\left(t_{2}-t_{1}\right)}\right)= \\
& =\frac{1}{(\text { b) }} \frac{1}{\sqrt{4 \pi D\left(t_{2}-t_{1}\right)}} \frac{1}{\sqrt{4 \pi D t_{1}}}\left(2 D t_{1} \sqrt{4 \pi D t_{1}}\right)\left(\sqrt{4 \pi D\left(t_{2}-t_{1}\right)}\right)=2 D t_{1}
\end{aligned}
$$

In (a) we note that by expanding $y_{1}\left(y_{1}+y_{2}\right)$, the term with $y_{1} y_{2}$ is an odd function integrated over a symmetric domain, that results in 0 . So, only the term with y_{1}^{2} remains, allowing the integral's factorization. Then, in (b), we compute the Gaussian integrals, supposing $t_{1}<t_{2}$ (so that $\left.t_{2}-t_{1}>0\right)$ and recalling:

$$
\begin{aligned}
& \int_{-\infty}^{+\infty} \exp \left(-\frac{1}{2} a x^{2}\right) \mathrm{d} x=\sqrt{\frac{2 \pi}{a}} \\
& \int_{-\infty}^{+\infty} x^{2} \exp \left(-\frac{1}{2} a x^{2}\right)=-2 \frac{\mathrm{~d}}{\mathrm{~d} a} \int_{-\infty}^{+\infty} \exp \left(-\frac{1}{2} a x^{2}\right) \mathrm{d} x=\sqrt{\frac{2 \pi}{a}} \frac{1}{a}
\end{aligned}
$$

The case when $t_{1}>t_{2}$ leads to a similar result, with $t_{1} \leftrightarrow t_{2}$. Thus, in general:

$$
\left\langle x\left(t_{1}\right) x\left(t_{2}\right)\right\rangle=2 D \min \left(t_{1}, t_{2}\right)
$$

By using the propagator we can compute the probability of passing through a set of points x_{i} at instants t_{i} :

Probability of a discrete path

$$
\begin{aligned}
\mathbb{P}\left(x_{i}, t_{i} ; i=0, \ldots, n\right) & =\mathbb{P}\left(x_{n}, t_{n} ; x_{n-1}, t_{n-1} ; \ldots ; x_{1}, t_{1} ; x_{0}, t_{0}\right)= \\
& =\prod_{i=1}^{n} W\left(x_{i}, t_{i} \mid x_{i-1}, t_{i-1}\right) W\left(x_{0}, t_{0}\right)
\end{aligned}
$$

This is the joint probability for a discrete trajectory, meaning that we care only about what happens at certain discrete times.
This formula is useful to compute the average value of a generic function f of the trajectory points:
$\left\langle f\left(x\left(t_{n}\right), x\left(t_{n-1}\right), \ldots, x\left(t_{0}\right)\right)\right\rangle=\int_{\mathbb{R}^{n+1}}\left(\prod_{i=0}^{n} \mathrm{~d} x_{i} W\left(x_{i}, t_{i} \mid x_{i-1}, t_{i-1}\right) f\left(x_{n}, x_{n-1}, \ldots, x_{0}\right)\right.$
The need to extend this formula to an infinite number of intermediate points - that is for a path in the continuum will lead to the notion of path integral, that will be explored in detail in the next chapter.

The Wiener Path Integral

2.1 Average over paths

Consider an unconstrained Brownian particle, moving on the real line, starting in x_{0} at t_{0}. By solving the diffusion equation we found that the probability of finding the particle in $[x, x+\mathrm{d} x]$ at time $t>t_{0}$ is given by the propagator:

$$
\begin{align*}
\mathbb{P}\left\{x(t) \in[x, x+\mathrm{d} x] \mid x\left(t_{0}\right)=x_{0}\right\} & =W\left(x, t \mid x_{0}, t_{0}\right) \mathrm{d} x= \\
& =\frac{1}{\sqrt{4 \pi D\left(t-t_{0}\right)}} \exp \left(-\frac{\left(x-x_{0}\right)^{2}}{4 D\left(t-t_{0}\right)}\right) \mathrm{d} x \tag{2.1}
\end{align*}
$$

By integrating (ㄹ.. ${ }^{\text {(1) }}$) we can then find the probability of finding the particle inside an interval $[A, B]$ at time t :

$$
\mathbb{P}\left\{x(t) \in[A, B] \mid x\left(t_{0}\right)=x_{0}\right\}=\int_{A}^{B} \mathrm{~d} x W\left(x, t \mid x_{0}, t_{0}\right) \quad t>t_{0}
$$

We are now interested in computing the expected value $\langle f\rangle$ of functionals f of the trajectory, i.e. of quantities depending on several (or all) points of the trajectory $x(\tau)$ of a Brownian particle.

- The simplest example is the correlation function, which is defined as the product of the particle's position at two different times $t_{1}<t_{2}$:

$$
f\left(\left\{x\left(t_{1}\right), x\left(t_{2}\right)\right\}\right)=x\left(t_{1}\right) x\left(t_{2}\right) \quad t_{1}<t_{2}
$$

- A more general (and difficult) case is given by a function of the entire trajectory, such as:

$$
f(\{x(\tau): 0<\tau \leq t\})=g\left(\int_{0}^{t} x(\tau) a(\tau) \mathrm{d} \tau\right) \quad a, g: \mathbb{R} \rightarrow \mathbb{R}
$$

In other words, we want to compute the average of a function f over an ensemble of random paths. Every point of the path that is needed to compute f is a dimension of the integral for the average. So, if we need the entire path, we will need infinite points, leading to an integral over infinite dimensions - the path integral. We will now formalize it one step at a time.

2.1.1 Functions of a discrete number of points

Let's start from the simplest case, and consider the correlation function:

$$
f\left(\left\{x\left(t_{1}\right), x\left(t_{2}\right)\right\}\right)=x\left(t_{1}\right) x\left(t_{2}\right) \quad t_{1}<t_{2}
$$

To compute $\langle f\rangle$ we will need the joint probability distribution $g\left(x_{1}, x_{2}\right)$ that gives the probability of $x\left(t_{1}\right)$ being "close to" x_{1} and $x\left(t_{2}\right)$ "close to" x_{2} for the same trajectory. Let us denote the three events of interest:

$$
\begin{aligned}
& A: \text { Particle starts in } x_{0} \text { at } t_{0} \\
& B: \text { Particle is close to } x_{1} \text { at } t_{1}\left(x\left(t_{1}\right) \in\left[x_{1}, x_{1}+\mathrm{d} x_{1}\right]\right) \\
& C: \text { Particle is close to } x_{2} \text { at } t_{2}\left(x\left(t_{2}\right) \in\left[x_{2}, x_{2}+\mathrm{d} x_{2}\right]\right)
\end{aligned}
$$

We are interested in the joint probability $\mathbb{P}(C, B \mid A)$ (the order is defined by $t_{2}>t_{1}>t_{0}$). From probability theory:

$$
\mathbb{P}(C, B \mid A)=\mathbb{P}(C \mid B, A) \mathbb{P}(B \mid A)
$$

We already know how to compute probabilities like $\mathbb{P}(B \mid A)$, but not like $\mathbb{P}(C \mid B, A)$. Fortunately, that is not needed.
Recall, in fact, that Brownian motion is a Markovian process, meaning that the future depends only on the present state, i.e. the particle has no memory. So, subsequent displacements are independent: the probability of the particle going from x_{1} to x_{2} is the same whether it has started at x_{0} or at any other point \tilde{x}_{0}. In other words, if we take the present state as the particle being in x_{1} at t_{1}, the future (position at $t_{2}>t_{1}$) depends only on that, and not on the past (position at t_{0}). So:

$$
\mathbb{P}(C \mid B, A)=\mathbb{P}(C \mid B)
$$

leading to:

$$
\mathbb{P}(C, B \mid A)=\mathbb{P}(C \mid B) \mathbb{P}(B \mid A)
$$

Inserting the propagators (ㄹ.ा):

$$
\mathrm{d} \mathbb{P}_{t_{1}, t_{2}}\left(x_{1}, x_{2} \mid x_{0}, t_{0}\right) \equiv W\left(x_{2}, t_{2} \mid x_{1}, t_{1}\right) W\left(x_{1}, t_{1} \mid x_{0}, t_{0}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2}
$$

This is the joint probability we need to compute $\langle f\rangle$. Of course, nothing stops us from considering N "jumps" instead of only 2 :

$$
\begin{align*}
\mathrm{d} \mathbb{P}_{t_{1}, \ldots, t_{n}}\left(x_{1}, \ldots, x_{n} \mid x_{0}, t_{0}\right) & \equiv W\left(x_{n}, t_{n} \mid x_{n-1}, t_{n-1}\right) \cdots W\left(x_{1}, t_{1} \mid x_{0}, t_{0}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2} \ldots \mathrm{~d} x_{n}= \\
& =\exp \left(-\sum_{i=1}^{n} \frac{\left(x_{i}-x_{i-1}\right)^{2}}{4 D \Delta t_{i}}\right) \prod_{i=1}^{n} \frac{\mathrm{~d} x_{i}}{\sqrt{4 \pi D \Delta t_{i}}} \tag{2.2}
\end{align*}
$$

Then, the average of a generic function $f\left(x\left(t_{1}\right), \ldots, x\left(t_{n}\right)\right)$ of the positions of the particle at times $t_{1}<t_{2}<\cdots<t_{n}$ is defined as:

$$
\left\langle f\left(x\left(t_{1}\right), \ldots, x\left(t_{n}\right)\right)\right\rangle_{W}=\int_{\mathbb{R}^{n}} f\left(x_{1}, \ldots, x_{n}\right) \mathrm{d} \mathbb{P}_{t_{1}, \ldots, t_{n}}\left(x_{1}, \ldots, x_{n} \mid x_{0}, t_{0}\right)
$$

2.1.2 Functionals of the whole trajectory

The quantity in ($\overline{2 \cdot 2}$) can be interpreted as the infinitesimal volume element spanned by all the trajectories passing through a set of tiny gates, as represented in figure 2.0.
The underlying idea is that probabilities satisfy the axioms of measures, that is functions that assign a measure, i.e. a generalization of "size", to all sets included in a specific collection.

Figure (2.1) - All trajectories that pass through the set of gates $\left[x_{i}, x_{i}+\mathrm{d} x_{i}\right]$ at times t_{i} (such as the $x(t)$ here represented) contribute to the volume $\mathrm{dP}_{t_{1}, \ldots, t_{n}}\left(x_{1}, \ldots, x_{N}\right)$

We now try to formalize this idea in order to extend the results of the previous section to the case of functions depending on a infinite number of trajectory

Path integral formalization

1. Space definition. Let $T \subset \mathbb{R}$ (index set), denote with \mathbb{R}^{T} the set of all functions (stochastic processes) $k: T \rightarrow \mathbb{R}$. The idea is that an element of \mathbb{R}^{T} is a collection of random variables indexed by T.
In our case T is a collection of time instants (e.g. $T=[0,+\infty)$) and a generic element of \mathbb{R}^{T} is made of all the traversed points of a trajectory at times T :

$$
\{x(t): t \in T\} \in \mathbb{R}^{T}
$$

2. Probability measure on finite points. The expression in (L.2), as observed, allows us to measure the volumes spanned by trajectories traversing a set of gates. Let's formalize this idea. Consider a finite set of times $T=\left\{t_{i}\right\}_{i=1, \ldots, n}$ with $n \in \mathbb{N}, t_{i} \in \mathbb{R}$ and $t_{1}<t_{2}<\ldots t_{n}$, each associated to a gate $H_{i}=\left[a_{i}, b_{i}\right]$, with $a_{i}, b_{i} \in \mathbb{R}$ and $a_{i}<b_{i}$. All the trajectories \mathbb{R}^{T} traversing each H_{i} at a time $t_{i} \in T$ span a cylindrical set A of the form:

$$
A=\left\{x(t): x\left(t_{1}\right) \in H_{1}, \ldots, x\left(t_{n}\right) \in H_{n}\right\} \subset \mathbb{R}^{T}
$$

Using (L.2) and integrating over the gates we can define the measure of A-like sets as:

$$
P_{W}(A) \equiv \int_{\mathbb{R}^{n}} \mathrm{~d} \mathbb{P}_{t_{1}, \ldots, t_{n}}\left(x_{1}, \ldots, x_{n} \mid x_{0}, t_{0}\right) \mathbb{I}_{H_{1}}\left(x_{1}\right) \ldots \mathbb{I}_{H_{n}}\left(x_{n}\right)
$$

where $\mathbb{I}_{H_{i}}\left(x_{i}\right)$ are characteristic functions of the gates:

$$
\mathbb{I}_{H_{i}}(x)= \begin{cases}1 & x \in H_{i} \\ 0 & \text { otherwise }\end{cases}
$$

In our case H_{i} are just intervals, and so:

$$
\begin{align*}
P_{W}(A) \equiv & \mathbb{P}_{t_{1}, \ldots, t_{n}}(A)=\int_{(\underline{L 2.2)}} \mathrm{d} x_{1} \int_{H_{2}} \mathrm{~d} x_{2} \cdots \int_{H_{n}} \mathrm{~d} x_{n}\left(\prod_{i=1}^{n} \frac{1}{\sqrt{4 \pi D \Delta t_{i}}}\right) \tag{2.3}\\
& \cdot \exp \left(-\frac{\left(x_{i}-x_{i-1}\right)^{2}}{4 D \Delta t_{i}}\right)
\end{align*}
$$

with $\Delta t_{i}=t_{i}-t_{i-1}$.
3. Generalization on infinite points. Note that ([2.3) holds for any n. So, using A-like sets, we can construct a σ-algebra ${ }^{\mathbb{D}} \mathcal{F}$ of \mathbb{R}^{T}. Then, by applying Kolmogorov extension theorem we can extend the measure P_{W} we just found to the entire \mathcal{F}.
4. Probability space. We now have a set of all possible outcomes \mathbb{R}^{T} (in our case, all the possible trajectories that can be produced by a Brownian motion). We also have the collection of all events \mathcal{F}, that is subsets of \mathbb{R}^{T} for which is meaningful to assign a probability measure $P_{W}: \mathcal{F} \rightarrow[0,1]$. The $\operatorname{triad}\left(\mathbb{R}^{T}, \mathcal{F}, P_{W}\right)$ forms a probability space, that gives a rigorous meaning to the concept of "computing the probability of a trajectory".

The measure so obtained is called Wiener measure, and denoted as the following:

$$
P_{W}(A) \equiv \int_{A} \mathrm{~d}_{W} x(\tau)
$$

Then we can compute expected values. For example, if $f(\{x(\tau): \tau \in T\})$ is a function depending on the points traversed at times in a set T, then:

$$
\langle f\rangle_{W} \equiv \int_{\mathbb{R}^{T}} f(x(\tau)) \mathrm{d}_{W} x(\tau) \quad T=[0, \infty)
$$

Note that the Weiner measure exists and it's well defined (Kolmogorov's theorem), but we know it explicitly only in specific finite cases. So, to compute the expected value of functionals $F(\{x(t)\})$ over continuous trajectories we first discretize the trajectory, and then take a continuum limit.

[^2]Main technique to compute path integrals

1. Suppose we have a functional $F(\{x(\tau): 0<\tau<t\}$), and we want to compute $\langle F\rangle$.
2. We discretize the problem by arbitrarily subdividing the time interval $[0, t]$ in n parts $0=t_{0}<t_{1}<t_{2}<\cdots<t_{n}=t$. Then we consider an approximated functional $F_{N}\left(\left\{x\left(t_{0}\right), \ldots, x\left(t_{n}\right)\right\}\right.$) (for example approximating the path $x(\tau)$ with a piecewise linear function, depending only on $x\left(t_{0}\right), \ldots, x\left(t_{n}\right)$, so that:

$$
F=" \lim _{N \rightarrow \infty} " F_{N}
$$

where $N \rightarrow \infty$ means that $\max \Delta t_{i} \rightarrow 0$, with $\Delta t_{i}=t_{i}-t_{i-1}$. This limit needs to be properly defined (by using the Weiner measure to define a norm in a space of integrable functionals, etc.), but we will not do that here.
3. Then the Weiner path integral is defined as:

$$
\begin{aligned}
\langle F\rangle_{W} & \left.=\int_{\mathbb{R}^{T}} \mathrm{~d}_{W} x(\tau) F(\{x(\tau): 0<\tau<t\}) \equiv " \lim _{N \rightarrow \infty} "\right\rangle\left\langle F_{N}\right\rangle_{W}= \\
& =" \lim _{n \rightarrow \infty} " \int_{\mathbb{R}^{n}} \mathrm{~d} \mathbb{P}_{t_{1}, \ldots, t_{n}}\left(x_{1}, \ldots, x_{n} \mid x_{0}, t_{0}\right) F_{N}\left(x\left(t_{0}\right), \ldots, x\left(t_{n}\right)\right)
\end{aligned}
$$

Geometrically, we are evaluating F for every possible Brownian path $x(\tau)$, and then averaging all these results, each weighted by the probability of the corresponding path.

Example 2 (Correlation function and ESCK property):

As expected, the more general definition of the Weiner measure - involving the continuum limit $N \rightarrow \infty$ - reduces to ([2.2) when evaluated for a function depending only on a finite set of particle's positions.
For example, consider the expected value of the correlation function (assume the particle starting in 0 at time 0 for simplicity):

$$
\begin{aligned}
\left\langle x\left(t_{1}^{\prime}\right) x\left(t_{2}^{\prime}\right)\right\rangle & =\int_{\mathbb{R}^{T}} \mathrm{~d}_{W} x x_{1}\left(t_{1}^{\prime}\right) x_{2}\left(t_{2}^{\prime}\right)=\quad T=[0, t], t_{1}^{\prime}<t_{2}^{\prime}<t \\
& ={ }^{"} \lim _{N \rightarrow \infty} " \int_{\mathbb{R}^{N}} \mathrm{~d} \mathbb{P}_{t_{1}, \ldots, t_{N}}\left(x_{1}, \ldots, x_{N} \mid 0,0\right) x\left(t_{k}\right) x\left(t_{n}\right)=
\end{aligned}
$$

where we chose the discretization so that $t_{k}=t_{1}^{\prime}$ and $t_{n}=t_{2}^{\prime}$. Then, by expanding the measure and applying the ESCK property we get (omitting the limit):

$$
\begin{aligned}
& =\int_{\mathbb{R}^{N}} \mathrm{~d} x_{1} \ldots \mathrm{~d} x_{N} W\left(x_{N}, t_{N} \mid x_{N-1}, t_{N-1}\right) \ldots W\left(x_{1}, t_{1} \mid 0,0\right) x_{k} x_{n}= \\
& \overline{=(a)} \int_{\mathbb{R}^{2}} \mathrm{~d} x_{k} \mathrm{~d} x_{n} W\left(x_{n}, t_{n} \mid x_{k}, t_{k}\right) W\left(x_{k}, t_{k} \mid 0,0\right) x_{k} x_{n}
\end{aligned}
$$

where in (a) we used the ESCK property to compute all the integrals on $\mathrm{d} x_{i}$ with $i \neq n, k$, which evaluate all to 1 .

We note that the same result can be obtained by direct application of ((2.2):

$$
\left\langle x\left(t_{1}^{\prime}\right) x\left(t_{2}^{\prime}\right)\right\rangle=\int \mathrm{d} x_{1}^{\prime} \mathrm{d} x_{2}^{\prime} W\left(x_{2}^{\prime}, t_{2}^{\prime} \mid x_{1}^{\prime}, t_{1}^{\prime}\right) W\left(x_{1}^{\prime}, t_{1}^{\prime} \mid 0,0\right) x_{1}^{\prime} x_{2}^{\prime}
$$

2.1.3 Change of random variables

In practice, to compute path integrals it will be useful to perform change of random variables. The idea is that we know the pdf for an increment Δx_{i}, and so we can compute - when needed - the pdf of functions of Δx_{i}.

So, consider a random variable $X \sim q(x)$, with $q(x)$ being a generic distribution (e.g. $q(x)=\mu e^{-\mu x}$). Now consider a function $y(x)$, e.g. $y(x)=x^{2}$. Y is then a new random variable, with a certain distribution $p(y)$. We now want to compute $p(y)$ starting from $q(x)$ and $y(x)$.
Suppose that $y(x)$ is invertible. Then, if we extract a value from X, it will be inside $[x, x+\mathrm{d} x]$ with a probability $q(x) \mathrm{d} x$. Knowing X, we can use the relation $y(x)$ to uniquely determine Y, that will be in $[y, y+\mathrm{d} y]$ with the same probability. So, the following holds:

$$
\begin{equation*}
q(x) \mathrm{d} x=p(y) \mathrm{d} y \tag{2.4}
\end{equation*}
$$

We can compute $\mathrm{d} y$ by nudging $y(x)$, and expanding in Taylor series:

$$
y(x+\mathrm{d} x) \equiv y+\mathrm{d} y+O\left(\mathrm{~d} y^{2}\right)=y(x)+\underbrace{\mathrm{d} x y^{\prime}(x)}_{\mathrm{d} y}+O\left(\mathrm{~d} x^{2}\right)
$$

and so $\mathrm{d} y=\mathrm{d} x y^{\prime}(x)$. Substituting in (2.4) we get:

$$
\begin{equation*}
q(x) \mathrm{d} x=p(y) \mathrm{d} y=p(y(x)) y^{\prime}(x) \mathrm{d} x \Rightarrow p(y)=q(x(y)) \frac{\mathrm{d} x}{\mathrm{~d} y} \tag{2.5}
\end{equation*}
$$

Consider now a more general change of variables $y=y(x)$ (not necessarily invertible), with $x \sim q(x)$. We start from the expected value of a function f in terms of $q(x)$:

$$
\begin{align*}
\langle f(y)\rangle & =\int_{\mathbb{R}} \mathrm{d} x f(y(x)) q(x)= \\
& =\int_{\mathbb{R}} \mathrm{d} x f(y(x)) q(x) \underbrace{\int_{\mathbb{R}} \mathrm{d} z \delta(z-y(x))}_{=1}= \\
& =\overline{\bar{a})} \int_{\mathbb{R}} \mathrm{d} z f(z) \underbrace{\int_{\mathbb{R}} \mathrm{d} x q(x) \delta(z-y(x))}_{\langle\delta(z-y(x))\rangle_{q(x)}} \tag{2.6}
\end{align*}
$$

where in (a) we used the fact that $\delta(z-y(x))=1$ only when $z=y(x)$, and it's 0 otherwise, and so:

$$
f(y(x))=\int_{\mathbb{R}} \mathrm{d} z f(z) \delta(z-y(x))
$$

Of course we can rewrite $\langle f\rangle$ directly in terms of $p(y)$:

$$
\begin{equation*}
\langle f(y)\rangle=\int_{\mathbb{R}} \mathrm{d} y f(y) p(y) \tag{2.7}
\end{equation*}
$$

Comparing (2.6) with (2.7) and renaming $y \rightarrow z$ leads to:

$$
\begin{equation*}
p(z)=\int_{\mathbb{R}} \mathrm{d} x q(x) \delta(z-y(x))=\langle\delta(z-y(x))\rangle_{q(x)} \tag{2.8}
\end{equation*}
$$

which, in general, is not the same as the previously obtained result:

$$
p(z) \neq q(x(z)) \frac{\mathrm{d} x(z)}{\mathrm{d} z}
$$

To retrieve this special case we must assume $y(x)$ to be invertible, with inverse $x(y)$. This means that $\operatorname{sgn} y^{\prime}(x)=A$, with $A \in \mathbb{R} \backslash\{0\}$ constant.
We want now to compute $\delta(z-y(x))$ in this case. Recall that $\delta \circ g$, if g is a continuously differentiable function with $g\left(x_{0}\right)=0$ and $g^{\prime}(x) \neq 0 \forall x$ is:

$$
\delta(g(x))=\frac{\delta\left(x-x_{0}\right)}{\left|g^{\prime}\left(x_{0}\right)\right|}
$$

So, if we let $g(x)=z-y(x)$, the only zero is at $x=x(z)$, as then $y(x(z))=z$. So:

$$
\delta(z-y(x))=\frac{\delta(x-x(z))}{\left|y^{\prime}(x(z))\right|}
$$

Substituting back in (2.8):

$$
\begin{align*}
p(z) & =\left\langle\frac{\delta(x-x(z))}{\left|y^{\prime}(x(z))\right|}\right\rangle_{q(x)}=\int_{\mathbb{R}} \mathrm{d} x q(x) \frac{\delta(x-x(z))}{\left|y^{\prime}(x(z))\right|}=q(x(z))\left|y^{\prime}(x(z))\right|^{-1}= \\
& =\left.q(x(z)) \frac{\mathrm{d} x(y)}{\mathrm{d} y}\right|_{y=x(z)} \tag{2.9}
\end{align*}
$$

which is the same rule found in (2.5).

2.2 Examples of path integrals

We now see some examples of explicit calculation of Wiener path integrals, that will be useful for the upcoming applications.

2.2.1 Transition probabilities

Thanks to the Wiener measure we have a way to assign probabilities to paths $x(\tau)$. We can recover from this the transition probabilities we started from, by considering the functional that evaluates a path at an instant $t: x(\tau) \mapsto x(t) \equiv$ x_{t}. Then, by applying ([2.8) we can compute the distribution followed by x_{t} :

$$
\begin{equation*}
p\left(x_{t}\right)=W\left(x_{t}, t \mid 0,0\right)=\left\langle\delta\left(x_{t}-x(\tau)\right)\right\rangle_{W}=\int_{\mathbb{R}^{T}} \mathrm{~d}_{W} x(\tau) \delta\left(x_{t}-x(\tau)\right) \tag{2.10}
\end{equation*}
$$

Path with a constrained end-point
(The starting condition $x(0)=0$ is contained in the definition of the measure $\left.\mathrm{d}_{W} x(\tau)\right)$.

So we can now write:

$$
\begin{aligned}
W(x, t \mid 0,0) & =\int_{\mathbb{R}^{T}} \mathrm{~d}_{W} x \delta(x(t)-x)= \\
& =" \lim _{N \rightarrow \infty} " \int_{\mathbb{R}^{N+1}} \prod_{i=1}^{N+1} \frac{\mathrm{~d} x_{i}}{\sqrt{4 \pi D \Delta t_{i}}} \exp \left(-\sum_{i=1}^{N+1} \frac{\left(x_{i}-x_{i-1}\right)^{2}}{4 D \Delta t_{i}}\right) \delta\left(x_{N+1}-x\right)
\end{aligned}
$$

where $t_{n}=t, x\left(t_{n}\right)=x_{N+1}$.
We already computed this result. In fact, recall that:

$$
W\left(x_{t}, t \mid 0,0\right)=\frac{1}{\sqrt{4 \pi D t}} \exp \left(-\frac{x_{t}^{2}}{4 D t}\right)
$$

If we set $x_{t}=0$ (for simplicity), we get:

$$
\begin{equation*}
W(0, t \mid 0,0)=\frac{1}{\sqrt{4 \pi D t}} \tag{2.11}
\end{equation*}
$$

As an exercise to get some familiarity with Wiener integrals, we will now rederive this result, by evaluating the Weiner path integral in ([2.10), with $x_{t}=0$:

$$
\begin{equation*}
W(0, t \mid 0,0)=\langle\delta(0-x(\tau))\rangle_{W}=\int_{\mathbb{R}^{T}} \mathrm{~d}_{W} x(\tau) \delta(x(\tau)) \equiv I_{1} \tag{2.12}
\end{equation*}
$$

First, it is convenient to establish some additional notation.
Let $T=[0, \infty)$. We denote with $\mathcal{C}\left\{0,0 ; t^{\prime}\right\}$ the subset of trajectories in \mathbb{R}^{T} starting from $x=0$ at $t=0$, and lasting a time span t^{\prime}. Then, $\mathcal{C}\left\{0,0 ; x^{\prime}, t^{\prime}\right\}$ is the subset of $\mathcal{C}\left\{0,0 ; t^{\prime}\right\}$ when even the end-point is fixed to be $x\left(t^{\prime}\right)=x^{\prime}$. The following normalization property holds:

$$
\langle 1\rangle_{W}=\int_{\mathcal{C}\{0,0 ; t\}} 1 \cdot \mathrm{~d}_{W} x(\tau)=1
$$

We can then rewrite (2.L2) as:

$$
I_{1}=\int_{\mathcal{C}\{0,0 ; 0, t\}} \mathrm{d}_{W} x(\tau)
$$

Geometrically, $W(0, t \mid 0,0)=I_{1}$ is the probability that a Brownian particle starting at the origin returns in it after a finite amount of time t.

The standard way to compute a Wiener integral is to discretize it, and then take a continuum limit. So, consider for simplicity a uniform time discretization $\left\{t_{i}\right\}_{i=1, \ldots, N+1}$, with instants ϵ-apart from each other, so that:

$$
t_{i}-t_{i-1} \equiv \epsilon=\frac{t}{N+1} \quad \forall i=1, \ldots, N+1
$$

Note that the end-points are $x_{0}=x_{N+1}=0$.
We can rewrite (LI I) as the continuum limit of its discretization:

$$
\begin{align*}
I_{1} & \equiv \lim _{\substack{\epsilon \rightarrow 0 \\
N \rightarrow \infty}} I_{1}^{(N)} \tag{2.13}\\
I_{1}^{(N)} & \equiv \frac{1}{(\sqrt{4 \pi D \epsilon})^{N+1}} \int_{-\infty}^{+\infty} \mathrm{d} x_{1} \int_{-\infty}^{+\infty} \mathrm{d} x_{2} \cdots \int_{-\infty}^{+\infty} \mathrm{d} x_{N} \exp \left(-\frac{1}{4 D \epsilon} \sum_{i=0}^{N}\left(x_{i+1}-x_{i}\right)^{2}\right) \tag{2.14}
\end{align*}
$$

1. Discretized path integral
where we already computed the integral over $\mathrm{d} x_{N+1}$ involving the δ, by just setting $x_{N+1} \equiv 0$.

$$
\begin{aligned}
\sum_{i=0}^{N}\left(x_{i+1}-x_{i}\right)^{2} & =x_{1}^{2}+\not x_{0}^{2}-2 x_{0} x_{1}+x_{2}^{2}+x_{1}^{2}-2 x_{1} x_{2}+\cdots+x_{N+1}^{2}+x_{N}^{2}-2 x_{N x} \sqrt{N+1}= \\
& =2\left(x_{1}^{2}+\cdots+x_{N}^{2}\right)-2\left(x_{1} x_{2}+x_{2} x_{3}+\cdots+x_{N-1} x_{N}\right)= \\
& =2\left(\sum_{i=1}^{N} x_{i}^{2}\right)-2\left(\sum_{i=1}^{N-1} x_{i} x_{i+1}\right)
\end{aligned}
$$

This is a quadratic form, i.e. a polynomial with all terms of order 2. So, it can be written in matrix form:

$$
=\sum_{k, l=1}^{N} x_{k} A_{k l} x_{l}=\boldsymbol{x}^{T} A_{N} \boldsymbol{x}
$$

for an appropriate choice of entries $A_{k l}$ of the $N \times N$ matrix A_{N} :

$$
A_{k k}=2 ; A_{k l}=-\left(\delta k, l+1+\delta_{k+1, l}\right) \Rightarrow A_{N}=\left(\begin{array}{ccccc}
2 & -1 & 0 & \cdots & 0 \\
-1 & 2 & -1 & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & -1 & 2 & -1 \\
0 & \cdots & 0 & -1 & 2
\end{array}\right)
$$

Substituting back in (2.14):

$$
I_{1}^{(N)}=\frac{1}{(\sqrt{4 \pi D \epsilon})^{N+1}} \int_{-\infty}^{+\infty} \mathrm{d} x_{1} \cdots \int_{-\infty}^{+\infty} \mathrm{d} x_{N} \exp \left(-\frac{\boldsymbol{x}^{T} A_{N} \boldsymbol{x}}{4 D \epsilon}\right)
$$

Recall the multivariate Gaussian integral:

$$
\int_{-\infty}^{+\infty} \mathrm{d} x_{1} \cdots \mathrm{~d} x_{N} \exp \left(-\sum_{i j}^{N} B_{i j} x_{i} x_{j}\right)=\frac{(\sqrt{\pi})^{N}}{\sqrt{\operatorname{det} B}}
$$

with $B=A_{N} /(4 D \epsilon)$, leading to:

$$
\begin{align*}
I_{1}^{(N)} & =\frac{1}{(a)} \frac{\pi^{N}}{(\sqrt{4 \pi D \epsilon})^{N+1}} \sqrt{\frac{1}{\operatorname{det}\left(A_{N}\right)\left[\frac{1}{4 D \epsilon}\right]^{N}}}=\frac{\sqrt{4 \pi D \epsilon}^{N}}{(\sqrt{4 \pi D \epsilon})^{N+1}} \frac{\sqrt{\operatorname{det} A_{N}}}{}= \\
& =\frac{1}{\sqrt{4 \pi D \epsilon}} \frac{1}{\sqrt{\operatorname{det} A_{N}}} \tag{2.15}
\end{align*}
$$

where in (a) we used the property of the determinant $\operatorname{det}(c A)=c^{n} \operatorname{det}(A) \forall c \in$ \mathbb{R}.
Now, all that's left is to compute the determinant of A_{N}. Fortunately, as A_{N} is a tri-diagonal matrix, there is a recurrence relation in terms of the leading principal minors of A_{N}, which turns out to be multiples of the determinants of
3. Multivariate

Gaussian A_{N-1} and A_{N-2}.
4. Determinant of a tri-diagonal matrix

Explicitly, consider A_{N} :

$$
\operatorname{det} A_{N} \equiv\left|\begin{array}{ccccc}
2 & -1 & 0 & \cdots & 0 \\
-1 & 2 & -1 & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & -1 & 2 & -1 \\
0 & \cdots & 0 & -1 & 2
\end{array}\right|_{N \times N}
$$

and start computing the determinant following the last column. The only nonzero contributions are:

$$
\begin{align*}
\operatorname{det} A_{N} & =\underbrace{(-1)^{(N-1)+N}(-1)}_{+1}\left|\begin{array}{ccccc}
2 & -1 & 0 & \cdots & 0 \\
-1 & 2 & -1 & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & -1 & 2 & -1 \\
0 & \cdots & 0 & 0 & -1
\end{array}\right|_{(N-1) \times(N-1)}+(-1)^{2 N}(2) \operatorname{det} A_{N-1}= \\
& =(-1)^{2(N-1)}(-1) \operatorname{det} A_{N-2}+2 \operatorname{det} A_{N-1}=2 \operatorname{det} A_{N-1}-\operatorname{det} A_{N-2} \tag{2.16}
\end{align*}
$$

where the terms in blue are just the alternating signs from the determinant expansion, and the other colours identify the matrix entries that are being used.
Then, it is just a matter of computing the first two terms of the succession ($\left|A_{N}\right|=\operatorname{det} A_{N}$ for brevity):

$$
\left|A_{1}\right|=2 \quad\left|A_{2}\right|=\left|\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right|=4-1=3
$$

And now we can use ([.]l) to iteratively compute all $\left|A_{N}\right|$, e.g. $\left|A_{3}\right|=2 \cdot 3-$ $2=4$. To find $\left|A_{N}\right|$ for a generic N, we need to make an hypothesis, and then verify that it is compatible with (2.16). In this case, note that $\left|A_{N}\right|=N+1$ $(*)$ for all the examples we explicitly computed. Then, by induction:

$$
\left|A_{N+1}\right|_{(\underset{\text { (2-6) }}{ }}^{=} 2 \cdot\left|A_{N}\right|-\left|A_{N-1}\right| \underset{(*)}{=} 2 \cdot(N+1)-(N-1+1)=2 N+2-N=(N+1)+1
$$

which is indeed compatible with $(*)$. So, substituting back in (2.15) we get:

$$
I_{1}^{(N)}=\frac{1}{\sqrt{4 \pi D \epsilon}} \frac{1}{\sqrt{N+1}}=\frac{1}{(a)} \frac{1}{\sqrt{4 \pi D t}}
$$

where in (a) we used $\epsilon=t /(N+1) \Rightarrow N+1=t / \epsilon$ from the discretization. Note that this result is constant with respect to ϵ or N (recall that t is fixed beforehand) and so taking the continuum limit leads immediately to I_{1} ([.].3):

$$
I_{1} \equiv \lim _{\substack{\epsilon \rightarrow 0 \\ N \rightarrow \infty}} \frac{1}{\sqrt{4 \pi D t}}=\frac{1}{\sqrt{4 \pi D t}}
$$

which is coherent with the result we previously computed (ㄴ.ा).

2.2.2 Integral functional

Consider a Brownian trajectory $x(\tau)$ (from now on, we will assume that all trajectories start in $x=0$ at $t=0$), and a functional that weights every traversed point $x(\tau)$ with a function $a: \mathbb{R} \rightarrow \mathbb{R}$, and then applies another function $F: \mathbb{R} \rightarrow \mathbb{R}$ to the total integral:

$$
F[x(\tau)]=F\left(\int_{0}^{t} a(\tau) x(\tau) \mathrm{d} \tau\right)
$$

For simplicity, we set $D=1 / 4$, so that:

$$
\mathrm{d} \mathbb{P}_{t_{1}, \ldots, t_{n}}\left(x_{1}, \ldots, x_{n} \mid 0,0\right)=\exp \left(-\sum_{i=1}^{n} \frac{\left(x_{i}-x_{i-1}\right)^{2}}{\Delta t_{i}}\right) \prod_{i=1}^{n} \frac{\mathrm{~d} x_{i}}{\sqrt{\pi \Delta t_{i}}}
$$

This is equivalent to a time rescaling $t \rightarrow \tau=4 D t$.
We want now to compute $\langle F\rangle$:

$$
I_{3} \equiv\langle F[x(\tau)]\rangle_{w}=\int_{\mathcal{C}\{0,0 ; t\}} \mathrm{d}_{W} x(\tau) F[x(\tau)]
$$

Note: the next computations will follow the book. Prof. Maritan's method for evaluating I_{3} is quicker, but more advanced, and will be presented at the end.

Then we start by discretizing, by choosing a time grid $0=t_{0}<t_{1}<\cdots<$ $t_{N}=t:$

$$
\begin{aligned}
I_{3} & =\lim _{N \rightarrow \infty} I_{3}^{(N)} \\
I_{3}^{(N)} & =\int_{-\infty}^{+\infty} \frac{\mathrm{d} x_{1}}{\sqrt{\pi \Delta t_{1}}} \cdots \int_{-\infty}^{+\infty} \frac{\mathrm{d} x_{N}}{\sqrt{\pi \Delta t_{N}}} F\left(\sum_{i=1}^{N} a_{i} x_{i} \Delta t_{i}\right) \exp \left(-\sum_{i=1}^{N} \frac{\left(x_{i}-x_{i-1}\right)^{2}}{\Delta t_{i}}\right)
\end{aligned}
$$

as the determinant of a lower triangular matrix is equal to the product of the diagonal entries.
All that's left is to transform the argument of F. Let's start by writing the first terms of the sum and apply the change of variables:

$$
\begin{align*}
\sum_{i=1}^{N} a_{i} x_{i} \Delta t_{i} & =a_{1} x_{1} \Delta t_{1}+a_{2} x_{2} \Delta t_{2}+\cdots= \\
& =a_{1}\left(y_{1}\right) \Delta t_{1}+a_{2}\left(y_{1}+y_{2}\right) \Delta t_{2}+\cdots= \\
& =y_{1}\left(\sum_{j=1}^{N} a_{j} \Delta t_{j}\right)+y_{2}\left(\sum_{j=2}^{N} a_{j} \Delta t_{j}\right)+\cdots+y_{N} a_{N} \Delta t_{N}= \\
& =\sum_{i=1}^{N} y_{i} \underbrace{\left(\sum_{j=i}^{N} a_{j} \Delta t_{j}\right)}_{A_{i}} \equiv \sum_{i=1}^{N} A_{i} y_{i} \tag{2.18}
\end{align*}
$$

Substituting everything back:
$I_{3}^{(N)}=\int_{-\infty}^{+\infty} \frac{\mathrm{d} y_{1}}{\sqrt{\pi \Delta t_{1}}} \cdots \int_{-\infty}^{+\infty} \frac{\mathrm{d} y_{N}}{\sqrt{\pi \Delta t_{N}}} F\left(\sum_{i=1}^{N} A_{i} y_{i}\right) \exp \left(-\sum_{i=1}^{N} \frac{y_{i}^{2}}{\Delta t_{i}}\right) \quad A_{i}=\sum_{j=i}^{N} a_{j} \Delta t_{j}$
We can simplify this integral a bit more by rescaling the y_{i} :

$$
z_{i}=A_{i} y_{i} \quad \mathrm{~d} y_{i}=\frac{\mathrm{d} z_{i}}{A_{i}}
$$

As each y_{i} is transformed independently, the jacobian is diagonal.
$I_{3}^{(N)}=\int_{-\infty}^{+\infty} \frac{\mathrm{d} z_{1}}{\sqrt{\pi A_{1}^{2} \Delta t_{1}}} \cdots \int_{-\infty}^{+\infty} \frac{\mathrm{d} z_{N}}{\sqrt{\pi A_{N}^{2} \Delta t_{N}}} F\left(z_{1}+\cdots+z_{N}\right) \exp \left(-\sum_{i=1}^{N} \frac{z_{i}^{2}}{A_{i}^{2} \Delta t_{i}}\right)$
This is the expected value of a function of the sum of N normally distributed random variables $\left\{z_{i}\right\}$. The idea is now to isolate one of them from the argument of F, integrate over it, and reiterate. This is done by changing variables yet again:

$$
\left\{\begin{array} { l }
{ \eta = z _ { 1 } + z _ { 2 } } \\
{ \xi = z _ { 2 } }
\end{array} \Rightarrow \left\{\begin{array}{l}
z_{1}=\eta-\xi \\
z_{2}=\xi
\end{array} \quad \Rightarrow \operatorname{det}\left|\frac{\partial\left\{z_{1}, z_{2}\right\}}{\partial\{\eta, \xi\}}\right|=\left|\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right|=1\right.\right.
$$

3. Second change of variables
leading to:

$$
\begin{aligned}
I_{3}^{(N)}= & \int_{-\infty}^{+\infty} \frac{\mathrm{d} \eta}{\sqrt{\pi A_{1}^{2} \Delta t_{1}}} \int_{-\infty}^{+\infty} \frac{\mathrm{d} \xi}{\sqrt{\pi A_{2}^{2} \Delta t_{2}}} \int_{-\infty}^{+\infty} \frac{\mathrm{d} z_{3}}{\sqrt{\pi A_{3}^{2} \Delta t_{3}}} \cdots \int_{-\infty}^{+\infty} \frac{\mathrm{d} z_{N}}{\sqrt{\pi A_{N}^{2} \Delta t_{N}}} \\
& \cdot F\left(\eta+z_{3}+\cdots+z_{N}\right) \exp \left(-\frac{(\eta-\xi)^{2}}{A_{1}^{2} \Delta t_{1}}-\frac{\xi^{2}}{A_{2}^{2} \Delta t_{2}}-\sum_{i=3}^{N} \frac{z_{i}^{2}}{A_{i}^{2} \Delta t_{i}}\right)
\end{aligned}
$$

Note how ξ does not enter in the F argument, and so we can integrate over it:
$I_{\xi}=\int_{-\infty}^{+\infty} \mathrm{d} \xi \frac{1}{\sqrt{\pi A_{1}^{2} \Delta t_{1}} \sqrt{\pi A_{2}^{2} \Delta t_{1}}} \exp \left(-\frac{(\eta-\xi)^{2}}{A_{1}^{2} \Delta t_{1}}-\frac{\xi^{2}}{A_{2}^{2} \Delta t_{2}}\right)=$

$$
=\int_{-\infty}^{+\infty} \mathrm{d} \xi(\cdots) \exp \left(-\frac{\xi^{2}\left(A_{1}^{2} \Delta t_{1}+A_{2}^{2} \Delta t_{2}\right)-\xi\left(2 \eta A_{2}^{2} \Delta t_{2}\right)-\left(-\eta^{2} A_{2}^{2} \Delta t_{2}\right)}{A_{1}^{2} A_{2}^{2} \Delta t_{1} \Delta t_{2}}\right)
$$

Recall the gaussian integral formula:

$$
\begin{equation*}
\int_{-\infty}^{+\infty} \exp \left(-a x^{2}+b x+c\right) \mathrm{d} x=\sqrt{\frac{\pi}{a}} \exp \left(\frac{b^{2}}{4 a}+c\right) \tag{2.19}
\end{equation*}
$$

which evaluates to:

$$
I_{\xi}=\frac{1}{\sqrt{\pi\left(A_{1}^{2} \Delta t_{1}+A_{2}^{2} \Delta t_{2}\right)}} \exp \left(-\frac{\eta^{2}}{A_{1}^{2} \Delta t_{1}+A_{2}^{2} \Delta t_{2}}\right)
$$

and substituting back in $I_{3}^{(N)}$:

$$
\begin{aligned}
I_{3}^{(N)}= & \int_{-\infty}^{+\infty} \frac{\mathrm{d} \eta}{\sqrt{\pi A_{1}^{2} \Delta t_{1}+\pi A_{2}^{2} \Delta t_{2}}} \int_{-\infty}^{+\infty} \frac{\mathrm{d} z_{3}}{\sqrt{\pi A_{3}^{2} \Delta t_{3}}} \cdots \int_{-\infty}^{+\infty} \frac{\mathrm{d} z_{N}}{\sqrt{\pi A_{N}^{2} \Delta t_{N}}} \\
& \cdot F\left(\eta+z_{3}+\cdots+z_{N}\right) \exp \left(-\frac{\eta^{2}}{A_{1}^{2} \Delta t_{1}+A_{2}^{2} \Delta t_{2}}-\sum_{i=3}^{N} \frac{z_{i}^{2}}{A_{1}^{2} \Delta t_{i}}\right)
\end{aligned}
$$

We can now reiterate this procedure until only one integration is left:

$$
I_{3}^{(N)}=\int_{-\infty}^{+\infty} \frac{\mathrm{d} z}{\sqrt{\pi \sum_{i=1}^{N} A_{i}^{2} \Delta t_{i}}} F(z) \exp \left(-\frac{z^{2}}{\sum_{i=1}^{N} A_{i}^{2} \Delta t_{i}}\right)
$$

We are now finally ready to take the continuum limit $\Delta t_{i} \rightarrow 0, N \rightarrow \infty$. Note that:

$$
\begin{equation*}
\lim _{\Delta t_{i} \rightarrow 0} A_{i}=\int_{\tau}^{t} a(s) \mathrm{d} s=A(\tau) \tag{2.20}
\end{equation*}
$$

as the discrete sum goes from $t_{i}=\tau$ to $t_{N}=t$. Then:

$$
R \equiv \lim _{\Delta t \rightarrow 0} \sum_{i=1}^{N} A_{i}^{2} \Delta t_{i}=\int_{0}^{t} \mathrm{~d} \tau\left(\int_{\tau}^{t} \mathrm{~d} s a(s)\right)^{2}
$$

and so:

$$
I_{3}=\lim _{N \rightarrow \infty} I_{3}^{(N)}=\int_{-\infty}^{+\infty} \mathrm{d} z \frac{F(z)}{\sqrt{\pi R}} \exp \left(-\frac{z^{2}}{R}\right)
$$

And to recover D we can just substitute $R \rightarrow 4 D R$.

Alternative method

We consider now a different (quicker) technique to compute I_{3}. We start again from:

$$
I_{3} \equiv\langle F[x(\tau)]\rangle_{w}=\int_{C\{0,0 ; t\}} \mathrm{d}_{W} x(\tau) F\left(\int_{0}^{t} a(\tau) x(\tau) \mathrm{d} \tau\right)
$$

It is convenient to apply the change of variables we did in ([.] (8). We can do before discretizing, by defining $A(\tau)$ as in (Z 2 ZT$)$:

$$
\begin{equation*}
A(\tau) \equiv \int_{\tau}^{t} a(s) \mathrm{d} s \tag{2.21}
\end{equation*}
$$

Note that $\dot{A}(\tau)=-a(\tau)$, and so the argument of F becomes:

$$
\int_{0}^{t} a(\tau) x(\tau) \mathrm{d} \tau=-\int_{0}^{t} \partial_{\tau} A(\tau) x(\tau) \mathrm{d} \tau
$$

Integrating by parts, noting that $A(t)=0$ and $x(0)=0$ leads to:

$$
=-[x(\tau) A(\tau)]_{\tau=0}^{\tau=t}+\int_{0}^{t} A(\tau) \dot{x}(\tau) \mathrm{d} \tau
$$

And now we discretize the path over the instants $0=t_{0}<t_{1}<\cdots<t_{N}$, so that:

$$
\begin{array}{rlrl}
\int_{0}^{t} A(\tau) \dot{x}(\tau) \mathrm{d} \tau & =\lim _{\Delta t_{i} \rightarrow 0} \sum_{i=1}^{N} A\left(t_{i}\right) \frac{x\left(t_{i}\right)-x\left(t_{i-1}\right)}{\Delta t_{i}} \Delta t_{i}= \\
& =\lim _{N \rightarrow \infty} \sum_{i=1}^{N} A_{i}\left(x_{i}-x_{i-1}\right)=\lim _{N \rightarrow \infty} \sum_{i=1}^{N} A_{i} \Delta x_{i} & \begin{array}{l}
x_{i} \equiv x\left(t_{i}\right) \\
A_{i}
\end{array}>A\left(t_{i}\right)
\end{array}
$$

Substituting back (here $D=1 / 4$ for simplicity):

$$
\begin{aligned}
I_{3} & =\lim _{N \rightarrow \infty} I_{3}^{(N)} \\
I_{3}^{(N)} & =\int_{\mathbb{R}^{N}}\left(\prod_{i=1}^{N} \frac{\mathrm{~d} x_{i}}{\sqrt{\pi \Delta t_{i}}}\right) \exp \left(-\sum_{i=1}^{N} \frac{\left(\Delta x_{i}\right)^{2}}{\Delta t_{i}}\right) F\left(\sum_{i=1}^{N} A_{i} \Delta x_{i}\right)
\end{aligned}
$$

The idea is now to apply a change of random variable, rewriting the average $\langle F[x(\tau)]\rangle_{w}$ (according to the distribution of paths) as the average $\langle F(z)\rangle_{p(z)}$, where $p(z)$ is the distribution followed by the argument of F :

$$
\sum_{i=1}^{N} A_{i} \Delta x_{i}
$$

So, we begin by inserting the appropriate δ :

$$
I_{3}^{(N)}=\int_{\mathbb{R}^{N}}\left(\prod_{i=1}^{N} \frac{\mathrm{~d} x_{i}}{\sqrt{\pi \Delta t_{i}}}\right) \exp \left(-\sum_{i=1}^{N} \frac{\left(\Delta x_{i}\right)^{2}}{\Delta t_{i}}\right) F\left(\sum_{i=1}^{N} A_{i} \Delta x_{i}\right) \underbrace{\int_{\mathbb{R}} \mathrm{d} z \delta\left(z-\sum_{i=1}^{N} A_{i} \Delta x_{i}\right)^{\text {random }}}_{=1}
$$

Exchanging the integrals leads to:

$$
\begin{aligned}
& \left\langle F\left(\sum_{i=1}^{N} A_{i} \Delta x_{i}\right)\right\rangle_{w}=\langle F(z)\rangle_{p(z)}= \\
& =\int_{\mathbb{R}} \mathrm{d} z F(z) \underbrace{\int_{\mathbb{R}^{N}}\left(\prod_{i=1}^{N} \frac{\mathrm{~d} x_{i}}{\sqrt{\pi \Delta t_{i}}}\right) \delta\left(z-\sum_{i=1}^{N} A_{i} \Delta x_{i}\right) \exp \left(-\sum_{i=1}^{N} \frac{\left(\Delta x_{i}\right)^{2}}{\Delta t_{i}}\right)}_{p(z)}
\end{aligned}
$$

We can evaluate $I_{3}^{(N)}$ by transforming it to a gaussian integral. First, we remove the δ with a Fourier transform:

$$
2 \pi \delta(x)=\int_{\mathbb{R}} e^{i \alpha x} \mathrm{~d} \alpha
$$

4. Fourier
transform
which, in this case, leads to:

$$
\delta\left(z-\sum_{i=1}^{N} A_{i} \Delta x_{i}\right)=\int_{\mathbb{R}} \frac{\mathrm{d} \alpha}{2 \pi} \exp \left(i \alpha\left(z-\sum_{i=1}^{N} A_{i} \Delta x_{i}\right)\right)
$$

Substituting back:
$I_{3}^{(N)}=\int_{\mathbb{R}} \frac{\mathrm{d} \alpha}{2 \pi} \int_{\mathbb{R}} \mathrm{d} z F(z) e^{i \alpha z} \int_{\mathbb{R}^{N}}\left(\prod_{i=1}^{N} \frac{\mathrm{~d} x_{i}}{\sqrt{\pi \Delta t_{i}}}\right) \exp \left(-\sum_{i=1}^{N} \frac{\Delta x_{i}^{2}}{\Delta t_{i}}-i \alpha \sum_{i=1}^{N} A_{i} \Delta x_{i}\right)$
We see that the last term is similar to a multivariate gaussian with a imaginary term, that we know how to integrate. We just need to remove the differences in the exponential with a change of variables (as in (2.J7)):

$$
\begin{aligned}
y_{1} & =\Delta x_{1}=x_{1}-\overbrace{x_{0}}^{=0}=x_{1} \\
y_{2} & =\Delta x_{2}=x_{2}-x_{1} \\
& \vdots \\
y_{N} & =\Delta x_{N}=x_{N}-x_{N-1}
\end{aligned}
$$

5. Change of variables

The volume element will be transformed by the determinant of the Jacobian:
$J=\operatorname{det} \frac{\partial\left(x_{1} \ldots x_{N}\right)}{\partial\left(y_{1} \ldots y_{N}\right)}=\left[\operatorname{det} \frac{\partial\left(y_{1} \ldots y_{N}\right)}{\partial\left(x_{1} \ldots x_{N}\right)}\right]^{-1}=\left|\begin{array}{ccccc}1 & 0 & 0 & \ldots & 0 \\ -1 & 1 & 0 & \ldots & 0 \\ 0 & -1 & 1 & 0 & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & 1\end{array}\right|^{-1}=1$
where we used the fact that $\operatorname{det} A^{-1}=(\operatorname{det} A)^{-1}$, and that the determinant of a lower triangular matrix is just the product of the diagonal entries.
The integral then becomes:

$$
\begin{aligned}
I_{3}^{(N)} & =\int_{\mathbb{R}} \frac{\mathrm{d} \alpha}{2 \pi} \int_{\mathbb{R}} \mathrm{d} z F(z) e^{i \alpha z} \int_{\mathbb{R}^{N}}\left(\prod_{i=1}^{N} \frac{\mathrm{~d} y_{i}}{\sqrt{\pi \Delta t_{i}}}\right) \exp \left(-\sum_{i=1}^{N} \frac{y_{i}^{2}}{\Delta t_{i}}-i \alpha \sum_{i=1}^{N} A_{i} y_{i}\right)= \\
& =\int_{\mathbb{R}} \frac{\mathrm{d} \alpha}{2 \pi} \int_{\mathbb{R}} \mathrm{d} z F(z) e^{i \alpha z}\left[\prod_{i=1}^{N} \int_{\mathbb{R}} \frac{\mathrm{d} y_{i}}{\sqrt{\pi \Delta t_{i}}} \exp \left(-\frac{y_{i}^{2}}{\Delta t_{i}}-i \alpha A_{i} y_{i}\right)\right]
\end{aligned}
$$

The terms in the product are all independent gaussian integrals. Recall that:

$$
\begin{equation*}
\int_{\mathbb{R}} \mathrm{d} k e^{-i a k^{2}-i b k}=\sqrt{\frac{\pi}{i a}} \exp \left(\frac{i b^{2}}{4 a}\right) \tag{2.22}
\end{equation*}
$$

6. Gaussian integral

So, with $i a=1 / \Delta t_{i}$ and $b=\alpha A_{i}$ we get:

$$
\int_{\mathbb{R}} \frac{\mathrm{d} y_{i}}{\sqrt{\pi \Delta t_{i}}} \exp \left(-\frac{y_{i}^{2}}{\Delta t_{i}}-i \alpha A_{i} y_{i}\right)=\exp \left(-\frac{\alpha^{2} A_{i}^{2} \Delta t_{i}}{4}\right)
$$

and substituting back in the integral leads to:

$$
\begin{aligned}
I_{3}^{(N)} & =\int_{\mathbb{R}} \frac{\mathrm{d} \alpha}{2 \pi} \int_{\mathbb{R}} \mathrm{d} z F(z) e^{i \alpha z}\left[\prod_{i=1}^{N} \exp \left(-\frac{\alpha^{2} A_{i}^{2} \Delta t_{i}}{4}\right)\right]= \\
& =\int_{\mathbb{R}} \frac{\mathrm{d} \alpha}{2 \pi} \int_{\mathbb{R}} \mathrm{d} z F(z) e^{i \alpha z} \exp \left(-\frac{\alpha^{2}}{4} \sum_{i=1}^{N} A_{i}^{2} \Delta t_{i}\right)
\end{aligned}
$$

Applying the continuum limit ($N \rightarrow \infty, \Delta t_{i} \rightarrow 0$), the exponential argument becomes the limit of a Riemann sum, i.e. a integral:

$$
\sum_{i=1}^{N} A\left(t_{i}\right)^{2} \Delta t_{i} \xrightarrow[N \rightarrow \infty]{ } \int_{0}^{t} A^{2}(\tau) \mathrm{d} \tau \underset{(\underline{\text { (220) }} \text {) }}{=} \int_{0}^{t} \mathrm{~d} \tau\left(\int_{\tau}^{t} \mathrm{~d} s a(s)\right)^{2} \equiv R(t)
$$

7. Continuum limit

Substituting back:
$I_{3} \equiv\left\langle F\left(\int_{0}^{t} a(\tau) x(\tau)\right)\right\rangle=\lim _{N \rightarrow \infty} I_{3}^{(N)}=\int_{\mathbb{R}} \mathrm{d} z F(z) \int_{R} \frac{\mathrm{~d} \alpha}{2 \pi} \exp \left(-\frac{\alpha^{2}}{4} R(t)+i \alpha z\right)$
All that's left is to evaluate the last gaussian integral thanks to ([2.22) with $i a=R(t) / 4$ and $b=-z$, leading to:
$I_{3}=\int_{\mathbb{R}} \mathrm{d} z F(z) \frac{1}{2 \pi} \sqrt{\frac{4 \pi}{R(t)}} \exp \left(-\frac{z^{2}}{R(t)}\right)=\frac{1}{\sqrt{\pi R(t)}} \int_{\mathbb{R}} \mathrm{d} z F(z) \exp \left(-\frac{z^{2}}{R(t)}\right)$
So, we showed that:
$\left\langle F\left(\int_{0}^{t} a(\tau) x(\tau) \mathrm{d} \tau\right)\right\rangle_{w}=\sqrt{\frac{1}{\pi R(t)}} \int_{\mathbb{R}} \mathrm{d} z F(z) \exp \left(-\frac{z^{2}}{R(t)}\right) ; \quad R(t) \equiv \int_{0}^{t} \mathrm{~d} \tau\left(\int_{\tau}^{t} a(s) \mathrm{d} s\right)^{2}$

Example 3 (Generating function):

Let $F(z)=e^{h z}$. Inserting in ([2.23) results in:
$\left\langle\exp \left(h \int_{0}^{t} a(\tau) x(\tau) \mathrm{d} \tau\right)\right\rangle_{w}=\frac{1}{\sqrt{\pi R}} \int_{\mathbb{R}} \mathrm{d} z \exp \left(-\frac{z^{2}}{R}+h z\right) \underset{(a)}{=} \exp \left(\frac{h^{2} R}{4}\right) \equiv G(h)$
where in (a) we used formula ((L.TI) with $a=1 / R$ and $b=h$.
Note that $G(h)$ is the moment generating function (see (5.ل工) at pag. Ш8) of the integral:

$$
I=\int_{0}^{t} a(\tau) x(\tau) \mathrm{d} \tau
$$

We can then retrieve the n-th moment of I by computing the n-th derivative of $G(h)$:

$$
\left.\frac{\mathrm{d}^{n}}{\mathrm{~d} h^{n}} G(h)\right|_{h=0}=\left\langle I^{n}\right\rangle_{w}
$$

We can see this by differentiating the left side of ([2.24):

$$
G^{\prime}(h)=\left\langle\int_{0}^{t} a(\tau) x(\tau) \mathrm{d} \tau \exp \left(h \int_{0}^{\tau} a x \mathrm{~d} \tau\right)\right\rangle_{w}
$$

and then setting $h=0$:

$$
G^{\prime}(0)=\left\langle\int_{0}^{t} a(\tau) x(\tau) \mathrm{d} \tau\right\rangle_{w}=\langle I\rangle_{w}
$$

Then, differentiating the right side of (2.24) we have immediately the result:

$$
\langle I\rangle_{w}=\left.G^{\prime}(h)\right|_{h=0}=\left.\frac{h}{2} R \exp \left(\frac{h^{2} R}{4}\right)\right|_{h=0}=0
$$

If we differentiate again we get the second moment:

$$
G^{\prime \prime}(h)=\frac{R}{2} \exp \left(\frac{h^{2} R}{4}\right)+\frac{h^{2}}{4} R^{2} \exp \left(\frac{h^{2} R}{4}\right) \Rightarrow G^{\prime \prime}(0)=\left\langle I^{2}\right\rangle_{w}=\frac{R}{2}
$$

Consider now a generic odd moment:

$$
\left\langle\left(\int_{0}^{t} a(\tau) x(\tau) \mathrm{d} \tau\right)^{2 k+1}\right\rangle_{w}=0 \quad \forall k \in \mathbb{N}
$$

In fact, if we expand $G(h)$, we get:

$$
G(h)=\sum_{n=0}^{\infty}\left(\frac{R}{4}\right)^{n} \frac{1}{n!} h^{2 n}
$$

Since all the powers are even, if we differentiate an odd number of times and set $h=0$ we are "selecting" an odd power - which just is not there and so the result will be 0 .
On the other hand, an even moment leads to:

$$
\left\langle\left(\int_{0}^{t} a(\tau) x(\tau) \mathrm{d} \tau\right)^{2 k}\right\rangle_{w}=\left(\frac{R}{2}\right)^{k} \frac{(2 k)!}{2^{k} k!}
$$

(computations omitted).

2.2.3 Potential-like functional

We consider now the following functional:

$$
F[x(\tau)]=\exp \left(-\int_{0}^{t} \mathrm{~d} \tau P(\tau) x^{2}(\tau)\right)
$$

As before, we wish to compute $\langle F\rangle_{w}$. We start by discretizing the path over a uniform D grid $0=t_{0}<t_{1}<\cdots<t_{N}=t$ so that $\Delta t_{i}=t_{i}-t_{i-1} \equiv \epsilon=t / N$.

$$
I_{4} \equiv \int_{\mathcal{C}\{0,0 ; t\}} \mathrm{d}_{W} x(\tau) \exp \left(-\int_{0}^{t} \mathrm{~d} \tau P(\tau) x^{2}(\tau)\right)=\lim _{N \rightarrow \infty} I_{4}^{(N)} \quad \begin{aligned}
& \text { 1. Discretized path } \\
& \text { integral }
\end{aligned}
$$

$I_{4}^{(N)}=\int_{-\infty}^{+\infty} \frac{\mathrm{d} x_{1}}{\sqrt{\pi \epsilon}} \cdots \int_{-\infty}^{+\infty} \frac{\mathrm{d} x_{N}}{\sqrt{\pi \epsilon}} \exp \left(-\sum_{i=1}^{N} P_{i} x_{i}^{2} \epsilon-\sum_{i=1}^{N} \frac{\left(x_{i}-x_{i-1}\right)^{2}}{\epsilon}\right) \quad \begin{aligned} & x_{i} \equiv x(t i) \\ & P_{i} \equiv P\left(t_{i}\right)\end{aligned}$

The exponential argument is a quadratic form:

$$
\begin{aligned}
- & \epsilon\left(P_{1} x_{1}^{2}+\cdots+P_{N} x_{N}^{2}\right)-\frac{1}{\epsilon}\left[\not x_{0}^{2}+x_{1}^{2}-2 x x_{1}+x_{1}^{2}+x_{2}^{2}-2 x_{1} x_{2}+\cdots+\right.
\end{aligned} \quad \begin{aligned}
& \text { exponential i } \\
& \\
& \\
& \\
& \left.\quad+\ldots x_{N-1}^{2}+x_{N}^{2}-2 x_{N-1} x_{N}\right]= \\
& =- \\
& \epsilon \sum_{i=1}^{N} P_{i} x_{i}^{2}-\frac{1}{\epsilon}\left[2 \sum_{i=1}^{N-1} x_{i}^{2}+x_{N}^{2}-2 \sum_{i=1}^{N} x_{i-1} x_{i}\right]= \\
& =- \\
& {\left[x_{1}^{2}\left(\epsilon P_{1}+\frac{2}{\epsilon}\right)+\cdots+x_{N-1}^{2}\left(\epsilon P_{N-1}+\frac{2}{\epsilon}\right)+x_{N}^{2}\left(\epsilon P_{N}+\frac{1}{\epsilon}\right)-\frac{2}{\epsilon} \sum_{i=1}^{N} x_{i} x_{i-1}\right]=} \\
& =- \\
& \sum_{i, j=1}^{N} A_{i j} x_{i} x_{j}
\end{aligned}
$$

where $A_{i j}$ are matrix elements of a matrix A_{N} :

$$
\begin{gathered}
A_{i j}=\delta_{i j} a_{i}-\frac{1}{\epsilon}\left(\delta_{i, j-1}+\delta_{i-1, j}\right) \quad a_{i}=P_{i} \epsilon+\frac{1}{\epsilon}\left(2-\delta_{i N}\right) \\
A_{N}=\left(\begin{array}{ccccc}
a_{1} & -\epsilon^{-1} & 0 & \cdots & 0 \\
-\epsilon^{-1} & a_{2} & -\epsilon^{-1} & 0 & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
0 & 0 & -\epsilon^{-1} & a_{N-1} & -\epsilon^{-1} \\
0 & 0 & 0 & -\epsilon^{-1} & a_{N}
\end{array}\right)
\end{gathered}
$$

Note how we "split in half" the green term, making A_{N} a symmetric matrix.
We can now rewrite $I_{4}^{(N)}$ as:

$$
I_{4}^{(N)}=\int_{\mathbb{R}^{N}}\left(\prod_{i=1}^{N} \frac{\mathrm{~d} x_{i}}{\sqrt{\pi \epsilon}}\right) e^{-\boldsymbol{x}^{T} A_{N} \boldsymbol{x}} \quad \boldsymbol{x}^{T}=\left(x_{1}, \ldots, x_{N}\right)
$$

This is the integral of a multivariate gaussian, and evaluates to:

$$
I_{4}^{(N)}=\frac{1}{\epsilon^{N / 2}\left(\operatorname{det} A_{N}\right)^{1 / 2}}=\frac{1}{\left(\operatorname{det}\left(\epsilon A_{N}\right)\right)^{1 / 2}}
$$

as for a $N \times N$ matrix we have $\operatorname{det}\left(\epsilon A_{N}\right)=\epsilon^{N} \operatorname{det} A_{N}$. This has the advantage

[^3](Scaling the matrix to remove denominators)
of removing all denominators in A_{N}.
To compute this determinant we use a method suggested by Gelfand and Yaglom (1960). We start by denoting with $D_{k}^{(N)}$ the determinant of the matrix obtained by removing the first $k-1$ rows and columns from ϵA_{N} :
\[

D_{k}^{(N)} \equiv\left|$$
\begin{array}{ccccc}
\epsilon a_{k} & -1 & 0 & \ldots & 0 \\
-1 & \epsilon a_{k+1} & -1 & 0 & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & -1 & a_{N-1} & -1 \\
0 & \ldots & 0 & -1 & \epsilon a_{N}
\end{array}
$$\right|
\]

So that $D_{1}^{(N)}=\operatorname{det} \epsilon A_{N}$ is the determinant we want to compute (because here we remove $1-1=0$ rows).
Expanding $D_{k}^{(N)}$ from the first row we get:

$$
\begin{aligned}
D_{k}^{(N)} & =\epsilon a_{k} D_{k+1}-(-1)\left|\begin{array}{ccccc}
-1 & -1 & 0 & \ldots & 0 \\
0 & \epsilon a_{k+2} & -1 & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & -1 & a_{N-1} & -1 \\
0 & 0 & 0 & -1 & \epsilon a_{N}
\end{array}\right|= \\
& =\epsilon a_{k} D_{k+1}^{(N)}+(-1) D_{k+2}^{(N)}=\epsilon\left(\epsilon P_{k}+\frac{2}{\epsilon}\right) D_{k+1}^{(N)}-D_{k+2}^{(N)}= \\
& =\left(\epsilon^{2} P_{k}+2\right) D_{k+1}^{(N)}-D_{k+2}^{(N)}
\end{aligned}
$$

where in (a) we expanded the last determinant following the first column.
Rearranging:

$$
\begin{equation*}
\frac{D_{k}^{(N)}-2 D_{k+1}^{(N)}+D_{k+2}^{(N)}}{\epsilon^{2}}=P_{k} D_{k+1}^{(N)} \tag{2.26}
\end{equation*}
$$

We introduce now the variable $\tau=(k-1) t / N$, representing the fraction of removed rows/columns in each determinant, rescaled to the final time t. Performing a continuum limit $N \rightarrow \infty$ we can then map $D_{k}^{(N)} \xrightarrow[N \rightarrow \infty]{ } D(s)$. Then, the relation (2.26) becomes a differential equation:

$$
\begin{equation*}
\frac{\mathrm{d}^{2} D(\tau)}{\mathrm{d} \tau^{2}}=P(\tau) D(\tau) \tag{2.27}
\end{equation*}
$$

A determinant as a differential equation

In fact, note that the first term of ($\overline{2 \cdot 26})$ is a second derivative in the finite difference approximation. This can be shown by Taylor expanding a generic function $f(x)$ to get the points immediately before and after:

$$
f(x+\Delta x)=f(x)+f^{\prime}(x) \Delta x+\frac{1}{2} f^{\prime \prime}(x)(\Delta x)^{2}+O\left((\Delta x)^{3}\right)
$$

$$
f(x-\Delta x)=f(x)-f^{\prime}(x) \Delta x+\frac{1}{2} f^{\prime \prime}(x)(\Delta x)^{2}+O\left((\Delta x)^{3}\right)
$$

Summing side by side, and denoting $f(x) \equiv f_{i}, f(x-\Delta x) \equiv f_{i-1}$ and $f(x+$ $\Delta x)=f_{i+1}:$

$$
f_{i+1}+f_{i-1}=2 f_{i}+f_{i}^{\prime \prime}(\Delta x)^{2}+O\left((\Delta x)^{3}\right)
$$

Rearranging, shifting $i \rightarrow i+1$ and ignoring the higher order terms leads to:

$$
\frac{f_{i+2}-2 f_{i+1}+f_{i}}{(\Delta x)^{2}}=f_{i+1}^{\prime \prime}
$$

Analogously, this can be seen by computing the second derivative as the derivative of the first derivative in terms of incremental ratios:

$$
\begin{aligned}
f^{\prime \prime}(x) & =\lim _{\Delta x \rightarrow 0} \frac{1}{\Delta x}\left(\frac{f(x+\Delta x)-f(x)}{\Delta x}-\frac{f(x)-f(x-\Delta x)}{\Delta x}\right)= \\
& =\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-2 f(x)+f(x-\Delta x)}{(\Delta x)^{2}}
\end{aligned}
$$

Returning to the problem, we note that the determinant of the full matrix, in the continuum limit, is given by:

$$
\operatorname{det}\left(\epsilon A_{N}\right)=D_{1}^{(N)} \xrightarrow[N \rightarrow \infty]{ } D(0)
$$

(as $\tau=(k-1) t /\left.N\right|_{k=1} \equiv 0$). So, we just need to solve ((L.27) and evaluate it at $\tau=0$.
To do this, we first need two boundary conditions, as (2.27) is a second order differential equation.
Noting that $D_{N}^{(N)}$ is just the last diagonal entry, we have:

$$
D_{N}^{(N)}=\epsilon a_{N}=\epsilon^{2} p_{N}+1 \xrightarrow[\substack{N \rightarrow \infty \\ \epsilon \rightarrow 0}]{ } 1
$$

As $\tau=(k-1) t /\left.N\right|_{k=N}=t$ for $N \rightarrow \infty$, this means that:

$$
D(t)=1
$$

For the second boundary condition, we search a relation for the first derivative at $\tau=t$:

$$
\left.\frac{\mathrm{d} D(\tau)}{\mathrm{d} \tau}\right|_{\tau=t}=\lim _{N \rightarrow \infty} \frac{D_{N}^{(N)}-D_{N-1}^{(N)}}{\epsilon}
$$

$D_{N-1}^{(N)}$ can be computed directly:

$$
D_{N-1}^{(N)}=\left|\begin{array}{cc}
P_{N-1} \epsilon^{2}+2 & -1 \\
-1 & P_{N} \epsilon^{2}+1
\end{array}\right|=P_{N-1} P_{N} \epsilon^{4}+\epsilon^{2}\left(P_{N-1}+2 P_{N}\right)+1
$$

leading to:

$$
\left.\frac{\mathrm{d} D(\tau)}{\mathrm{d} \tau}\right|_{\tau=t}=\lim _{\epsilon \rightarrow 0} \frac{\epsilon^{2} P_{N}+1-P_{N-1} P_{N} \epsilon^{4}-\epsilon^{2}\left(P_{N-1}+2 P_{N}\right)-1}{\epsilon}=0
$$

Summarizing, we found that:

$$
I_{4} \equiv\left\langle\exp \left(-\int_{0}^{t} \mathrm{~d} \tau P(\tau) x^{2}(\tau)\right)\right\rangle_{w}=\frac{1}{\sqrt{D(0)}}
$$

where $D(\tau)$ is the solution of the differential equation:

$$
\frac{\mathrm{d}^{2} D(\tau)}{\mathrm{d} \tau^{2}}=P(\tau) D(\tau)
$$

with the following boundary conditions:

$$
\left\{\begin{array}{l}
D(t)=1 \\
\dot{D}(t)=\left.\frac{\mathrm{d} D(\tau)}{\mathrm{d} \tau}\right|_{\tau=t}=0
\end{array}\right.
$$

Example $4\left(\boldsymbol{P}(\boldsymbol{\tau})=\boldsymbol{k}^{2}\right.$, free end-point $)$:
Let's compute I_{4} with the choice of $P(\tau)=k^{2}$. The differential equation becomes:

$$
\frac{\mathrm{d}^{2} D(\tau)}{\mathrm{d} \tau^{2}}=k^{2} D(\tau)
$$

which is that of a harmonic repulsor. The solution is a linear combination of exponentials:

$$
\begin{equation*}
D(\tau)=A e^{k \tau}+B e^{-k \tau} \tag{2.28}
\end{equation*}
$$

Differentiating:

$$
\dot{D}(\tau)=k\left(A e^{k \tau}-B e^{-k \tau}\right)
$$

We can now impose the boundary conditions:

$$
\left\{\begin{array}{l}
D(t) \stackrel{!}{=} 1=A e^{k t}+B e^{-k t} \tag{a}\\
\dot{D}(t) \stackrel{!}{=} 0=k\left(A e^{k t}-B e^{-k t}\right)
\end{array}\right.
$$

leading to:

$$
\begin{aligned}
& (a)+(b): 2 A e^{k t}=1 \Rightarrow A=\frac{1}{2} e^{-k t} \\
& (a)-(b): 2 B e^{-k t}=1 \Rightarrow B=\frac{1}{2} e^{k t}
\end{aligned}
$$

So the solution is:

$$
\begin{equation*}
D(\tau)=\frac{1}{2}\left[e^{k(t-\tau)}+e^{-k(t-\tau)}\right]=\cosh (k(t-\tau)) \tag{2.29}
\end{equation*}
$$

from which:

$$
I_{4}=\lim _{N \rightarrow \infty}^{(N)}=\frac{1}{\sqrt{D(0)}}=\frac{1}{\sqrt{\cosh (k t)}}
$$

Fixed end-point

We consider now a small variation of I_{4}, where we integrate instead on paths with a fixed end-point $x(t) \equiv x_{t}$:

$$
\hat{I}_{4}=\left\langle\exp \left(-\int_{0}^{t} P(\tau) x^{2}(\tau) \mathrm{d} \tau\right) \delta(x-x(t)\rangle_{w}=\int_{\mathcal{C}\left\{0,0 ; x_{t}, t\right\}} \exp \left(-\int_{0}^{t} P(\tau) x^{2}(\tau) \mathrm{d} \tau\right)\right.
$$

First, we rewrite the δ in terms of a Fourier transform:

$$
I_{4}^{\prime}=\int_{-\infty}^{+\infty} \frac{\mathrm{d} \alpha}{2 \pi} e^{i \alpha x}\left\langle\exp \left(-\int_{0}^{t} P(\tau) x^{2}(\tau) \mathrm{d} \tau\right) e^{-i \alpha x(t)}\right\rangle_{w}
$$

Then we discretize the path as before, with $0=t_{0}<t_{1}<\cdots<t_{N}=t$

1. Fourier transform to remove the end-point δ uniformly distributed ($\Delta t_{i}=t_{i}-t_{i-1} \equiv \epsilon=t / N$):

$$
\begin{aligned}
\hat{I}_{4} & =\lim _{N \rightarrow \infty} \hat{I}_{4}^{(N)} \\
\hat{I}_{4}^{(N)} & =\int_{\mathbb{R}} \frac{\mathrm{d} \alpha}{2 \pi} e^{i \alpha x} \int_{\mathbb{R}^{N}}\left(\prod_{i=1}^{N} \frac{\mathrm{~d} x_{i}}{\sqrt{\pi \epsilon}}\right) \exp \left(-\sum_{i=1}^{N} P_{i} x_{i}^{2} \epsilon-\sum_{i=1}^{N} \frac{\left(x_{i}-x_{i-1}\right)^{2}}{\epsilon}-i \alpha x_{N}\right)
\end{aligned}
$$

2. Discretized path integral
3. Exponential argument in matrix form

Also, we can express $i \alpha x_{N}$ as a scalar product between $\boldsymbol{x}=\left(x_{1}, \ldots, x_{N}\right)^{T}$ and a certain vector $\boldsymbol{h} \in \mathbb{R}^{N}$ with components h_{l} given by:

$$
i \alpha x_{N}=\boldsymbol{h}^{T} \boldsymbol{x} \quad h_{l}=\delta_{l N}(-i \alpha)
$$

So that we can now use the gaussian integral:

$$
\int_{\mathbb{R}^{N}} \mathrm{~d}^{N} \boldsymbol{x} \exp \left(-\frac{1}{2} \boldsymbol{x}^{T} A \boldsymbol{x}+\boldsymbol{b} \cdot \boldsymbol{x}\right)=\exp \left(\frac{1}{2} \boldsymbol{b} \cdot A^{-1} \boldsymbol{b}\right)(2 \pi)^{N / 2}(\operatorname{det} A)^{-1 / 2}
$$

4. First N

gaussian integrals
with $A=2 A_{N}$ and $\boldsymbol{b}=\boldsymbol{h}$:

$$
\begin{aligned}
I^{\prime} & \equiv \frac{1}{\sqrt{(\pi \epsilon)^{N}}} \int_{\mathbb{R}^{N}} \mathrm{~d}^{N} \boldsymbol{x} \exp \left(-\boldsymbol{x}^{T} A_{N} \boldsymbol{x}+\boldsymbol{h}^{T} \boldsymbol{x}\right)= \\
& =\frac{1}{\sqrt{(\pi \epsilon)^{N}}} \exp \left(\frac{1}{4} \boldsymbol{h}^{T} A_{N}^{-1} \boldsymbol{h}\right)(\not 2 \pi)^{N / 2}\left(2^{\mathcal{X}} \operatorname{det} A_{N}\right)^{-1 / 2}= \\
& =\frac{1}{\sqrt{(\mathbb{\pi} \epsilon)^{N}}} \sqrt{\frac{\pi^{X}}{\operatorname{det} A_{N}}} \exp \left(\frac{1}{4}(-i \alpha)^{2}\left(A_{N}^{-1}\right)_{N N}\right)=\underbrace{\sqrt{\frac{1}{\epsilon^{N} \operatorname{det} A_{N}}}}_{I_{0}} \exp \left(-\frac{1}{4} \alpha^{2}\left(A_{N}^{-1}\right)_{N N}\right)
\end{aligned}
$$

where $\left(A_{N}^{-1}\right)_{N N}$ is the last diagonal element of the inverse matrix of A_{N}. Substituting back:

$$
\hat{I}_{4}^{(N)}=I_{0} \int_{\mathbb{R}} \frac{\mathrm{d} \alpha}{2 \pi} \exp \left(i \alpha x-\frac{1}{4} \alpha^{2}\left(A_{N}^{-1}\right)_{N N}\right)
$$

which is again a gaussian integral, and following formula (L.2Z) with $a=$ $\left(A_{N}^{-1}\right)_{N N} / 4$ and $b=-x$ leads to:
5. Last gaussian integral

$$
\begin{equation*}
\hat{I}_{4}^{(N)}=\frac{I_{0}}{2 \pi} \sqrt{\frac{4 \pi}{\left(A_{N}^{-1}\right)_{N N}}} \exp \left(-\frac{x^{2}}{\left(A_{N}^{-1}\right)_{N N}}\right)=\frac{I_{0}}{\sqrt{\pi\left(A_{N}^{-1}\right)_{N N}}} \exp \left(-\frac{x^{2}}{\left(A_{N}^{-1}\right)_{N N}}\right) \tag{2.30}
\end{equation*}
$$

All that's left is to compute $\left(A_{N}^{-1}\right)_{N N}$ and take the continuum limit. Recall from linear algebra that:

$$
A_{i j}^{-1}=\frac{1}{\operatorname{det} A} C_{j i}
$$

where $C_{i j}$ are the cofactors of A, i.e. the determinants of the matrices obtained from A by removing the i-th row and j-th column. In our case:

$$
\left(A_{N}^{-1}\right)_{N N}=\frac{C_{N N}}{\operatorname{det} A_{N}}
$$

Before, we obtained $\operatorname{det} A_{N}$ by means of $D_{k}^{(N)}$, i.e. the determinants of the matrices obtained by removing the first $k-1$ rows and columns, so that $D_{1}^{(N)}=$ $\epsilon^{N} \operatorname{det} A_{N}$. This leads to:
6. Gelfand-Yoglom method
(bottom-top
variant)

$$
\left(A_{N}^{-1}\right)_{N N}=\frac{\epsilon^{N}}{D_{1}^{(N)}} C_{N N}
$$

For $C_{N N}$ we have to compute the determinant of the $(N-1) \times(N-1)$ matrix $A_{*}^{(N-1)}$, obtained by removing the last row and column from A_{N}. Note that $A_{*}^{(N-1)} \neq A^{(N-1)}$, as they differ for the last diagonal element which is:

$$
\begin{equation*}
\left(A_{*}^{(N-1)}\right)_{N-1, N-1}=P_{N-1} \epsilon+\frac{2}{\epsilon} \neq\left(A_{N-1, N-1}^{(N-1)}\right)=P_{N-1} \epsilon+\frac{1}{\epsilon} \tag{2.31}
\end{equation*}
$$

We proceed in a similar manner, defining $\hat{D}_{k}^{(N-1)}$ to be the determinant of the matrix obtained by removing the first $k-1$ rows and columns from $\epsilon A_{*}^{(N-1)}$ (again, we multiply by ϵ to remove denominators):

$$
\hat{D}_{k}^{(N-1)}=\left|\begin{array}{ccccc}
\epsilon a_{k} & -1 & 0 & \ldots & 0 \\
-1 & \epsilon a_{k-1} & -1 & 0 & \vdots \\
0 & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & -1 & \epsilon a_{N-2} & -1 \\
0 & \ldots & \ldots & -1 & \epsilon a_{N-1}
\end{array}\right|
$$

So $\hat{D}_{1}^{(N-1)}=\epsilon^{N-1} \operatorname{det} A_{*}^{(N-1)}=\epsilon^{N-1} C_{N N}$ leading to:

$$
\left(A_{N}^{-1}\right)_{N N}=\frac{\epsilon^{N}}{D_{1}^{(N)}} \frac{1}{\epsilon^{N-1}} \hat{D}_{1}^{(N-1)}=\epsilon \frac{\hat{D}_{1}^{(N-1)}}{D_{1}^{(N)}}
$$

For simplicity, it is convenient to define $\tilde{D}_{1}^{(N-1)} \equiv \epsilon \hat{D}_{1}^{(N-1)}$, so that:

$$
\begin{equation*}
\left(A_{N}^{-1}\right)_{N N}=\frac{\tilde{D}_{1}^{(N-1)}}{D_{1}^{(N)}} \tag{2.32}
\end{equation*}
$$

Repeating the steps for the continuum limit, we get the same differential equation for $\tilde{D}(\tau)$:

Determinant as a differential equation

However, due to ([2.3), the boundary conditions are now different:

$$
\begin{aligned}
\tilde{D}_{N-1}^{(N-1)} & =\epsilon\left(\epsilon^{2} P_{N-1}+2\right)=P_{N-1} \epsilon^{3}+2 \epsilon \underset{\epsilon \rightarrow 0}{\longrightarrow} 0=\tilde{D}(t) \\
\tilde{D}_{N-2}^{(N-1)} & =\epsilon\left|\begin{array}{cc}
P_{N-2} \epsilon^{2}+2 & -1 \\
-1 & P_{N-1} \epsilon^{2}+2
\end{array}\right|=\epsilon\left(P_{N-1} P_{N-2} \epsilon^{4}+2\left(p_{N-1}+P_{N-2}\right) \epsilon^{2}+3\right) \\
\frac{\tilde{D}_{N-1}^{(N-1)}-\tilde{D}_{N-2}^{(N-1)}}{\epsilon} & =-1+O\left(\epsilon^{2}\right) \xrightarrow[\epsilon \rightarrow 0]{\longrightarrow}-1=\left.\frac{\mathrm{d} \tilde{D}(\tau)}{\mathrm{d} \tau}\right|_{\tau=t}
\end{aligned}
$$

Then, substituting ([2.32) in ([2.30) we get:

$$
\begin{align*}
\hat{I}_{4}^{(N)} & =\frac{I_{0}}{\sqrt{\pi\left(A_{N}^{-1}\right)_{N N}}} \exp \left(-x^{2} \frac{D_{1}^{(N)}}{\tilde{D}_{1}^{(N-1)}}\right) \quad I_{0}=\frac{1}{\sqrt{\epsilon^{N} \operatorname{det} A_{N}}}=\frac{1}{\sqrt{D_{1}^{(N)}}} \\
I_{4} & =\lim _{N \rightarrow \infty} \hat{I}_{4}^{(N)}=\frac{1}{\sqrt{\pi \tilde{D}(0)}} \exp \left(-x^{2} \frac{D(0)}{\tilde{D}(0)}\right) \tag{2.33}
\end{align*}
$$

Where $D(\tau)$ and $\tilde{D}(\tau)$ are solutions of the following differential equations with the following boundary conditions:

$$
\begin{array}{ll}
\tilde{D}^{\prime \prime}(\tau)=P(\tau) \tilde{D}(\tau) & \left\{\begin{array}{l}
\tilde{D}(t)=0 \\
\left.\frac{\mathrm{~d} \tilde{D}(\tau)}{\mathrm{d} \tau}\right|_{\tau=t}=-1
\end{array}\right. \\
D^{\prime \prime}(\tau)=P(\tau) D(\tau) \quad & \left\{\begin{array}{l}
D(t)=1 \\
\left.\frac{\mathrm{~d} D(\tau)}{\mathrm{d} \tau}\right|_{\tau=t}=0
\end{array}\right.
\end{array}
$$

Example $5\left(\boldsymbol{P}(\boldsymbol{\tau})=\boldsymbol{k}^{2}\right.$ with fixed end-point $)$:
Let $P(\tau)=k^{2}$, with $k \in \mathbb{R}$ constant. We already solved the equation for $D(\tau)$ with the right boundary conditions in ($\overline{2.29 I) \text { : }}$

$$
D(\tau)=\cosh (k(t-\tau))
$$

For $\tilde{D}(\tau)$ we start from the general integral ($\overline{2.28})$ and impose the appropriate boundary conditions:

$$
\left\{\begin{array}{l}
\tilde{D}(t)=\tilde{A} e^{k t}+\tilde{B} e^{-k t}=0 \\
\left.\frac{\mathrm{~d} \tilde{D}(\tau)}{\mathrm{d} \tau}\right|_{\tau=t}=k\left(\tilde{A} e^{k t}-\tilde{B} e^{-k t}\right)=-1
\end{array}\right.
$$

so that:

$$
\begin{aligned}
& k(a)+(b): 2 \tilde{A} k e^{k t}=-1 \Rightarrow \tilde{A}=-\frac{1}{2 k} e^{-k t} \\
& k(a)-(b): 2 B k e^{-k t}=1 \Rightarrow \tilde{B}=\frac{1}{2 k} e^{k t}
\end{aligned}
$$

leading to the solution:

$$
\tilde{D}(\tau)=\frac{1}{2 k}\left(e^{k(t-\tau)}-e^{-k(t-\tau)}\right)=\frac{1}{k} \sinh (k(t-\tau))
$$

Finally, using the result we found in (2.33)):

$$
\begin{aligned}
& \left\langle\exp \left(-k^{2} \int_{0}^{t} x^{2}(\tau) \mathrm{d} \tau \delta(x-x(t))\right)\right\rangle_{w}= \\
= & \int_{\mathcal{C}\left\{0,0 ; x_{t}, t\right\}} \exp \left(-k^{2} \int_{0}^{t} x^{2}(\tau) \mathrm{d} \tau\right) \mathrm{d}_{W} x(\tau)= \\
= & \sqrt{\frac{k}{\pi \sinh (k t)}} \exp \left(-k x_{t}^{2} \operatorname{coth}(k t)\right)
\end{aligned}
$$

2.3 Properties of Brownian Paths

The Wiener measure allows us to compute the probabilities of paths produced by the diffusion process, and also highlight some of their defining characteristics. We now show that all Brownian paths with non-zero Wiener measure (i.e. paths that "can happen") are everywhere continuous, but nowhere differentiable.

2.3.1 Continuity

Consider a particle starting in $x=0$ at $t=0$, and traversing N points $\left\{x_{i}\right\}_{i=1, \ldots, N}$ such that all increments $\Delta x_{i}=x_{i}-x_{i-1}$ are independent and described by a gaussian pdf. The density function for such a trajectory $\left\{x_{i}\right\}$ is the usual product of transition probabilities:

$$
\mathrm{d} \mathbb{P}_{t_{1}, \ldots, t_{N}}\left(x_{1}, \ldots, x_{N}\right)=\left(\prod_{i=1}^{N} \frac{\mathrm{~d} x_{i}}{\sqrt{4 \pi \Delta t_{i} D}}\right) \exp \left(-\sum_{i=1}^{N} \frac{\left(\Delta x_{i}\right)^{2}}{4 D \Delta t_{i}}\right) \begin{align*}
& \begin{array}{l}
\Delta t_{i}=t_{i}-t_{i-1} \\
\Delta x_{i}=x_{i}-x_{i-1}
\end{array} \tag{2.34}
\end{align*}
$$

We now show that, taking the continuum limit $\max _{i} \Delta t_{i} \rightarrow 0$ leads to paths $\{x(\tau)\}$ that are almost surely continuous. In other words, for any interval $T \subseteq \mathbb{R}$, the subset $N \subset \mathbb{R}^{T}$ of functions that are discontinuous has 0 Wiener measure.
Mathematically, we want to show that, as $\Delta t_{i} \rightarrow 0$, the probability that Δx_{i} is close to 0 approaches certainty:

$$
\lim _{\Delta t_{i} \rightarrow 0} \mathbb{P}\left(\left|\Delta x_{i}\right|<\epsilon\right)=1 \quad \forall \epsilon>0
$$

This is just the probability that, during time Δt_{i}, the particle makes a jump of size lower than ϵ :

$$
\begin{aligned}
\mathbb{P}\left(\left|\Delta x_{i}\right|<\epsilon\right) & =\mathbb{P}\left(x_{i-1}-\epsilon<x_{i}<x_{i-1}+\epsilon \mid x\left(t_{i-1}\right)=x_{i}\right)= \\
& =\int_{x_{i-1}-\epsilon}^{x_{i-1}+\epsilon} \frac{\mathrm{d} x_{i}}{\sqrt{4 \pi D \Delta t_{i}}} \exp \left(-\frac{\left(x_{i}-x_{i-1}\right)^{2}}{4 D \Delta t_{i}}\right)= \\
& =\int_{-\epsilon}^{+\epsilon} \frac{\mathrm{d} \Delta x_{i}}{\sqrt{4 \pi D \Delta t_{i}}} \exp \left(-\frac{\left(\Delta x_{i}\right)^{2}}{4 D \Delta t_{i}}\right)
\end{aligned}
$$

where in (a) we translated the variable of integration $\Delta x_{i}=x_{i}-x_{i-1}$. With another change of variables:

$$
\frac{\left(\Delta x_{i}\right)^{2}}{\Delta t_{i}}=z^{2} \Rightarrow z=\frac{\Delta x_{i}}{\sqrt{\Delta t_{i}}} \Rightarrow \mathrm{~d} \Delta x_{i}=\mathrm{d} z \sqrt{\Delta t_{i}}
$$

we get:

$$
\mathbb{P}\left(\left|\Delta x_{i}\right|<\epsilon\right)=\int_{|z|<\epsilon / \sqrt{\Delta t_{i}}} \frac{\mathrm{~d} z \sqrt{\Delta \bar{t}_{i}}}{\sqrt{4 \pi D \Delta t_{i}}} \exp \left(-\frac{z^{2}}{4 D}\right)
$$

And taking the continuum limit leads to:

$$
\lim _{\Delta t_{i} \rightarrow 0} \mathbb{P}\left(\left|\Delta x_{i}\right|<\epsilon\right)=\int_{-\infty}^{+\infty} \frac{\mathrm{d} z}{\sqrt{4 \pi D}} \exp \left(-\frac{z^{2}}{4 D}\right)=1
$$

2.3.2 Differentiability

With a very similar calculation (here omitted) we can also show that:

$$
\lim _{\Delta t_{i} \downarrow 0}\left(\left|\frac{\Delta x_{i}}{\Delta t_{i}}\right|>k\right)=1 \quad \forall k>0
$$

meaning that Brownian paths are almost surely everywhere non-differentiable.
Nonetheless, it is sometimes useful to consider "formal derivatives" of a Brownian path, that acquire a definite meaning only when considering a finite discretization. For example, we can start from ([2.34) and rewrite it as:

$$
d \mathbb{P}_{t_{1}, \ldots, t_{N}}\left(x_{1}, \ldots, x_{N}\right)=\left(\prod_{i=1}^{N} \frac{\mathrm{~d} x_{i}}{\sqrt{4 \pi \Delta t_{i}}}\right) \exp \left(-\frac{1}{4 D} \sum_{i=1}^{N} \Delta t_{i}\left(\frac{\Delta x_{i}}{\Delta t_{i}}\right)^{2}\right)
$$

Then, in the continuum limit $\Delta t_{i} \rightarrow 0$, the sum in the exponential argument becomes a Riemann integral:

$$
\sum_{i=1}^{N} \Delta t_{i}\left(\frac{\Delta x_{i}}{\Delta t_{i}}\right)^{2} \xrightarrow[\Delta t \rightarrow 0]{\longrightarrow} \int_{0}^{t} \mathrm{~d} \tau \underbrace{\left(\frac{\mathrm{~d} x_{i}}{\mathrm{~d} \tau}\right)^{2}}_{\dot{x}^{2}(\tau)} \quad t=t_{N}
$$

where $t=t_{N}$. Substituting it back leads to:

$$
\mathrm{d} x_{w}(\tau)=\prod_{\tau=0^{+}}^{t} \frac{\mathrm{~d} x(\tau)}{\sqrt{4 \pi D \mathrm{~d} \tau}} \exp \left(-\frac{1}{4 D} \int_{0}^{t} \dot{x}^{2}(\tau) \mathrm{d} \tau\right)
$$

This expression has no rigorous meaning in this form ($\dot{x}(\tau)$ does not exists!) but can be formally manipulated into other expressions that have a definite meaning, thus proving useful for the discussion.

Diffusion with Forces

We want now to generalize the framework we previously obtained to the case of a diffusing particle subject to external forces, e.g. a drop of ink diffusing through a water medium in the presence of gravity.
To do this, we first return to the beginning, deduce a Master Equation for a more general evolution, and then choose the right probability distribution reproducing the behaviour in presence of forces.

3.1 Fokker-Planck equation

So, let's start by considering a particle moving on a uniform one-dimensional lattice ($x_{i}=i \cdot l, t_{n}=n \cdot \epsilon$), and satisfying the Markovian property, meaning that the probability $W_{i}\left(t_{n+1}\right)$ of being at the position labelled by i at the next time-step t_{n+1} depends only on the current state t_{n}, that is on the current probabilities $W_{j}\left(t_{n}\right) \forall j$ and on the current transition probabilities $W_{i j}\left(t_{n}\right)$ from j to i :

$$
\begin{equation*}
W_{i}\left(t_{n+1}\right)=\sum_{j=-\infty}^{+\infty} W_{i j}\left(t_{n}\right) W_{j}\left(t_{n}\right) \tag{3.1}
\end{equation*}
$$

Previously, we assumed that:

$$
W_{i j}\left(t_{n}\right)=\delta_{j, i-1} P_{+}+\delta_{j, i+1} P_{-}
$$

Which means that the particle only jumps from adjacent positions, one step at a time, and cannot remain at the same place. This Master Equation leads, in $d=3$ and in the continuum limit, to the usual Diffusion Equation:

$$
\frac{\partial}{\partial t} W\left(\boldsymbol{x}, t \mid \boldsymbol{x}_{\mathbf{0}}, t_{0}\right)=\nabla^{2} W\left(\boldsymbol{x}, t \mid \boldsymbol{x}_{\mathbf{0}}, t_{0}\right)
$$

We now consider a more general case, where we drop the discretization of the space domain, allowing jumps of any size in \mathbb{R}. Then (I. $\mathbf{D}_{\text {) }}$ becomes:

$$
\begin{equation*}
W\left(x, t_{n+1}\right) \mathrm{d} x=\int_{-\infty}^{+\infty} \mathrm{d} z W\left(x, t_{n+1} \mid x-z, t_{n}\right) W\left(x-z, t_{n}\right) \tag{3.2}
\end{equation*}
$$

Generalized Master Equation (Jumps of any size)

The integrand is the probability of the particle being in $[x-z, x-z+\mathrm{d} x]$ at time t_{n} and making a jump of size z to reach $[x, x+\mathrm{d} x]$ at time t_{n+1}. By summing over all possible jump sizes we compute the total probability of the particle being near the arrival position.
If we require jumps to be independent of each other ${ }^{\text {m }}$, as it is physically evident by the problem's symmetry, then the jump probabilities $W\left(x, t_{n+1} \mid x-z, t_{n}\right)$ depend only on the jump size z.
Assuming a isolate system, as the particle cannot escape, probability is conserved:

$$
\begin{aligned}
\int_{\mathbb{R}} \mathrm{d} x W\left(x, t_{n+1}\right) & \stackrel{!}{=} \int_{\mathbb{R}} \mathrm{d} y W\left(y, t_{n}\right) \\
& \left(\overline{(\overline{\mathbf{B}} \boldsymbol{2})} \int_{\mathbb{R}} \mathrm{d} z \int_{\mathbb{R}} \mathrm{d} x W\left(x, t_{n+1} \mid x-z, t_{n}\right) W\left(x-z, t_{n}\right)=\right. \\
& =\overline{(a)} \int_{\mathbb{R}} \mathrm{d} z \int_{\mathbb{R}} \mathrm{d} y W\left(y+z, t_{n+1} \mid y, t_{n}\right) W\left(y, t_{n}\right)= \\
& =\overline{(b)}\left(\int_{\mathbb{R}} \mathrm{d} z W\left(\bar{y}+z, t_{n+1} \mid \bar{y}, t_{n}\right)\right)\left(\int_{\mathbb{R}} \mathrm{d} y W\left(y, t_{n}\right)\right) \quad \forall \bar{y} \in \mathbb{R}
\end{aligned}
$$

Conservation of probability
where in (a) we changed variables $x \mapsto y=x-z$, with $\mathrm{d} y=\mathrm{d} x$, and in (b) we used the independent increments property (\bar{y} is a arbitrary constant). Comparing the first and last lines leads to:

$$
\int_{\mathbb{R}} \mathrm{d} z W\left(y+z, t_{n+1} \mid y, t_{n}\right)=1
$$

Intuitively, if the particle cannot disappear, it must make a jump.
Here on, for notation simplicity, we denote:

$$
W\left(y+z, t_{n+1} \mid y, t_{n}\right) \equiv W\left(+z \mid y, t_{n}\right)
$$

Starting from (3.2) and taking the continuum limit in time we can write a more general diffusion equation. We start by constructing the difference quotient:

$$
\begin{aligned}
& W\left(x, t_{n+1}\right)-W\left(x, t_{n}\right)=\int_{\mathbb{R}} \mathrm{d} z W\left(+z \mid x-z, t_{n}\right) W\left(x-z, t_{n}\right)-W\left(x, t_{n}\right)= \\
& =\int_{\mathbb{R}} \mathrm{d} z W\left(+z \mid x-z, t_{n}\right) W\left(x-z, t_{n}\right)-\underbrace{\int \mathrm{d} z W\left(+z \mid x, t_{n}\right)}_{=1} W\left(x, t_{n}\right)= \\
& =\int_{\mathbb{R}} \mathrm{d} z[\underbrace{W\left(+z \mid x-z, t_{n}\right) W\left(x-z, t_{n}\right)}_{F_{z}(x-z)}-\underbrace{W\left(+z \mid x, t_{n}\right) W\left(x, t_{n}\right)}_{F_{z}(x)}]= \\
& =\int_{\mathbb{R}} \mathrm{d} z\left[F_{z}(x-z)-F_{z}(x)\right]= \\
& =\int_{\mathbb{R}} \mathrm{d} z\left[F_{z}(x)-z \frac{\partial}{\partial x} F_{z}(x)+\frac{z^{2}}{2} \frac{\partial^{2}}{\partial x^{2}}\left[F_{z}(x)\right]+\cdots-F_{z}(x)\right]= \\
& =-\int_{\mathbb{R}} \mathrm{d} z z \frac{\partial}{\partial x}\left[F_{z}(x)\right]+\frac{1}{2} \int_{\mathbb{R}} \mathrm{d} z z^{2} \frac{\partial^{2}}{\partial x^{2}}\left[F_{z}(x)\right]+\cdots=
\end{aligned}
$$

[^4]\[

$$
\begin{aligned}
\underset{(b)}{ } & -\frac{\partial}{\partial x}[\underbrace{\left(\int_{\mathbb{R}} \mathrm{d} z z W\left(+z \mid x, t_{n}\right)\right)}_{\mu_{1}\left(x, t_{n}\right)} W\left(x, t_{n}\right)]+ \\
& +\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}[\underbrace{\left(\int_{\mathbb{R}} \mathrm{d} z z W\left(+z \mid x, t_{n}\right)\right)}_{\mu_{2}\left(x, t_{n}\right)} W\left(x, t_{n}\right)]+\ldots
\end{aligned}
$$
\]

where $F_{z}(x)$ is the probability of a jump of size z from the position x. In (a) we expanded F_{z} about x, and in (b) we exchanged the order of integrals and derivatives. Then we define the k-th moment of the jump pdf as follows:

$$
\mu_{k}(x, t)=\int_{\mathbb{R}} \mathrm{d} z z^{k} W(+z \mid x, t)
$$

This allows us to rewrite the above difference in a more compact form:

$$
W\left(x, t_{n+1}\right)-W\left(x, t_{n}\right)=\sum_{k=1}^{+\infty} \frac{(-1)^{k}}{k!} \frac{\partial^{k}}{\partial x^{k}}\left(\mu_{k}\left(x, t_{n}\right) W\left(x, t_{n}\right)\right)
$$

Physically, as probability is conserved, by the continuity equation, the change in probability density equals the divergence of a flux, which is just the x derivative in this one-dimensional case. So, if we extract a derivative, we can write the flux explicitly:

$$
\begin{aligned}
& =\frac{\partial}{\partial x}\left(\sum_{k=1}^{+\infty} \frac{(-1)^{k}}{k!} \frac{\partial^{k-1}}{\partial x^{k-1}}\left(\mu_{k}\left(x, t_{n}\right) W\left(x, t_{n}\right)\right)\right) \\
& \equiv-\frac{\partial}{\partial x} J\left(x, t_{n}\right)
\end{aligned}
$$

where $J\left(x, t_{n}\right)$ is the outward flux at x, meaning that if $J>0$, then $W\left(x, t_{n+1}\right)<$ $W\left(x, t_{n}\right)$ (the particle escapes from x to another place), and otherwise if $J<0$ we have $W\left(x, t_{n+1}\right)>W\left(x, t_{n}\right)$ (the particle is sucked in $\left.x\right)$.
If we integrate both sides over x and apply the probability conservation we get the boundary conditions for the flux:

$$
\begin{aligned}
\int_{\mathbb{R}}\left(W\left(x, t_{n+1}\right)-W\left(x, t_{n}\right)\right) \mathrm{d} x & =\int_{\mathbb{R}} \mathrm{d} x\left(-\frac{\partial}{\partial x} J\left(x, t_{n}\right)\right) \\
1-1 & =-\left.J\left(x, t_{n}\right)\right|_{-\infty} ^{+\infty}=J\left(-\infty, t_{n}\right)-J\left(+\infty, t_{n}\right)
\end{aligned}
$$

Boundary conditions for the flux

This means that, in a isolate system, the flux at $\pm \infty$ must be the same.
Finally, normalizing by the time interval we get the complete difference quotient, which will become a time derivative in the continuum limit.

$$
\begin{equation*}
\frac{W\left(x, t_{n+1}\right)-W\left(x, t_{n}\right)}{t_{n+1}-t_{n}}=\frac{\partial}{\partial x}\left\{\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k!} \frac{\partial^{k-1}}{\partial x^{k-1}} \frac{\mu_{k}\left(x, t_{n}\right) W\left(x, t_{n}\right)}{t_{n+1}-t_{n}}\right\} \tag{3.3}
\end{equation*}
$$

Letting $t_{n+1}-t_{n}=\epsilon$, in the limit $\epsilon \rightarrow 0$ the left side will be $\dot{W}(x, t)$.
All that's left is to find an explicit definition for the jump pdf $W(+z \mid x, t)$. Previously, we assumed a gaussian pdf for the displacements:

$$
z \sim \frac{1}{\sqrt{4 \pi D \epsilon}} \exp \left(-\frac{(\Delta x)^{2}}{4 D \epsilon}\right)
$$

With this choice, the first two moments become:

$$
\mu_{1}=0 \quad \mu_{2}=2 D \epsilon
$$

And the variance:

$$
\operatorname{Var}(z)=\mu_{2}-\mu_{1}^{2}=2 D \epsilon \propto \epsilon
$$

However, for a particle subject to a force we would expect to have a preferred jump direction, leading to a constant velocity motion in the direction of the force. So we require a different μ_{1} :

$$
\langle z\rangle=\mu_{1}=\int_{\mathbb{R}} z W(+z \mid x, t) \propto \epsilon f(x)
$$

We still want to fix the variance to be proportional to ϵ, as it is expected in a diffusion process.
An appropriate choice for such a distribution is given by:

$$
W(+z \mid x, t)=\frac{1}{\sqrt{\epsilon \hat{D}(x, t)}} F\left(\frac{z-\epsilon f(x, t)}{\sqrt{\epsilon \hat{D}(x, t)}}\right)
$$

1. Correct normalization
2. First moment \propto force

$$
\begin{aligned}
\langle z\rangle & =\mu_{1}(x, t)=\int_{\mathbb{R}} \mathrm{d} z z F\left(\frac{z-\epsilon f(x, t)}{\sqrt{\epsilon \hat{D}(x, t)}}\right) \frac{1}{\sqrt{\epsilon \hat{D}(x, t)}}= \\
& =\int_{\mathbb{R}} \mathrm{d} y(\epsilon f(x, t)+y \sqrt{\epsilon \hat{D}(x, t)}) F(y)= \\
& =\epsilon f(x, t) \underbrace{\int_{\mathbb{R}} F(y) \mathrm{d} y}_{=1}+\sqrt{\epsilon \hat{D}(x, t)} \int_{\mathbb{R}} y F(y) \stackrel{!}{=} \epsilon f(x, t)
\end{aligned}
$$

So, in order to have the right normalization and the desired $\langle z\rangle$ we need:

$$
\left\{\begin{array}{l}
\int_{\mathbb{R}} \mathrm{d} y F(y)=1 \\
\int_{\mathbb{R}} \mathrm{d} y y F(y)=0
\end{array}\right.
$$

Then we compute the first moment:

Both conditions are satisfied, for example, by all even normalized functions.
For the second moment:
3. Variance \propto time

$$
\begin{aligned}
\mu_{2}(x, t) & =\frac{1}{\sqrt{\epsilon \hat{D}(x, t)}} \int_{\mathbb{R}} \mathrm{d} z z^{2} F\left(\frac{z-\epsilon f(x, t)}{\sqrt{\epsilon \hat{D}(x, t)}}\right)= \\
& =\int_{\mathbb{R}} \mathrm{d} y\left(\epsilon f(x, t)+y \sqrt{\epsilon \hat{D}(x, t))^{2} F(y)=}\right. \\
& =\int_{\mathbb{R}} \mathrm{d} y F(y)\left[\epsilon^{2} f^{2}+y^{2} \hat{D} \epsilon+2 \epsilon \sqrt{\epsilon} \hat{D} F y\right]= \\
& =\epsilon^{2} f^{2}+\hat{D} \epsilon \int_{\mathbb{R}} \mathrm{d} y y^{2} F(y)=\epsilon^{2} f^{2}+\hat{D} \epsilon\left\langle y^{2}\right\rangle_{F(y)}
\end{aligned}
$$

And so the variance becomes:

$$
\operatorname{Var}(z)=\mu_{2}-\mu_{1}^{2}=\epsilon \hat{D}\left\langle y^{2}\right\rangle_{F(y)} \propto \epsilon
$$

which is proportional to ϵ as desired. For notational simplicity, we introduce a new function $D: \mathbb{R} \rightarrow \mathbb{R}$ such that:

$$
\operatorname{Var}(z)=\epsilon \hat{D}\left\langle y^{2}\right\rangle_{F(y)} \equiv 2 D(x, t) \epsilon \Rightarrow \mu_{2}(x, t)=\epsilon^{2} f^{2}+2 D(x, t)
$$

We note that higher order moments are all of order $O\left(\epsilon^{3 / 2}\right)$. For example, the third moment is:
4. Vanishing higher moments

$$
\begin{aligned}
\mu_{3}(x, t) & =\frac{1}{\sqrt{\epsilon \hat{D}(x, t)}} \mathrm{d} z \int_{\mathbb{R}} z^{3} F\left(\frac{z-\epsilon f(x, t)}{\sqrt{\epsilon \hat{D}(x, t)}}\right)= \\
& =\int_{\mathbb{R}} \mathrm{d} y\left(\epsilon f(x, t)+y \sqrt{\epsilon \hat{D}(x, t))^{3} F(y)=}\right. \\
& =\int_{\mathbb{R}} \mathrm{d} y\left(\epsilon^{3} f^{3}+y^{3}(\epsilon \hat{D})^{3 / 2}+3 \epsilon^{2} f^{2} y \sqrt{\epsilon \hat{D}}+3 \epsilon^{2} f \hat{D} y^{2}\right) F(y)= \\
& =\epsilon^{3} f^{3}+(\epsilon \hat{D})^{3 / 2}+3 \epsilon^{2} f \hat{D}\left\langle y^{2}\right\rangle_{F(y)}=O\left(\epsilon^{3 / 2}\right)
\end{aligned}
$$

Substituting back (B.4) in (B.3) we arrive to:

$$
\begin{aligned}
\frac{W\left(x, t_{n+1}\right)-W\left(x, t_{n}\right)}{\epsilon}= & -\frac{\partial}{\partial x}[W\left(x, t_{n}\right) \underbrace{\frac{\mu_{1}\left(x, t_{n}\right)}{\epsilon}}_{f(x, t)}]+\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}[\underbrace{\frac{\mu_{2}\left(x, t_{n}\right)}{\epsilon}}_{\epsilon f^{2}+2 D(x, t)} W\left(x, t_{n}\right)]+ \\
& +\underbrace{\frac{1}{3!} \frac{\partial^{3}}{\partial x^{3}}\left[W\left(x, t_{n}\right) \frac{\mu_{3}\left(x, t_{n}\right)}{\epsilon}\right]+\ldots}_{O\left(\epsilon^{1 / 2}\right)}
\end{aligned}
$$

Taking the limit $\epsilon \rightarrow 0$, we are left with:

$$
\begin{aligned}
\frac{\partial W(x, t)}{\partial t} & =-\frac{\partial}{\partial x}[f(x, t) W(x, t)]+\frac{1}{\not 2} \frac{\partial^{2}}{\partial x^{2}}[\not 2 D(x, t) W(x, t)]= \\
& =-\frac{\partial}{\partial x}\left[f(x, t) W(x, t)-\frac{\partial}{\partial x}(D(x, t) W(x, t))\right]
\end{aligned}
$$

Fokker-Planck equation

This is the Fokker-Planck equation, describing the diffusion process in the presence of a force $f(x, t)$, and a diffusion parameter $D(x, t)$.
Note that, in absence of forces $f(x, t) \equiv 0$ and with a constant diffusion $D(x, t) \equiv D$ we retrieve the usual diffusion equation:

$$
\frac{\partial}{\partial t} W(x, t)=D \frac{\partial^{2}}{\partial x^{2}} W(x, t)
$$

3.2 Langevin equation

The Fokker-Planck equation involves probability distributions, meaning that it describes the behaviour of ensembles of trajectories at once. However, we can find an equivalent description by focusing on a single path.
We start with a Wiener process, that is a stochastic process with independent and gaussian increments and continuous paths. Considering a time discretization $\left\{t_{i}\right\}$, the evolution of a single trajectory is described by:

$$
\begin{equation*}
x\left(t_{i+1}\right)=x\left(t_{i}\right)+\Delta x\left(t_{i}\right) \tag{3.6}
\end{equation*}
$$

where each increment $\Delta x\left(t_{i}\right)$ is sampled from a gaussian pdf:

$$
\Delta x_{i}\left(t_{i}\right) \sim \frac{1}{\sqrt{4 \pi D \Delta t_{i}}} \exp \left(-\frac{(\Delta x)^{2}}{4 D \Delta t_{i}}\right)
$$

To simplify notation, we change variables, so that:

$$
\frac{\Delta B^{2}}{2}=\frac{\Delta x^{2}}{4 D} \Rightarrow \Delta B=\frac{\Delta x}{\sqrt{2 D}}
$$

If $x \sim p(x)$, and $y=y(x) \sim g(y)$, then by the rule for a change of random variables we have:

$$
g(y)=p(x(y)) \frac{\mathrm{d} x(y)}{\mathrm{d} y}
$$

In this case:

$$
\Delta B \sim \frac{1}{\sqrt{4 \pi D \Delta t_{i}}} \exp \left(-\frac{(\Delta B)^{2}}{2 \Delta t_{i}}\right) \underbrace{\frac{\mathrm{d} \Delta x}{\mathrm{~d} \Delta B}}_{\sqrt{2 D}}=\frac{1}{\sqrt{2 \pi \Delta t_{i}}} \exp \left(-\frac{(\Delta B)^{2}}{2 \Delta t_{i}}\right)
$$

"Standard"
Brownian path

Note that now $\left\langle\Delta B^{2}\left(t_{i}\right)\right\rangle=\Delta t_{i}$, leaving out the D - so, in a sense, it is the "standard" Brownian path, and any specific Brownian motion can be obtained by rescaling it.
Substituting in (3.6) and rearranging we get:

$$
\begin{equation*}
x\left(t_{i+1}\right)-x\left(t_{i}\right)=\sqrt{2 D} \Delta B\left(t_{i}\right) \tag{3.7}
\end{equation*}
$$

We want now to form a time derivative in the left side, in order to arrive a (stochastic) differential equation for paths. To do this, we first extract a Δt_{i} factor from $\Delta B\left(t_{i}\right)$ by performing another change of variables:

$$
\begin{equation*}
\Delta B\left(t_{i}\right) \equiv \Delta t_{i} \xi\left(t_{i}\right) \tag{3.8}
\end{equation*}
$$

so that $\Delta x_{i}=\sqrt{2 D} \Delta t_{i} \xi_{i}$, and all the randomness is now contained in the random variable ξ, which is distributed according to:

$$
\xi\left(t_{i}\right) \sim \frac{1}{\sqrt{2 \pi \Delta t_{i}}} \exp \left(-\frac{\Delta t_{i}^{2} \xi_{i}^{2}}{2 \Delta t_{i}}\right) \underbrace{\frac{\mathrm{d} \Delta B_{i}}{\mathrm{~d} \xi\left(t_{i}\right)}}_{\Delta t_{i}}=\sqrt{\frac{\Delta t_{i}}{2 \pi}} \exp \left(-\frac{\Delta t_{i}}{2} \xi_{i}^{2}\right) \quad \xi_{i} \equiv \xi\left(t_{i}\right) \quad \text { White noise }
$$

Substituting back in (3.7) and dividing by Δt_{i} leads to:

$$
\frac{x\left(t_{i+1}\right)-x\left(t_{i}\right)}{\Delta t_{i}}=\sqrt{2 D} \xi\left(t_{i}\right)
$$

And by taking the continuum limit $\Delta t_{i} \rightarrow 0$ we get the Langevin equation for a Brownian particle:

$$
\begin{equation*}
\dot{x}(t)=\sqrt{2 D} \xi(t) \tag{3.9}
\end{equation*}
$$

We can see $\xi(t)$ as a highly irregular, quickly varying function, which, in a certain sense, expresses the result of Brownian collisions at a certain instant. In particular, the following holds:

$$
\langle\xi(t)\rangle=0 \quad\left\langle\xi(t) \xi\left(t^{\prime}\right)\right\rangle=\delta\left(t-t^{\prime}\right)
$$

meaning that the values of $\xi(t)$ at different instants are completely independent.

Note that, as we saw previously, Brownian paths are not differentiable - and so $\dot{x}(t)$ does not exist, and this is just a formal equation, with a definite meaning only in a given discretization. Also, note that $\xi(t)$ is a random variable, and so this is an example of a stochastic differential equation. It is not clear how to find a solution to such an equation, or even how to define what a solution should be - and this will be the main topic of the next section.
We can rewrite ($3 . \mathrm{H}_{1}$) in a more rigorous form by "multiplying by $\mathrm{d} t$ ", i.e. performing the change of variables (3.8), which - in the continuum limit - is $\mathrm{d} B=\xi \mathrm{d} t$, leading to:

$$
\mathrm{d} x(t)=\sqrt{2 D} \mathrm{~d} B \quad \mathrm{~d} B \sim \frac{1}{\sqrt{2 \pi \mathrm{~d} t}} \exp \left(-\frac{\mathrm{d} B^{2}}{2 \mathrm{~d} t}\right)
$$

Before moving on, we want to generalize this equation to the presence of external forces. As we saw previously, this just results in adding a constant velocity motion to the particle, leading to the full Langevin equation:

$$
\begin{align*}
\dot{x}(t) & =f(x, t)+\sqrt{2 D(x, t)} \xi(t) \\
\mathrm{d} x(t) & =f(x, t) \mathrm{d} t+\sqrt{2 D(x, t)} \mathrm{d} B \quad \mathrm{~d} B \sim \frac{1}{\sqrt{2 \pi \mathrm{~d} t}} \exp \left(-\frac{\mathrm{d} B^{2}}{2 \mathrm{~d} t}\right) \tag{3.10}
\end{align*}
$$

The physical meaning of $f(x, t)$ and $D(x, t)$ can be more clearly seen by comparing ($\mathrm{B} . \mathrm{Cl}$) to the equation of motion of the Brownian particle.
Consider a particle of mass m immersed in a fluid, with a radius a that is much larger than the surrounding molecules (typically $\sim 10^{-9}$ to $10^{-7} \mathrm{~m}$). The forces

Langevin equation

Stochastic Differential Equations

Derivation from physical arguments
acting on it will be that of viscous friction $-\gamma \dot{\boldsymbol{r}}$, eventual external forces $\boldsymbol{F}_{\text {ext }}$ (e.g. gravity), and a rapidly varying and random term $\boldsymbol{F}_{\text {noise }}$, encompassing the effect of the large number of collisions $\left(\sim 10^{12} / \mathrm{s}\right)$ with the smaller fluid particles:

$$
m \ddot{\boldsymbol{r}}(t)=-\gamma \dot{\boldsymbol{r}}+\boldsymbol{F}_{\text {ext }}+\boldsymbol{F}_{\text {noise }}(t)
$$

Dividing both sides by γ :

$$
\begin{equation*}
\frac{m}{\gamma} \ddot{\boldsymbol{r}}(t)=-\dot{\boldsymbol{r}}+\frac{\boldsymbol{F}_{\text {ext }}(\boldsymbol{r}, t)}{\gamma}+\frac{\boldsymbol{F}_{\text {noise }}(t)}{\gamma} \tag{3.11}
\end{equation*}
$$

Assuming a spherical particle, γ is given by Stokes law to be $6 \pi a \eta$, where η is the viscosity of the surrounding fluid.
Note that, if we ignore the external force and the random term, the equation becomes:

$$
\frac{\mathrm{d} \dot{\boldsymbol{r}}(t)}{\mathrm{d} t}=-\frac{\gamma}{m} v(t)
$$

which has solution:

$$
\dot{\boldsymbol{r}}(t)=\exp \left(-\frac{t}{\tau_{B}}\right) \dot{\boldsymbol{r}}(0) \quad \tau_{B}=\frac{m}{\gamma}
$$

τ_{B} is in the scale of $10^{-3} \mathrm{~s}$, and represents the timescale of reaching equilibrium, i.e. 0 velocity. So, for Brownian motion to happen, $\boldsymbol{F}_{\text {noise }}$ is necessary. Also, if we are interested in the motion on the scale of seconds, we can neglect the acceleration term. This is the overdamped limit (in analogy to a damped oscillator with high loss of energy due to attrition, so that it quickly reaches equilibrium without ever "overshooting"). Given that assumption, (3.TD) becomes:

$$
\dot{\boldsymbol{r}}=\frac{\boldsymbol{F}_{\text {ext }}}{\gamma}+\frac{\boldsymbol{F}_{\text {noise }}}{\gamma}
$$

Which, for a particle moving in one dimension, reduces to:

$$
x(t)=\underbrace{\frac{F_{\text {ext }}}{\gamma}}_{f(x, t)}+\underbrace{\frac{F_{\text {noise }}}{\gamma}}_{\sqrt{2 D(x, t) \xi} \xi(t)}
$$

Comparing with (3.II) gives the physical meaning of $f(x, t)$ and $D(x, t)$.

3.3 Summary

Summary of the previous lectures. We considered a more general stochastic process, a Markov Process, when the future only depends on the present. We wrote a Master Equation, and taking the continuum limit we get a second order partial differential equation, with two coefficients depending on the first two moments of the transition rate: f and D. We would want them to represent the force and diffusion rate, but we can't find their physical meaning. So
(Lesson 7 of 07/11/19)
Compiled: October 13, 2020
we consider the Langenvin equation, reaching the desired physical meaning. There, the increment depends on a deterministic term f and a noise term:

$$
\mathrm{d} x(t)=f(x(t), t) \mathrm{d} t+\sqrt{2 D(x(t), t)} \mathrm{d} B(t) \quad f=\frac{F_{\text {ext }}}{\gamma}
$$

If we discretize this equation, passing to finite differences, we get:
$\Delta x(t)=f(x(t), t) \Delta t+\sqrt{2 D(x(t), t)} \Delta B(t) \quad \Delta B(t) \sim \frac{1}{\sqrt{2 \pi \Delta t}} \exp \left(-\frac{\Delta B^{2}}{2 \Delta t}\right)$
This is needed because $\mathrm{d} x(t) / \mathrm{d} t$ is ill-defined (as we saw in the previous lecture). Note that $\Delta x(t)=x(t+\Delta t)-x(t)$.
We want to show that this kind equation leads to the same Fokker-Planck equation that we saw previously, and that was derived from the Master Equation. Then we would like to examine how much the stochastic amplitude (coefficient of $\mathrm{d} B(t))$ is related to temperature. In fact, we know already that f depends on $F_{\text {ext }}$, with $\boldsymbol{F}_{\text {ext }}=-\boldsymbol{\nabla} V$. We would like that, at constant temperature, the pdf of the stationary state will tend to the Maxwell-Boltzmann distribution:

$$
\mathbb{P}(x, t) \underset{t \rightarrow \infty}{\longrightarrow} \frac{1}{z} \exp \left(-\frac{V(x)}{k_{B} T}\right)
$$

3.4 Stochastic integrals

We arrived at the Langevin equation:

$$
\begin{equation*}
\frac{\mathrm{d} x}{\mathrm{~d} t}=f(x, t)+\sqrt{2 D(x, t)} \xi(t) \tag{3.12}
\end{equation*}
$$

where $\xi(t)$ is a "rapidly varying, highly irregular function", i.e. such that for $t \neq t^{\prime}, \xi(t)$ and $\xi\left(t^{\prime}\right)$ are statistically independent. As $\langle\xi(t)\rangle=0$, this means that:

$$
\left\langle\xi(t) \xi\left(t^{\prime}\right)\right\rangle=\delta\left(t-t^{\prime}\right)
$$

Equation ([.]2) does not make much sense, as $\dot{x}(t)$ does not exist anywhere. Even changing variables to $d B$ (i.e. "multiplying" both sides by $d t$) and integrating, we are left with the following equation:

$$
x(t)=x(0)+\int_{0}^{t} f(x(\tau), \tau) \mathrm{d} \tau+\int_{0}^{t} \sqrt{2 D(x(\tau), \tau)} \mathrm{d} B(\tau)
$$

It is not clear how the last integral is defined, as it involves a stochastic term $\mathrm{d} B$.

So, before tackling the full problem, we take a step back and study the theory behind stochastic calculus. Let's introduce a generic integral of that kind:

$$
S_{t}=\int_{0}^{t} G(\tau) \mathrm{d} B(\tau)
$$

Intuitively, we could see this as an infinite sum, where each term $G(\tau)$ is weighted by the outcome of a random variable $B(\tau)$.

So, to compute it, an idea is to first introduce a time discretization $\left\{t_{j}\right\}_{j=0, \ldots, n}$, with $t_{n}=t$, leading to:

$$
\begin{equation*}
S_{n}=\sum_{i=0}^{n} G\left(\tau_{i}\right)\left[B\left(t_{i}\right)-B\left(t_{i-1}\right)\right] \quad t_{i-1} \leq \tau_{i} \leq t_{i} \tag{3.13}
\end{equation*}
$$

and then take the continuum limit for $n \rightarrow \infty$. This, however, proves to be more difficult than expected, for the following reasons:

- First of all, the increments $B\left(t_{i}\right)-B\left(t_{i-1}\right)$ are chosen at random. This means that S_{n} is a random variable. In fact, we could see S_{t} as the sum of points from $G(\tau)$, each weighted with a randomly chosen weight. So it is necessary to define what it means to take the limit of a sequence of random variables S_{n}. As we will see, there is no unique definition.
- It is not clear how to choose the sampling instants τ_{i} for $G(\tau)$ in the discretization (3.[3). We could hope that in the limit of $n \rightarrow \infty$, any choice would lead to the same final result. This would be indeed true if $B(\tau)$ were a differentiable function - except it is only continuous and nowhere differentiable. So we need to pay attention to the specific (and arbitrary) rule to be used in computing the discretization.

3.4.1 Limits of sequences of random variables

Some basic definitions. Recall that a probability space is defined by a triple $(\Omega, \mathcal{F}, \mathbb{P})$, where Ω is a set of outcomes (sample space), \mathcal{F} is a σ-algebra on Ω, containing all possible events, that is sets of outcomes, and $\mathbb{P}: \mathcal{F} \rightarrow[0,1]$ is the probability measure. Then, a random variable is a measurable function $X: \Omega \rightarrow S$, with S denoting a state space.
For example, let Ω be the set of all possible results of rolling two dice, i.e. the set of ordered pairs $\left(x_{1}, x_{2}\right)$ with $x_{1}, x_{2} \in\{1,2,3,4,5,6\}$. Then \mathcal{F} is the set of all possible subsets of Ω (including both Ω and \varnothing) and $\mathbb{P}: \mathcal{F} \ni f \mapsto \mathbb{P}(f)$ is given by:

$$
\mathbb{P}(f)=\frac{|f|}{36}
$$

where $|f|$ is the cardinality of the set f.
A random variable can be, for example, the sum of the two dice:

$$
X(\omega)=x_{1}+x_{2} \quad \forall \omega=\left(x_{1}, x_{2}\right) \in \Omega
$$

Then, we can compute the probability of X assuming a certain value by measuring with \mathbb{P} the preimage set of X :

$$
\mathbb{P}(X=2)=\mathbb{P}(\omega \in \Omega \mid X(\omega)=2)=\mathbb{P}(\{1,1\})=\frac{1}{36}
$$

For discrete one-dimensional variables such as these all of this formalism does not lead to much gain, as there is an immediate and natural choice for $(\Omega, \mathcal{F}, \mathbb{P})$,
which is usually denoted by the saying "random". However, in more complex cases it becomes imperative to precisely define Ω, \mathcal{F} and \mathbb{P}, so to avoid ambiguous results (see Bertrand's paradox).

Consider a sequence $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ of random variables in a certain probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Suppose that X is another random variable, and we would like to give meaning to the concept of X_{n} "tending to" X :

$$
X_{n} \xrightarrow[n \rightarrow \infty]{ } X
$$

There are several possibilities, here stated from the weakest to the strongest:

1. Convergence in distribution. In this case, we simply require that the distribution of S_{n} approaches that of S as $n \rightarrow \infty$. Let F_{n} and F be the cumulative distributions of S_{n} and S, respectively. Then:

$$
X_{n} \xrightarrow[n \rightarrow \infty]{D} X \Leftrightarrow \lim _{n \rightarrow \infty} F_{n}(x)=F(x) \quad \forall x \in \mathbb{R} \mid F \text { is continuous at } x
$$

(The cumulative distribution, or cdf, is defined as $F_{X}(x)=\mathbb{P}(X \leq x)$).
Note that, as we are merely comparing functions, there is no need for X_{n} or X to be defined on the same probability space. Also, here the focus is on integral properties of the random variables, so there is no guarantee that sampling X_{n} and X will lead to close results, even for a large n. For example, consider X_{n} to be a sequence of standard gaussians, which obviously converges to a standard gaussian (X) in the distribution sense. If we sample a number from X_{100} and one from X, they could be arbitrarily far away from each other with a non-zero probability, that remains the same for all n. If we want to exclude that possibility we need a stronger requirement, which leads to the next definition.
2. Convergence in probability (Stochastic limit). If the probability of values of X_{n} being far from values of X vanishes as $n \rightarrow \infty$, then X_{n} converges in probability to X :

$$
X_{n} \frac{P}{n \rightarrow \infty} X \Leftrightarrow \lim _{n \rightarrow \infty} \mathbb{P}\left(\left|X_{n}-X\right|>\epsilon\right)=0
$$

Expanding the definition, this means that:

$$
\forall \epsilon>0, \forall \delta>0, \exists N(\epsilon, \delta) \text { s.t. } \forall n \geq N, \mathbb{P}\left(\left|X_{n}-X\right|>\epsilon\right)<\delta
$$

In other words, the probability of "a significant discordance" between values sampled from X_{n} and X vanishes as $n \rightarrow \infty$. Intuitively, X_{n} and X are strongly related, i.e. they not only distribute similarly, but also come from similar processes. For example, let X be the true length of a stick chosen at random from a population of sticks, and X_{n} be a measurement of that length made with an instrument that is more and more precise as $n \rightarrow \infty$. Then, for large n, it is clear that X_{n} will have a value that is really close to that of X. In this case, we say that X_{n} converges in probability to X, as $n \rightarrow \infty$.
3. Almost sure convergence. An even stronger limit requires that:

$$
X_{n} \xrightarrow[n \rightarrow \infty]{\text { a.s. }} X \Leftrightarrow \mathbb{P}\left(\liminf _{n \rightarrow \infty}\left\{\omega \in \Omega:\left|X_{n}(\omega)-X(\omega)\right|<\epsilon\right\}\right)=1 \quad \forall \epsilon>0
$$

Here, the liminf of a sequence of sets A_{n} is defined as:

$$
\liminf _{n \rightarrow \infty} A_{n}=\bigcup_{N=1}^{\infty} \bigcap_{n \geq N} A_{n}
$$

A member of $\lim \inf A_{n}$ is a member of all sets A_{n}, except a finite number of them (i.e. it's definitively a member of the A_{n}, as it is $\in A_{n}$ for all $n \geq \bar{n}$). So the term inside the parentheses is the set of all outcomes $\omega \in \Omega$ for which $X_{n}(\omega)$ is definitively close to $X(\omega)$, i.e. it covers all events resulting in a sequence of X_{n} that converges to X.

If we take X_{n} and X to be real-valued random variables, then the definition is simpler:

$$
X_{n} \xrightarrow[n \rightarrow \infty]{\text { a.s. }} X \Leftrightarrow \mathbb{P}\left(\omega \in \Omega: \lim _{n \rightarrow \infty} X_{n}(\omega)=X(\omega)\right)=1
$$

Or, in other words:

$$
\lim _{n \rightarrow \infty} X_{n}(\omega)=X(\omega) \quad \forall \omega \in \Omega \backslash A
$$

where $A \subset \Omega$ has 0 measure.
Almost sure convergence vs probability convergence. The difference between the two definitions is subtle, and can be somewhat seen from the following example, taken from http://bit.ly/2u2E9Rk and http://bit.ly/ 2Zy66vu.
Consider a sequence $\left\{X_{n}\right\}$ of independent random variables with only two possible values, 0 and 1 , such that:

$$
\mathbb{P}\left(X_{n}=1\right)=\frac{1}{n} \quad \mathbb{P}\left(X_{n}=0\right)=1-\frac{1}{n}
$$

For $\epsilon>0$:

$$
\mathbb{P}\left(\left|X_{n}\right| \geq \epsilon\right)= \begin{cases}\frac{1}{n} & 0<\epsilon \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

As $n \rightarrow \infty, \mathbb{P}\left(\left|X_{n}\right| \geq \epsilon\right) \rightarrow 0$, and so $X_{n} \xrightarrow[n \rightarrow \infty]{P} 0$.
However, X_{n} does not converge almost surely to 0 . Consider a realization of the sequence X_{n}, i.e. the measured outcomes of all X_{n} during "one run" of the experiment. This will be a binary sequence, like 000101001 Now, consider an ensemble of such sequences. What is the average number of ones in them? We can estimate it by summing the probability to have a 1 in the first place, in the second, and so on:

$$
\sum_{n=1}^{\infty} \frac{1}{n}=+\infty
$$

This in fact implies, by the second Borel Cantelli theorem ${ }^{m}$, that the probability of getting $X_{n}=1$ infinitely often (i.o.) is 1 , and so X_{n} cannot converge almost surely to 0 .
${ }^{a}$ ■See a proof at http://bit.ly/2tcfZU4 The main idea is that, given a set of independent events $\left(X_{n}=1\right)$, the sum of their probabilities diverges, then surely an infinite number of them do indeed occur. Formally: if $\sum_{n=1}^{+\infty} \mathbb{P}\left(X_{n}=1\right)=\infty$, then $\mathbb{P}\left(\lim \sup _{n \rightarrow \infty}\left\{X_{n}=1\right\}\right)=\mathbb{P}\left(\cap_{N=1}^{\infty} \cup_{n \geq N}\left\{X_{n}=1\right\}\right)=\mathbb{P}\left(\left\{X_{n}=1\right\}\right.$ i.o. $)=1$

It can be proven that almost sure convergence implies convergence in probability, which implies convergence in distribution. However, for our purposes we are interested in another kind of convergence:

- L^{q} convergence:

$$
\left.X_{n} \xrightarrow[n \rightarrow \infty]{L^{q}} X \Leftrightarrow \lim _{n \rightarrow \infty}\langle | X_{n}-\left.X\right|^{q}\right\rangle=0 \quad q \in \mathbb{N}
$$

Note that this implies convergence in probability. In fact:

$$
\begin{equation*}
\mathbb{P}\left(\left|X-X_{n}\right|>\epsilon\right)=\left\langle\mathbb{I}_{\left|X-X_{n}\right|>\epsilon}\right\rangle \leq\langle\underbrace{\mathbb{I}_{\left|X-X_{n}\right|>\epsilon}}_{0 \leq \odot \leq 1} \underbrace{\left.\frac{X-X_{n}}{\epsilon}\right|^{q}}_{\geq 1}\rangle \tag{3.14}
\end{equation*}
$$

where \mathbb{I} is a characteristic function, i.e. the random variable that is 1 when $\left|X-X_{n}\right|>\epsilon$ and 0 otherwise - so that the second term is always ≥ 1 when it is not killed by the first one. Then, by substituting II with its maximum 1 we get a greater term:

$$
\left.(\text { B. } \mathrm{Cl}) \leq\langle | X-\left.X_{n}\right|^{q}\right\rangle \frac{1}{\epsilon^{q}} \xrightarrow[n \rightarrow \infty]{ } 0 \quad \forall \epsilon>0
$$

where we used the linearity of the average to extract the constant ϵ^{q}, and then the L^{q} convergence (assumed by hypothesis).
Also, L^{q} convergence implies the convergence (in the usual sense) of the q-th moment:

$$
\begin{equation*}
\left.\left.\left.X_{n} \xrightarrow[n \rightarrow \infty]{L^{q}} X \Rightarrow \lim _{n \rightarrow \infty}\langle | X_{n}\right|^{q}\right\rangle=\left.\langle | X\right|^{q}\right\rangle \tag{3.15}
\end{equation*}
$$

If we choose $q=2$, we obtain mean square convergence:

$$
\left.X_{n} \xrightarrow[n \rightarrow \infty]{\text { m.s. }} X \Leftrightarrow \lim _{n \rightarrow \infty}\langle | X_{n}-\left.X\right|^{2}\right\rangle=0
$$

In this case it is easy to prove (3.5) by using the Cauchy-Schwarz inequality:

$$
(\mathbb{E}(X Y))^{2} \leq \mathbb{E}\left(X^{2}\right) \mathbb{E}\left(Y^{2}\right)
$$

If we let $X=X_{n}-X$ and $Y=1$, and assume that X_{n} converges to X in mean square, we obtain:

$$
0 \leq\left(\mathbb{E}\left(X_{n}-X\right)\right)^{2} \leq \mathbb{E}\left(\left(X_{n}-X\right)^{2}\right) \mathbb{E}(1) \xrightarrow[n \rightarrow \infty]{ } 0
$$

And so:

$$
\mathbb{E}\left(X_{n}-X\right)=\mathbb{E}\left(X_{n}\right)-\mathbb{E}(X) \xrightarrow[n \rightarrow \infty]{ } 0 \Rightarrow \lim _{n \rightarrow \infty} \mathbb{E}\left(X_{n}\right)=\mathbb{E}(X)
$$

Hölder inequality. Cauchy inequality is, in this case, a special case of the more general Hölder inequality. Consider a measure space (S, Σ, μ) (where S is the space, Σ a σ-algebra and μ a measure), and two measurable functions $f, g: S \rightarrow \mathbb{R}$:

$$
\|f g\|_{1} \leq\|f\|_{p}\|g\|_{p} \quad\|\cdot\|_{p}=\left(\int_{S}|\cdot|^{p} \mathrm{~d} \mu\right)^{1 / p}
$$

To compute a stochastic integral, we will proceed like the following:

- Discretize the integral as a finite (Riemann) sum, obtaining a sequence of finer and finer random variables $\left\{S_{n}\right\}_{n \in \mathbb{N}}$
- Use a mean square limit to compute the limit S of the sequence $\left\{S_{n}\right\}$

3.4.2 Prescriptions

All that's left is to choose a rule for the mid-points in the terms of the discretized sum. As we will see in the following example, there are several different possibilities, each leading to different results.

Example 6 (A simple stochastic integral):
Suppose $G(\tau)=B(\tau)$, and consider the following integral:

$$
S=\int_{0}^{t} B(\tau) \mathrm{d} B(\tau)
$$

If $B(\tau)$ where differentiable, then we could simply change variables and solve:

$$
S=\int_{0}^{t} B(\tau) \frac{\mathrm{d} B(\tau)}{\mathrm{d} \tau} \mathrm{~d} \tau=\left.\frac{1}{2} B^{2}(\tau)\right|_{0} ^{t}=\frac{B^{2}(t)-B^{2}(0)}{2} \quad \text { if } \exists \frac{\mathrm{d} B}{\mathrm{~d} \tau}
$$

However, here $B(\tau)$ is a rapidly varying irregular function, which is nowhere differentiable.
So, following our plan, we first discretize:

$$
\begin{equation*}
S_{n}=\sum_{i=1}^{n} B\left(\tau_{i}\right)\left[B\left(t_{i}\right)-B\left(t_{i-1}\right)\right] \quad t_{0} \equiv 0 ; t_{n} \equiv t ; t_{i-1} \leq \tau_{i} \leq t_{i} \tag{3.16}
\end{equation*}
$$

We now need a rule for choosing the τ_{i}. The simplest possibility is to fix them in the "same relative position" in every interval $\left[t_{i-1}, t_{i}\right]$, that is:

$$
\begin{equation*}
\tau_{i}=\lambda t_{i}+(1-\lambda) t_{i-1} \quad \lambda \in[0,1] \tag{3.17}
\end{equation*}
$$

Depending on the value of λ, the limit S will be different. We can quickly check this before computing S, by focusing on the expected values. In fact, we know that if $S_{n} \xrightarrow[n \rightarrow \infty]{\text { m.s. }} S$, then $\left\langle S_{n}\right\rangle \xrightarrow[n \rightarrow \infty]{\longrightarrow} S$ in the usual sense. So, we compute the average of S_{n} :

$$
\left\langle S_{n}\right\rangle=\sum_{i=1}^{n}\left\langle B\left(\tau_{i}\right)\left(B\left(t_{i}\right)-B\left(t_{i-1}\right)\right)\right\rangle=\sum_{i=1}^{n}\left(\left\langle B\left(\tau_{i}\right) B\left(t_{i}\right)\right\rangle-\left\langle B\left(\tau_{i}\right) B\left(t_{i-1}\right)\right\rangle\right)
$$

We already computed the correlator function for the Brownian noise $B(t)$:

$$
\begin{equation*}
\left\langle B(t) B\left(t^{\prime}\right)\right\rangle=\min \left(t, t^{\prime}\right) \tag{3.18}
\end{equation*}
$$

And so, as $t_{i-1} \leq \tau_{i} \leq t_{i}$, we get:

$$
\left\langle S_{n}\right\rangle=\sum_{i=1}^{n}\left(\tau_{i}-t_{i-1}\right)
$$

Substituting the choice for τ (3.J7):

$$
\left\langle S_{n}\right\rangle=\lambda \sum_{i=1}^{n}\left(t_{i}-t_{i-1}\right)=\lambda t_{n}=\lambda t
$$

Which does not depend on n, making the limit trivial:

$$
\langle S\rangle=\lim _{n \rightarrow \infty}\left\langle S_{n}\right\rangle=\lambda t
$$

This dependence on the prescription of τ_{i} is an important difference from ordinary calculus, meaning that many common results cannot be directly translated to stochastic calculus.
In practice, there are many possibilities for λ. The two most common are:
$\lambda= \begin{cases}0 & \text { Ito's prescription } \\ \frac{1}{2} & \text { Stratonovich's prescription (also called middle-point prescription) }\end{cases}$
Leading to, as we will see:

$$
S_{n} \xrightarrow[n \rightarrow \infty]{\text { m.s. }} S= \begin{cases}\frac{B^{2}(t)-B^{2}(0)}{2}-\frac{t}{2} & \lambda=0 \\ \frac{B^{2}(t)-B^{2}(0)}{2} & \lambda=1 / 2\end{cases}
$$

The Stratonovich prescription gives exactly the same result as ordinary calculus. However, note that it involves a dependence on the future, i.e. the next step of a path depends on the point that is a half-step later. This has no a real physical meaning (in a certain sense, it "violates causality"). That's why many physicists prefer the Ito's prescription.
Let's explicitly compute both results.
Ito's prescription. We want to prove the following result:

$$
\begin{equation*}
\sum_{i=1}^{n} B\left(t_{i-1}\right)\left(B\left(t_{i}\right)-B\left(t_{i-1}\right)\right) \xrightarrow[n \rightarrow \infty]{\text { m.s. }} \frac{B^{2}(t)-B^{2}(0)}{2}-\frac{t}{2} \tag{3.19}
\end{equation*}
$$

Denoting:

$$
B\left(t_{i}\right)=B_{i} ; \quad \Delta B_{i}=B_{i}-B_{i-1}
$$

we can rewrite (3.56) as:

$$
S_{n}=\sum_{i=1}^{n} B_{i-1} \Delta B_{i}
$$

First of all, we split that product in a sum of terms, with the double-product trick:

$$
a b=\frac{1}{2}\left[(a+b)^{2}-a^{2}-b^{2}\right]
$$

So that:

$$
\begin{aligned}
S_{n} & =\sum_{i=1}^{n} B_{i-1} \Delta B_{i}=\frac{1}{2} \sum_{i=1}^{n}[\underbrace{\left(B_{i-1}+\Delta B_{i}\right)^{2}}_{B_{i}^{2}}-B_{i-1}^{2}-\left(\Delta B_{i}\right)^{2}]= \\
& =\frac{1}{2} \sum_{i=1}^{n}\left[B_{i}^{2}-B_{i-1}^{2}-\left(\Delta B_{i}\right)^{2}\right]=\frac{1}{2}\left(B_{n}^{2}-B_{0}^{2}\right)-\frac{1}{2} \sum_{i=1}^{n}\left(\Delta B_{i}\right)^{2}= \\
& =\frac{1}{2}\left(B^{2}(t)-B^{2}(0)\right)-\frac{1}{2} \sum_{i=1}^{n}\left(\Delta B_{i}\right)^{2}
\end{aligned}
$$

Now (3.IT) becomes:

$$
\frac{B^{2}(t)-B^{2}(0)}{2}-\frac{1}{2} \sum_{i=1}^{n}\left(\Delta B_{i}\right)^{2} \xrightarrow[n \rightarrow \infty]{\text { m.s. }} \frac{B^{2}(t)-B(0)}{2}-\frac{t}{2} \quad t_{n}=t ; t_{0}=0
$$

Applying the definition of mean square limit, this is equivalent to showing that:

$$
\begin{equation*}
\left.\langle | \frac{B^{2}(t)-B^{2}(\theta)}{2}-\frac{1}{2} \sum_{i=1}^{n}\left(\Delta B_{i}\right)^{2}-\left.\left[\frac{B^{2}(t)-B^{2}(\theta)}{2}-\frac{t}{2}\right]\right|^{2}\right\rangle \xrightarrow[n \rightarrow \infty]{?} 0 \tag{3.20}
\end{equation*}
$$

Expanding:

$$
\begin{align*}
\frac{1}{4}\left\langle\left[-\sum_{i=1}^{n}\left(\Delta B_{i}\right)^{2}+t\right]^{2}\right\rangle & =\frac{1}{4}\left\langle\left[t-\sum_{i=1}^{n}\left(\Delta B_{i}\right)^{2}\right]^{2}\right\rangle \underset{(a)}{\frac{1}{4}}\left\langle\left[\sum_{i=1}^{n}\left(\Delta t_{i}-\Delta B_{i}^{2}\right)\right]^{2}\right\rangle= \\
& =\frac{1}{4} \sum_{i, j=1}^{n}\left\langle\left[\Delta t_{i}-\left(\Delta B_{i}\right)^{2}\right]\left[\Delta t_{j}-\left(\Delta B_{j}\right)^{2}\right]\right\rangle \tag{3.21}
\end{align*}
$$

where in (a) we used $t=\sum_{i=1}^{n} \Delta t_{i}$, and in (b) $\left(\sum_{i} a_{i}\right)^{2}=\sum_{i j} a_{i} a_{j}$. We can rewrite the sum highlighting the case where $i=j$:

$$
\begin{equation*}
(\text { B.2 II })=\frac{1}{4}\left[\sum_{i=1}^{n}\left\langle\left[\Delta t_{i}-\left(\Delta B_{i}\right)^{2}\right]^{2}\right\rangle+\sum_{i \neq j}^{n}\left\langle\left[\Delta t_{i}-\left(\Delta B_{i}\right)^{2}\right]\left[\Delta t_{j}-\left(\Delta B_{j}\right)^{2}\right]\right\rangle\right] \tag{3.22}
\end{equation*}
$$

Noting that the ΔB_{i} come from independent gaussians, we have that the expected values integrals factorize:

$$
\langle A\rangle=\int \mathrm{d} \Delta B_{i} \ldots \mathrm{~d} \Delta B_{n} A \prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi \Delta t_{i}}} \exp \left(-\frac{\left(\Delta B_{i}\right)^{2}}{2 \Delta t_{i}}\right)
$$

In other words, this means that the average of the product is just the product of the averages:

$$
\left\langle\left(\Delta t_{i}-\left(\Delta B_{i}\right)^{2}\right)\left(\Delta t_{j}-\left(\Delta B_{j}\right)^{2}\right)\right\rangle=\left\langle\left(\Delta t_{i}-\left(\Delta B_{i}\right)^{2}\right)\right\rangle\left\langle\left(\Delta t_{j}-\left(\Delta B_{j}\right)^{2}\right)\right\rangle=
$$

$$
=\left[\Delta t_{i}-\left\langle\left(\Delta B_{i}\right)^{2}\right\rangle\right]\left[\Delta t_{j}-\left\langle\left(\Delta B_{j}\right)^{2}\right\rangle\right]
$$

We already computed the second moment of that gaussian:

$$
\left\langle\left(\Delta B_{i}\right)^{2}\right\rangle=\int \frac{\mathrm{d} \Delta B_{i}}{\sqrt{2 \pi \Delta t_{i}}} \Delta B_{i}^{2} \exp \left(-\frac{\Delta B_{i}^{2}}{2 \Delta t_{i}}\right)=\Delta t_{i}
$$

and so:

$$
\left\langle\left(\Delta t_{i}-\left(\Delta B_{i}\right)^{2}\right)\right\rangle=0
$$

So we are left only with the first term of (3.22]):

$$
\begin{equation*}
(\mathrm{B.2} 2)=\frac{1}{4} \sum_{i=1}^{n}\left\langle\left[\Delta t_{i}-\left(\Delta B_{i}\right)^{2}\right]^{2}\right\rangle=\frac{1}{4} \sum_{i=1}^{n}[\Delta t_{i}^{2}-2 \Delta t_{i} \underbrace{\left\langle\left(\Delta B_{i}\right)^{2}\right\rangle}_{\Delta t_{i}}+\left\langle\Delta B_{i}^{4}\right\rangle] \tag{3.23}
\end{equation*}
$$

Recall that, for a random variable x sampled from a gaussian $\mathcal{N}(0, \sigma)$:

$$
\left\langle x^{2 n}\right\rangle=\sigma^{2 n} \frac{(2 n)!}{2^{n} n!}= \begin{cases}\sigma^{2} & n=1 \\ \sigma^{4} \frac{4!}{4 \cdot 2!}=3 \sigma^{4} & n=2\end{cases}
$$

In our case, this means that $\left\langle\left(\Delta B_{i}\right)^{4}\right\rangle=\Delta t_{i}^{2}$, leading to:

$$
(\mathrm{B} \cdot 2.3)=\frac{1}{2} \sum_{i=1}^{n} \Delta t_{i}^{2}
$$

When taking the limit of the mesh $(n \rightarrow \infty)$, the number of summed terms become infinite, but also the size of each of them vanishes:

$$
\max _{i} \Delta t_{i} \xrightarrow[n \rightarrow \infty]{ } 0
$$

To resolve that limit we need to use the fact that the end-point is fixed ($t_{n} \equiv t$) and so:

$$
\frac{1}{2} \sum_{i=1}^{n} \Delta t_{i}^{2} \leq \frac{1}{2}\left(\sum_{i=1}^{n} \Delta t_{i}\right)^{2}=\frac{1}{2}\left(\sum_{i=1}^{n} \Delta t_{i}\right) \underbrace{\left(\sum_{j=1}^{n} \Delta t_{j}\right)}_{t} \leq \frac{t}{2}\left(\max _{i} \Delta t_{i}\right) \xrightarrow[n \rightarrow \infty]{\longrightarrow} 0
$$

Stratonovich's prescription. In this case, we want to show that:

$$
S_{n}=\sum_{i=1}^{n} B\left(\frac{t_{i}+t_{i-1}}{2}\right)\left[B\left(t_{i}\right)-B\left(t_{i-1}\right)\right] \underset{n \rightarrow \infty}{\text { m.s. }} \frac{B^{2}(t)-B^{2}(0)}{2}
$$

Note that now we need a set of middle points in the mesh, which leads to some complications.

One trick is to simply double the "resolution" of the discretization, and choose the middle points to be the odd indices. We then define:

$$
S_{2 n}^{\prime}=\sum_{i=1}^{2 n} B_{2 i-1}\left(B_{2 i}-B_{2(i-1)}\right)
$$

with $t_{2 i-1} \equiv\left(t_{2 i}+t_{2(i-1)}\right) / 2$, while the $t_{2 i}$ may be distributed arbitrarily. The full computation is very long and tedious, and not much enlightening, and is therefore omitted.

A shorter way to compute that, but not as rigorous, is by stating that:

$$
S_{n}=\sum_{i=1}^{n} \frac{B\left(t_{i}\right)+B\left(t_{i-1}\right)}{2}\left(B\left(t_{i}\right)-B\left(t_{i-1}\right)\right)
$$

However it is not obvious that is possible to approximate a midpoint of B with an average, as $B\left(t_{i}\right)$ are all random variables. In fact, it is possible to show that the two expressions have the same distribution, but they are not the same random variable! In any way, if we do this, the thesis immediately follows:

$$
=\frac{1}{2} \sum_{i=1}^{n}\left(B^{2}\left(t_{i}\right)-B^{2}\left(t_{i-1}\right)\right)
$$

3.4.3 Ito's calculus

In our calculations, we will be usually concerned with the following kinds of stochastic integrals $G(t)$:

1. $\int_{0}^{t} F(B(\tau)) \mathrm{d} B(\tau)$
2. $\int_{0}^{t} g(\tau) \mathrm{d} B(\tau)$
3. $\int_{0}^{t} g(\tau) \mathrm{d} \tau$ (usual integrals)

These $G(t)$ are called non-anticipating functions, because they are independent of $B\left(t^{\prime}\right)-B(t)$ for $t^{\prime}>t$, meaning that they do not dependent on what happens in the Brownian motion at times later than t (i.e. they do not depend on the future). So, by using Ito's prescription (I.p.) in the discretization and mean square (m.s.) for the continuum limit we get:

$$
\int_{0}^{t} F(B(\tau)) \mathrm{d} B(\tau) \stackrel{\text { I.p. }}{\underline{\text { m.s. }}} \sum_{i=1}^{n} F\left(B_{i-1}\right) \Delta B_{i}
$$

Note how $F\left(B_{i-1}\right)$ and ΔB_{i} are independent of each other, simplifying the calculations. (Note that the Stratonovich prescription here causes troubles during evaluation, as it introduces some interdependence between different terms).

3.5 Stochastic Differential Calculus

We now consider a more general stochastic integral, and show that, using Ito's prescription:

$$
\begin{aligned}
\int_{0}^{t} H(B(\tau), \tau)(\mathrm{d} B(\tau))^{k} & \stackrel{\text { I.p. }}{\underline{m . s .}} \sum_{i=1}^{n} H\left(B_{i-1}, \tau_{i-1}\right)\left(\Delta B_{i}\right)^{k}= \\
& = \begin{cases}\int_{0}^{t} H(B, \tau) \mathrm{d} B(\tau) & k=1 \\
\int_{0}^{t} H(B(\tau), \tau) \mathrm{d} \tau & k=2 \\
0 & k>2\end{cases}
\end{aligned}
$$

This leads to the following "rules" for Ito integrals:

$$
(\mathrm{d} B)^{n}= \begin{cases}\mathrm{d} B & n=1 \tag{3.24}\\ \mathrm{~d} t & n=2 \\ 0 & n>2\end{cases}
$$

We already showed an example for $k=1$, and we now proceed with the other two cases.
Example 7 (Integral in $\mathrm{d} B^{2}$):
Consider a non-anticipating function $G(\tau)$, and the following stochastic integral:

$$
I=\int_{0}^{t} G(\tau)(\mathrm{d} B(\tau))^{2}
$$

With non-anticipating we mean that $G(\tau)$ does not depend on $B(s)$ $B(\tau) \forall s>\tau$, i.e. it does not depend on the future. Discretizing:

$$
I=\lim _{n \rightarrow \infty}^{\text {m.s. }} I_{n}=\operatorname{mim}_{n \rightarrow \infty}^{\text {m.s. }} \sum_{i=1}^{n} G\left(t_{i-1}\right) \Delta B_{i}^{2}
$$

For simplicity, denote:

$$
G_{i} \equiv G_{i} \quad \Delta B_{i} \equiv B_{i}-B_{i-1} \quad \Delta t_{i}=t_{i}-t_{i-1}
$$

We want to prove that:

$$
\int_{0}^{t} G(\tau)(\mathrm{d} B(\tau))^{2} \stackrel{?}{=} \int_{0}^{t} G(\tau) \mathrm{d} \tau=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} G_{i-1} \Delta t_{i}
$$

Applying the definition of a mean square limit, this is equivalent to:

$$
\left\langle\left(\sum_{i=1}^{n} G_{i-1} \Delta B_{i}^{2}-\sum_{i=1}^{n} G_{i-1} \Delta t_{i}\right)^{2}\right\rangle \xrightarrow[n \rightarrow \infty]{?} 0
$$

Expanding the square as a product of two sums over i and j, and then highlighting the case with $i=j$:

$$
\begin{align*}
& \left\langle\left[\sum_{i=1}^{n} G_{i-1}\left[\left(\Delta B_{i}\right)^{2}-\Delta t_{i}\right]\right]^{2}\right\rangle=\sum_{i, j=1}^{n}\left\langle G_{i-1}\left[\left(\Delta B_{i}\right)^{2}-\Delta t_{i}\right] G_{j-1}\left[\left(\Delta B_{j}\right)^{2}-\Delta t_{j}\right]\right\rangle= \\
& =\sum_{i=1}^{n}\left\langle G_{i-1}^{2}\left[\left(\Delta B_{i}\right)^{2}-\Delta t_{i}\right]^{2}\right\rangle+2 \sum_{i<j}^{n}\left\langle G_{i-1}\left[\left(\Delta B_{i}\right)^{2}-\Delta t_{i}\right] G_{j-1}\left[\left(\Delta B_{j}\right)^{2}-\Delta t_{j}\right]\right\rangle \tag{3.25}
\end{align*}
$$

As $i<j$, note that the yellow term does not depend on $\Delta B_{j}=B_{j}-B_{j-1}=$ $B\left(t_{j}\right)-B\left(t_{j-1}\right)$. In fact, as G is non-anticipating, G_{j-1} depends only on the previous steps. Thus, the yellow and blue terms are independent of each other, and so we can factorize the average:
$(\mathrm{K} .2 \mathrm{~T})=\sum_{i=1}^{n}\left\langle G_{i-1}^{2}\left[\left(\Delta B_{i}\right)^{2}-\Delta t_{i}\right]^{2}\right\rangle+2 \sum_{i<j}^{n}\left\langle G_{i-1}\left[\left(\Delta B_{i}\right)^{2}-\Delta t_{i}\right] G_{j-1}\right\rangle\left\langle\left(\Delta B_{j}\right)^{2}-\Delta t_{j}\right\rangle$
Recall that:

$$
\left\langle\left(\Delta B_{j}\right)^{2}-\Delta t_{j}\right\rangle=\left\langle\left(\Delta B_{j}\right)^{2}\right\rangle-\Delta t_{j}=0
$$

and so only the first term of (3.2.5) remains. Again, noting that G_{i-1} does not depend on ΔB_{i}, as it is non-anticipating, can factorize the average:

$$
\begin{equation*}
(\text { B.2.5) })=\left\langle\sum_{i=1}^{n} G_{i-1}^{2}\left[\left(\Delta B_{i}\right)^{2}-\Delta t_{i}\right]^{2}\right\rangle=\sum_{i=1}^{n} \underbrace{\left\langle G_{i-1}^{2}\right\rangle}_{G_{i-1}^{2}}\left\langle\left[\left(\Delta B_{i}\right)^{2}-\Delta t_{i}\right]^{2}\right\rangle \tag{3.26}
\end{equation*}
$$

Expanding the stochastic term:

$$
\begin{array}{r}
\left\langle\left[\left(\Delta B_{i}\right)^{2}-\Delta t_{i}\right]^{2}\right\rangle=\left\langle\left(\Delta B_{i}\right)^{4}-2 \Delta t_{i}\left(\Delta B_{i}\right)^{2}\right\rangle+\Delta t_{i}^{2}= \\
=\underbrace{\left\langle\left(\Delta B_{i}\right)^{4}\right\rangle}_{3\left(\Delta t_{i}\right)^{2}}-2 \Delta t_{i} \underbrace{\left\langle\left(\Delta B_{i}\right)^{2}\right\rangle}_{\Delta t_{i}}+\Delta t_{i}^{2}=2 \Delta t_{i}^{2}
\end{array}
$$

And substituting back into the sum and taking the limit completes the proof:
$($ (3.26) $)=2 \sum_{i=1}^{n} G_{i-1}^{2} \Delta t_{i}^{2} \leq 2\left(\max _{i \leq j \leq n} \Delta t_{j}\right) \sum_{i=1}^{n} G_{i-1}^{2} \Delta t_{i} \xrightarrow[n \rightarrow \infty]{\longrightarrow} 2 \cdot 0 \cdot \int_{0}^{t} G^{2}(\tau) \mathrm{d} \tau=0$
This proves that $(\mathrm{d} B)^{2}=\mathrm{d} t$.

Example 8 (The case with $n>2$):

We want now to show that:

$$
\int_{0}^{t} G(\tau)(\mathrm{d} B(\tau))^{n}=\lim _{n \rightarrow \infty}^{\mathrm{m} . \mathrm{s} .} \sum_{i=1}^{n} G_{i-1}\left(\Delta B_{i}\right)^{n}=0
$$

By definition, we want to show that:

$$
\left\langle\left(\sum_{i=1}^{n} G_{i-1}\left(\Delta B_{i}\right)^{n}\right)^{2}\right\rangle \xrightarrow[n \rightarrow \infty]{\longrightarrow} 0
$$

Expanding the square, and factorizing the averages (as G is nonanticipating) leads to:

$$
\begin{align*}
\left\langle\left(\sum_{i=1}^{n} G_{i-1}\left(\Delta B_{i}\right)^{n}\right)^{2}\right\rangle & =\sum_{i=1}^{n}\left\langle G_{i-1}^{2}\left(\Delta B_{i}\right)^{2 n}\right\rangle+2 \sum_{i<j}^{n}\left\langle G_{i-1} G_{j-1}\left(\Delta B_{i}\right)^{n}\left(\Delta B_{j}\right)^{n}\right\rangle= \\
& =\sum_{i=1}^{n} G_{i-1}^{2}\left\langle\left(\Delta B_{i}\right)^{2 n}\right\rangle+2 \sum_{i<j}^{n}\left\langle G_{i-1} G_{j-1}\left(\Delta B_{i}\right)^{n}\right\rangle\left\langle\left(\Delta B_{j}\right)^{n}\right\rangle \tag{3.27}
\end{align*}
$$

Now, recall that the p-th central moment of $X \sim \mathcal{N}(\mu, \sigma)$ can be computed with Isserlis theorem, resulting in:

$$
\mathbb{E}\left[(X-\mu)^{p}\right]= \begin{cases}0 & p \text { is odd } \\ \sigma^{p}(p-1)!! & p \text { is even }\end{cases}
$$

where $p!!=p \cdot(p-2) \cdots \cdots 1$ is a double factorial, that can be rewritten in terms of factorials as follows:

$$
p!!= \begin{cases}2^{k} k! & p=2 k \text { even } \tag{3.28}\\ \frac{(2 k)!}{2^{k} k!} & p=2 k-1 \text { odd }\end{cases}
$$

So, if \boldsymbol{n} is odd, the blue term in ($3: 27$) vanishes. Let's suppose, for simplicity, that G is bounded, i.e. $|G(\tau)|<K \forall \tau \in \mathbb{R}$. Then:

$$
\begin{aligned}
(\mathbf{3 . 2 7}) & =\sum_{i=1}^{n} G_{i-1}^{2}\left(\Delta t_{i}\right)^{n}(2 n-1)!!=\sum_{i=1}^{n} G_{i-1}^{2}\left(\Delta t_{i}\right)^{n} \frac{(2 n)!}{2^{n} n!} \leq \frac{K^{2}(2 n)!}{2^{n} n!} \sum_{i=1}^{n}\left(\Delta t_{i}\right)^{n} \\
& \leq \frac{K^{2}(2 n)!}{2^{n} n!}\left(\max _{i \leq j \leq n}(\Delta t)^{n-1}\right) \underbrace{\sum_{i=1}^{n} \Delta t_{i}}_{t} \xrightarrow[n \rightarrow \infty]{\longrightarrow} 0
\end{aligned}
$$

On the other hand, if \boldsymbol{n} is even, the blue term in (B:27) is not null. However, the same argument for n odd can be applied to the first term, which vanishes in the limit. So we only need to study the blue term:

$$
\begin{equation*}
(\mathbf{B . 2 7})=2 \sum_{i<j}^{n}\langle\underbrace{G_{i-1} G_{j-1}}_{\leq K^{2}}\left(\Delta B_{i}\right)^{n}\rangle\left\langle\left(\Delta B_{j}\right)^{n}\right\rangle \tag{3.29}
\end{equation*}
$$

Here, as n is even:
$\left\langle\left(\Delta B_{i}\right)^{n}\right\rangle=\left(\Delta t_{i}\right)^{n / 2}(n-1)!!=\left(\Delta t_{i}\right)^{n / 2}\left(2 \frac{n}{2}-1\right)!!\underset{(\mathbf{3} 2 \boldsymbol{2})}{=}\left(\Delta t_{i}\right)^{n / 2} \frac{n!}{2^{n / 2}(n / 2)!}$
And so:

$$
\begin{aligned}
(\overline{3.2} \mid) & \leq 2 K^{2}\left(\frac{n!}{2^{n / 2}(n / 2)!}\right)^{2} \sum_{i<j}^{n} \Delta t_{i}^{n / 2} \Delta t_{j}^{n / 2} \\
& \leq 2 K^{2}\left(\frac{n!}{2^{n / 2}(n / 2)!}\right)^{2}\left(\max _{i \leq l \leq n} \Delta t_{l}\right)^{2(n / 2-1)} \underbrace{\sum_{i<j}^{n} \Delta t_{i} \Delta t_{j}}_{\leq t^{2}} \xrightarrow[n \rightarrow \infty]{ } 0
\end{aligned}
$$

Example 9 (Other cases):

Ito's rules allow us to consider even more general integrals. For example:

$$
\int_{0}^{t} G(\tau) \mathrm{d} B(\tau) \mathrm{d} \tau=0
$$

In fact, as $(\mathrm{d} B)^{2}=\mathrm{d} \tau, \mathrm{d} B \mathrm{~d} \tau=0$ because $(\mathrm{d} B)^{n}=0 \forall n>2$.

Example 10 (Integration of polynomials):

By using Ito's rules we can find a formula for integrating powers of the Brownian motion:

$$
\int_{0}^{t}(B(\tau))^{n} \mathrm{~d} B(\tau)
$$

We first differentiate a polynomial, and then recover the rule for integration by performing the inverse operation.
Recall that, in general, a differential is the increment of a function after a small nudge of its argument:

$$
\mathrm{d} f(t)=f(t+\mathrm{d} t)-f(t)
$$

The same holds in the stochastic case. In particular:

$$
\begin{aligned}
\mathrm{d}(B(t))^{n} & =[B(t+\mathrm{d} t)]^{n}-(B(t))^{n}=[B(t)+\mathrm{d} B(t)]^{n}-(B(t))^{n}= \\
& =\sum_{(a)}^{n}\binom{n}{k}(\mathrm{~d} B(t))^{k}(B(t))^{n-k}-(B(t))^{n}= \\
& =(B(t))^{n}+\sum_{k=1}^{n}\binom{n}{k}(\mathrm{~d} B(t))^{k}(B(t))^{n-k}-(B(t))^{n}= \\
& =(b) \underbrace{n(\mathrm{~d} B(t))(B(t))^{n-1}}_{k=1}+\underbrace{\frac{n(n-1)}{2} \overbrace{(\mathrm{~d} B(t))^{2}}^{\mathrm{d} t}(B(t))^{n-2}}_{k=2}+\underbrace{0}_{k>2}
\end{aligned}
$$

where in (a) we used Newton's binomial formula, and in (b) the previously found Ito's rules for integration (3.24). Letting $m=n-1$ and isolating $\mathrm{d} B(t)$ leads to:

$$
(m+1)(B(t))^{m} \mathrm{~d} B(t)=(\mathrm{d} B(t))^{m+1}-\frac{m(m+1)}{2}(B(t))^{m-1} \mathrm{~d} t
$$

Finally, dividing by $m+1$ and integrating leads to the desired formula:

$$
\begin{aligned}
\int_{0}^{\tau}(B(t))^{m} \mathrm{~d} B(t) & =\frac{1}{m+1} \int_{0}^{\tau} \mathrm{d}(B(t))^{m+1}-\frac{m}{2} \int_{0}^{\tau}(B(t))^{m-1} \mathrm{~d} t= \\
& =\left.\frac{1}{m+1}(B(t))^{m+1}\right|_{0} ^{\tau}-\frac{m}{2} \int_{0}^{\tau}(B(t))^{m-1} \mathrm{~d} t= \\
& =\frac{(B(\tau))^{m+1}-(B(0))^{m+1}}{m+1}-\frac{m}{2} \int_{0}^{\tau}(B(t))^{m-1} \mathrm{~d} t
\end{aligned}
$$

And in the case $m=1$ we retrieve the previously obtained result:

$$
\int_{0}^{\tau} B(t) \mathrm{d} B(t)=\frac{B^{2}(\tau)-B^{2}(0)}{2}-\frac{\tau}{2}
$$

Example 11 (General differentiation rule):

Because $(\mathrm{d} B)^{2}=\mathrm{d} t$, when computing differentials from a Taylor expansion up to $O\left(\mathrm{~d} t^{2}\right)$ one must compute even the terms of order $\mathrm{d} B^{2}$. For example, consider a generic function $f(B(t), t)$:

$$
\begin{aligned}
\mathrm{d} f(B(t), t)= & \frac{\partial f}{\partial t} \mathrm{~d} t+\frac{\partial f}{\partial B} \mathrm{~d} B(t)+\underbrace{\frac{1}{2} \frac{\partial^{2} f^{2}}{\partial t^{2}}}_{O\left([\mathrm{~d} t]^{2}\right)}+\frac{1}{2} \frac{\partial^{2} f}{\partial B^{2}} \underbrace{[\mathrm{~d} B(t)]^{2}}_{\mathrm{d} t}+ \\
& +\frac{\partial^{2} f}{\partial B(t) \partial t} \underbrace{\mathrm{~d} t \mathrm{~d} B(t)}_{0}+O\left([\mathrm{~d} t]^{2}\right)= \\
= & \frac{\partial f}{\partial t} \mathrm{~d} t+\frac{\partial f}{\partial B} \mathrm{~d} B(t)+\frac{1}{2} \frac{\partial^{2} f}{\partial B^{2}} \mathrm{~d} t+O\left([\mathrm{~d} t]^{2}\right)
\end{aligned}
$$

3.6 Derivation of the Fokker-Planck equation

Starting from the Master Equation and taking the continuum limit we arrived at the Fokker-Planck equation:

$$
\begin{equation*}
\dot{W}(x, t)=-\frac{\partial}{\partial x}\left[f(x, t) W(x, t)-\frac{\partial}{\partial x} W(x, t) D(x, t)\right] \tag{3.30}
\end{equation*}
$$

At the same time, if we consider the dynamics of a single path, adding a stochastic term to the second law of motion, we arrive at the Langevin equation (in the overdamped limit):

$$
\begin{equation*}
\mathrm{d} x(t)=f(x(t), t) \mathrm{d} t+\sqrt{2 D(x(t), t)} \mathrm{d} B(t) \tag{3.31}
\end{equation*}
$$

We want now to show that these two formulations are equivalent, by deriving (B.3DI) from (B.3D). The main idea is to introduce a test function $h(x(t))$, and compute its expected value at the instant t over all possible points that can be reached by the trajectory $x(t)$, thus obtaining a value that will depend on the global probability distribution $W(x, t)$. Then, we can use Langevin equation to describe the dynamics of each single path. In this way, we will obtain a relation between a quantity involving $W(x, t)$ and the parameters $f(x, t)$ and $D(x, t)$ appearing in (B .3 H$)$, which will hopefully be (B .3 I).
So, let's start by computing the average of $h(x(t))$ at a fixed time:

$$
\langle h(x(t))\rangle=\int_{\mathbb{R}} \mathrm{d} x W(x, t) h(x)
$$

As we seek to construct a time derivative, we start by differentiating:

$$
\begin{equation*}
\mathrm{d}\langle h(x(t))\rangle=\left(\frac{\partial}{\partial t} \int_{\mathbb{R}} \mathrm{d} x W(x, t) h(x)\right) \mathrm{d} t=\mathrm{d} t \int_{\mathbb{R}} \mathrm{d} x \dot{W}(x, t) h(x) \tag{3.32}
\end{equation*}
$$

And then dividing by $\mathrm{d} t$ leads to:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\langle h(x(t))\rangle=\int_{\mathbb{R}} \mathrm{d} x \dot{W}(x, t) h(x) \tag{3.33}
\end{equation*}
$$

However, we could also start by differentiating $h(x(t))$:

$$
\begin{align*}
\mathrm{d} h(x(t)) & =h(x(t)+\mathrm{d} x(t))-h(x(t))= \tag{3.34}\\
& =h^{\prime}(x(t)) \mathrm{d} x(t)+\frac{1}{2} h^{\prime \prime}(x(t))[\mathrm{d} x(t)]^{2}+O\left([\mathrm{~d} x(t)]^{2}\right) \tag{3.35}
\end{align*}
$$

where in (a) we used a Taylor expansion for the first term. From (3.3D), and applying Ito's rules, we can obtain explicit expressions for the $[\mathrm{d} x(t)]^{n}$:

$$
\begin{aligned}
& {[\mathrm{d} x(t)]^{2}=f^{2}[\mathrm{~d} t]^{2}+2 D \overbrace{[\mathrm{~d} B(t)]^{2}}^{\mathrm{d} t}+f \sqrt{2 D} \overbrace{\mathrm{~d} B(t) \mathrm{d} t}^{0}} \\
& {[\mathrm{~d} x(t)]^{3}=O\left([\mathrm{~d} t]^{2}\right)}
\end{aligned}
$$

And substituting in (B3.3.5) leads to:

$$
\begin{aligned}
\mathrm{d} h(x(t)) & =h^{\prime}[f \mathrm{~d} t+\sqrt{2 D} \mathrm{~d} B]+\frac{1}{2} h^{\prime \prime} 2 D \mathrm{~d} t+O\left([\mathrm{~d} t]^{2}\right)= \\
& =\mathrm{d} t\left[h^{\prime} f+h^{\prime \prime} D\right]+h^{\prime} \sqrt{2 D} \mathrm{~d} B
\end{aligned}
$$

Taking the expected value:

$$
\begin{aligned}
& \mathrm{d}\langle h(x(t))\rangle=\left\langle\mathrm{d} t\left[h^{\prime} f+h^{\prime \prime} D\right]\right\rangle+\left\langle h^{\prime} \sqrt{2 D} \mathrm{~d} B\right\rangle= \\
&=\langle\overline{\bar{a})} \\
&=\left\langle\mathrm{d} t\left[h^{\prime} f+h^{\prime \prime} D\right]\right\rangle+\left\langle\sqrt{2 D} h^{\prime}\right\rangle \underbrace{\langle\mathrm{d} B\rangle}_{0}= \\
&\left.\left.h^{\prime} f+h^{\prime \prime} D\right]\right\rangle
\end{aligned}
$$

where in (a) we used the fact that $D(x(t), t)$ is non-anticipating, allowing to factor the average.

Dividing by $\mathrm{d} t$ and expanding the average leads to:

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} t}\langle h(x(t))\rangle & =\int_{\mathbb{R}} \mathrm{d} x W(x, t)\left[h^{\prime}(x) f(x, t)+h^{\prime \prime}(x) D(x, t)\right]= \\
& =\int_{\mathbb{R}} \mathrm{d} x W(x, t) f(x, t) h^{\prime}(x)+\int_{\mathbb{R}} \mathrm{d} x W(x, t) D(x, t) h^{\prime \prime}(x)= \\
& =\left.W h f\right|_{-\infty} ^{+\infty}-\int_{\mathbb{R}} \mathrm{d} x h \frac{\partial}{\partial x}(W f)+ \\
& +W D h_{-\infty}^{+\infty}-\left.h \frac{\partial}{\partial x}(D W)\right|_{-\infty} ^{+\infty}+\int_{\mathbb{R}} \mathrm{d} x h \frac{\partial^{2}}{\partial x^{2}}(W D)= \\
& =\int_{\mathbb{R}} \mathrm{d} x h(x)\left[\frac{\partial^{2}}{\partial x^{2}}(W(x, t) D(x, t))-\frac{\partial}{\partial x}(W(x, t) f(x, t))\right] \tag{3.36}
\end{align*}
$$

where in (a) we integrated by parts the first integral once, and the second one twice.
Finally, equating (3.331) and (3.36) leads to:

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\langle h(x(t))\rangle=\int_{\mathbb{R}} \mathrm{d} x \frac{\partial}{\partial t} W(x, t) h(x)=\int_{\mathbb{R}} \mathrm{d} x h(x)\left[\frac{\partial^{2}}{\partial x^{2}}(W(x, t) D(x, t))-\frac{\partial}{\partial x}(W(x, t) f(x, t))\right]
$$

As this relation holds for any test function $h(x)$, it means that the integrands are equal. So, by collecting a derivative, we retrieve the the Fokker-Planck equation (B.301):

$$
\frac{\partial}{\partial t} W(x, t)=-\frac{\partial}{\partial x}\left[f(x, t) W(x, t)-\frac{\partial}{\partial x}(W(x, t) D(x, t))\right]
$$

3.7 The role of temperature

From physical observations, we expect the amplitude of stochastic oscillations in Brownian motion to be dependent on temperature - as it is a direct effect of collisions with molecules in thermal equilibrium. So, we want to derive an explicit relation between the diffusion parameter D and T.
We start by assuming that, for $t \rightarrow \infty$, the particle will be at equilibrium, meaning that its distribution will be given by the Maxwell-Boltzmann:

$$
W(x, t) \underset{t \rightarrow \infty}{\longrightarrow} P_{\mathrm{eq}}(x)=\frac{e^{-\beta V(x)}}{Z} \quad Z=\int_{\mathbb{R}} \mathrm{d} x e^{-\beta V(x)} ; \quad \beta=\frac{1}{k_{B} T}
$$

Recall the Fokker-Planck equation:

$$
\frac{\partial}{\partial t} W(x, t)=-\frac{\partial}{\partial x}\left[f(x, t) W(x, t)-\frac{\partial}{\partial x}(D(x, t) W(x, t))\right]
$$

From the Langevin equivalence, and some physical reasoning, we found that:

$$
f(x, t)=\frac{F_{\mathrm{ext}}}{\gamma}=-\frac{1}{\gamma} \frac{\partial V(x)}{\partial x} \quad \gamma=6 \pi \eta a
$$

Where $F_{\text {ext }}$ is an external conservative force with potential $V(x)$ acting on the Brownian particle, assumed to be a sphere of radius a moving through a
medium of viscosity η. Assuming $D(x, t) \equiv D$ for simplicity, the Fokker-Planck equation becomes:

$$
\frac{\partial W^{*}}{\partial t}=\frac{\partial}{\partial x}\left[\frac{W^{*}}{\gamma} \frac{\partial V}{\partial x}+D \frac{\partial W^{*}}{\partial x}\right]
$$

Here we are interested in the particular solution $W^{*}(x)$ that will be reached at the equilibrium, as it does not depend on time. So:

$$
\frac{\partial W^{*}}{\partial t} \stackrel{!}{=} 0
$$

Meaning that:

$$
\begin{equation*}
\left[\frac{W^{*}(x)}{\gamma} \frac{\partial V}{\partial x}+D \frac{\partial W^{*}}{\partial x}\right]=\text { constant } \quad \forall x \tag{3.37}
\end{equation*}
$$

As this relation holds for any x, we can examine it in the limit $x \rightarrow \infty$ to find the value of the constant. In fact, as $W^{*}(x)$ is a normalized pdf, we expect:

$$
W^{*}, \frac{\partial W^{*}}{\partial x} \underset{x \rightarrow \infty}{ } 0
$$

And so the constant in (3.37) must be 0 , leading to:

$$
\frac{\partial W^{*}}{\partial x}=-\frac{1}{\gamma D} W^{*} \frac{\partial V}{\partial x} \Rightarrow \frac{1}{W^{*}} \frac{\partial W^{*}}{\partial x}=\frac{\partial \ln \left(W^{*}\right)}{\partial x}=-\frac{1}{\gamma D} \frac{\partial V}{\partial x}
$$

Integrating, we find:
$\ln W^{*}(x)=-\frac{1}{\gamma D} V(x)+c \Rightarrow W^{*}(x)=K \exp \left(-\frac{1}{\gamma D} V(x)\right) \stackrel{!}{=} \frac{1}{Z} \exp (-\beta V(x))$
And by comparing the two functions we obtain the desired relation:

$$
\beta=\frac{1}{\gamma D}=\frac{1}{k_{B} T} \Rightarrow D=\frac{k_{B} T}{\gamma}=\frac{k_{B} T}{6 \pi \eta a}
$$

This is indeed the same relation that Einstein found when examining Brownian motion (fluctuation-dissipation relationship, 1905). As $D(x, t) \propto T$, the amplitude of stochastic oscillations (from Langevin equation) is proportional $\sqrt{2 D} \propto \sqrt{T}$.

3.8 Harmonic overdamped oscillator

Using the framework developed in the previous sections, we now tackle a more general setting, that of a particle moving in a harmonic potential and subject to thermal noise. This will be useful to model the local behaviour about the
(Lesson 9 of 14/11/19)
Compiled: October 13, 2020 minima of any potential - as they are approximately harmonic.
So, consider a particle of mass m moving in one dimension through a viscous medium and immersed in a harmonic potential. To model the random collisions
with the other (much smaller) particles in the fluid we add a stochastic term $\sqrt{2 D} \gamma \xi$. The equation of motion becomes:

$$
\begin{equation*}
m \ddot{x}=-\gamma \dot{x}-m \omega^{2} x+\sqrt{2 D} \gamma \xi \tag{3.38}
\end{equation*}
$$

As m / γ is much smaller than the timescale we are interested in, we can neglect it, reaching the overdamped limit:

$$
\dot{x}=-\underbrace{\frac{m \omega^{2}}{\gamma}}_{k} x+\sqrt{2 D} \xi
$$

And multiplying by $\mathrm{d} t$:

$$
\begin{equation*}
\mathrm{d} x(t)=-k x(t) \mathrm{d} t+\sqrt{2 D} \mathrm{~d} B(t) \tag{3.39}
\end{equation*}
$$

As usual, we introduce a time discretization $\left\{t_{j}\right\}_{j=1, \ldots, n}$. Letting:

$$
x\left(t_{i}\right) \equiv x_{i} ; \quad \Delta x_{i} \equiv x_{i}-x_{i-1} ; \quad B\left(t_{i}\right) \equiv B_{i} ; \quad \Delta t_{i}=t_{i}-t_{i-1}
$$

we arrive to:

$$
\begin{equation*}
\Delta x_{i}=-k x_{i-1} \Delta t_{i}+\sqrt{2 D} \Delta B_{i} \tag{3.40}
\end{equation*}
$$

Note that we evaluated the potential term $-k x(\tau)$ at the left extremum of the discretized interval $\left[t_{i-1}, t_{i}\right]$, following Ito's prescription.
To solve (3.3.3) the plan will be the following:

1. Use the discretization to find the infinitesimal probability $\mathbb{P}\left(\left\{\Delta x_{i}\right\}_{i=1, \ldots, n}\right)$ of a discretized path, i.e. of a path traversing all gates $\left[x_{i}, x_{i}+\mathrm{d} x_{i}\right]$ at successive instants $0 \equiv t_{1}<\cdots<t_{n} \equiv t$.
2. Find the probability for a continuous path $\mathrm{d} P \equiv \mathbb{P}\left(\left\{x(\tau)_{\tau \in[0, t]}\right\}\right)$ by taking the limit $n \rightarrow \infty$.
3. Find the transition probabilities that solve (B.3Y) by using a path integral to evaluate:

$$
W\left(x_{t}, t ; x_{0}, 0\right)=\left\langle\delta\left(x_{t}-x(\tau)\right)\right\rangle_{W} \equiv \int_{\mathbb{R}^{T}} \delta\left(x_{t}-x(\tau)\right) \mathrm{d} P
$$

In other words, this is the fraction of paths (from the set \mathbb{R}^{T} of all continuous paths happening in the timeframe $[0, t])$ that start in x_{0} at instant 0 , and reach x_{t} at instant t.

To find $\mathbb{P}\left(\left\{\Delta x_{i}\right\}_{i=1, \ldots, n}\right)$ we start from the joint pdf $\mathbb{P}\left(\left\{\Delta B_{i}\right\}_{i=1, \ldots, n}\right)$ that we already know, and perform a change of random variables according to (B.40). In practice, start from:

$$
\mathbb{P}\left(\Delta B_{1}, \ldots, \Delta B_{n}\right)=\prod_{i=1}^{n} \frac{\mathrm{~d} \Delta B_{i}}{\sqrt{2 \pi \Delta t_{i}}} \exp \left(-\sum_{i=1}^{n} \frac{\Delta B_{i}^{2}}{2 \Delta t_{i}}\right)
$$

Then insert ΔB_{i} in terms of Δx_{i} from (3.40]):

$$
\Delta B_{i}=\frac{\Delta x_{i}+k x_{i-1} \Delta t_{i}}{\sqrt{2 D}}
$$

and then multiply by the determinant J of the jacobian of the change of variables to find the desired new pdf:

$$
\begin{aligned}
& \mathbb{P}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\mathbb{P}\left(\Delta x_{1}\right) \mathbb{P}\left(\Delta x_{2} \mid \Delta x_{1}\right) \mathbb{P}\left(\Delta x_{3} \mid \Delta x_{1}, \Delta x_{2}\right) \cdots= \\
& \quad=\prod_{i=1}^{n} \frac{\mathrm{~d} \Delta x_{i}}{\sqrt{2 \pi \Delta t_{i}}} \exp \left(-\sum_{i=1}^{n} \frac{1}{2 \Delta t_{i}}\left(\frac{\Delta x_{i}+k x_{i-1} \Delta t_{i}}{\sqrt{2 D}}\right)^{2}\right) J \\
& J=\operatorname{det}\left|\frac{\partial\left(\Delta B_{1}, \ldots, \Delta B_{n}\right)}{\partial\left(\Delta x_{1}, \ldots, \Delta x_{n}\right)}\right|=\operatorname{det}\left|\frac{\partial\left(\Delta x_{1}, \ldots, \Delta x_{n}\right)}{\partial\left(\Delta B_{1}, \ldots, \Delta B_{n}\right)}\right|^{-1}=\left|\begin{array}{cccc}
\sqrt{2 D} & 0 & \cdots & 0 \\
* & \sqrt{2 D} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0
\end{array}\right|^{-1}=(2 D)^{-n / 2}
\end{aligned}
$$

The elements under the diagonal are, in general, non-zero derivatives. However, as the matrix is lower triangular, its determinant is just the product of the diagonal elements. Substituting back:

$$
\begin{equation*}
\mathbb{P}\left(\Delta x_{1}, \ldots, \Delta x_{n}\right)=\prod_{i=1}^{n}\left(\frac{\mathrm{~d} \Delta x_{i}}{\sqrt{4 \pi D \Delta t_{i}}}\right) \exp \left(-\sum_{i=1}^{n} \frac{1}{2 \Delta t_{i}}\left(\frac{\Delta x_{i}+k x_{i-1} \Delta t_{i}}{\sqrt{2 D}}\right)^{2}\right) \tag{3.41}
\end{equation*}
$$

Taking the limit $n \rightarrow \infty$:

$$
\mathrm{d} P \equiv \mathbb{P}(x(\tau))=\left(\prod_{\tau=0^{+}}^{t} \frac{\mathrm{~d} x(\tau)}{\sqrt{4 \pi D \mathrm{~d} \tau}}\right) \exp \left(-\frac{1}{4 D} \int_{0}^{t}(\dot{x}+k x)^{2} \mathrm{~d} \tau\right)
$$

where we used:

$$
\frac{1}{\Delta t_{i}}\left(\Delta x_{i}+k x_{i-1} \Delta t_{i}\right)^{2}=\frac{\Delta t_{i}^{2}}{\Delta t_{i}}\left(\frac{\Delta x_{i}}{\Delta t_{i}}+k x_{i-1} \frac{\Delta t_{i}}{\Delta t_{i}}\right)^{2} \xrightarrow[n \rightarrow \infty]{\longrightarrow}(\dot{x}+k x)^{2} \mathrm{~d} t
$$

Expanding the square in ($\mathbf{3} .4 \mathrm{CD}$):

$$
\begin{equation*}
\mathrm{d} P=\prod_{i=1}^{n} \underbrace{\frac{\mathrm{~d} \Delta x_{i}}{\sqrt{4 \pi D \Delta t_{i}}} \exp \left(-\sum_{i=1}^{n} \frac{\Delta x_{i}^{2}}{4 D \Delta t_{i}}\right)}_{\text {Wiener measure (} \left.\mathrm{d} x_{W}\right)} \underbrace{\exp \left(-\frac{k}{2 D} \sum_{i=1}^{n} x_{i-1} \Delta x_{i}\right)}_{\text {stochastic integral }} \underbrace{\exp \left(-\frac{k^{2}}{4 D} \sum_{i=1}^{n} \Delta t_{i} x_{i-1}^{2}\right)}_{\text {normal integral }} \tag{3.42}
\end{equation*}
$$

Let's focus on the stochastic integral. We already know that, for Ito's integrals, the usual rules of calculus do not apply. In particular, we can't just do:

$$
\sum_{i=1}^{n} x_{i-1} \Delta x_{i} \underset{n \rightarrow \infty}{ } \int_{0}^{t} x(\tau) \mathrm{d} x(\tau) \neq \frac{x^{2}(t)-x^{2}(0)}{2}
$$

So, more in general for a differentiable function $h(x)$:

$$
\begin{equation*}
\int_{0}^{t} h^{\prime}(\tau) \mathrm{d} x(\tau) \neq h(x(t))-h(x(0)) \tag{3.43}
\end{equation*}
$$

The idea is now to start from the right side and use Ito's rules to correct the left side, so to have a usable identity for integration. As always, we start by discretizing time $\left\{t_{i}\right\}_{i=1, \ldots, n}$:

$$
h(x(t))-h(x(0))=\sum_{i=1}^{n}\left[h\left(x\left(t_{i}\right)\right)-h\left(x\left(t_{i-1}\right)\right)\right] \equiv \sum_{i=1}^{n} \Delta h_{i}
$$

In the limit, $t_{i}=t_{i-1}+\mathrm{d} t$, and so the Δh_{i} are differentials of h :

$$
\Delta h_{i}=\frac{\mathrm{d} h}{\mathrm{~d} x_{i}} \Delta x_{i}+\frac{1}{2} \frac{\mathrm{~d}^{2} h}{\mathrm{~d} x_{i}^{2}} \Delta x_{i}^{2}+O\left(\Delta x_{i}^{3}\right)
$$

Now:

$$
\Delta x_{i}=\frac{\mathrm{d} \Delta B_{i}}{\mathrm{~d} \Delta x_{i}} \Delta B_{i}+O\left(\Delta B_{i}^{2}\right) \approx \sqrt{2 D} \Delta B_{i}
$$

And by Ito's rules, $\Delta B_{i}^{2}=\Delta t_{i}$ and $\Delta B_{i}^{n}=0$ for $n \geq 3$. So:

$$
\Delta h_{i}=h^{\prime} \Delta x_{i}+\frac{1}{2} h^{\prime \prime} \underbrace{\Delta x_{i}^{2}}_{2 D \Delta t_{i}}
$$

And substituting back in (3.4.3) leads to:

$$
h(x(t))-h(x(0))=\sum_{i=1}^{n}\left(h_{i}^{\prime} \Delta x_{i}+h^{\prime \prime} D \Delta t_{i}\right)
$$

Rearranging:

$$
\sum_{i=1}^{n} h_{i}^{\prime} \Delta x_{i}=h(x(t))-h(x(0))-D \sum_{i=1}^{n} h^{\prime \prime} \Delta t_{i}
$$

In the limit $n \rightarrow \infty$, the sums become integrals:

$$
\begin{equation*}
\int_{0}^{t} h^{\prime} \mathrm{d} x(\tau)=h(x(t))-h(x(0))-D \int_{0}^{t} h^{\prime \prime} \mathrm{d} \tau \tag{3.44}
\end{equation*}
$$

We can finally apply the result (3.44) to our case, by setting $h^{\prime}(x(\tau))=x(\tau)$, so that:

$$
h(x(t))=\int x(\tau)=\frac{x(t)^{2}}{2} ; \quad h^{\prime \prime}(x(\tau))=1
$$

Substituting in (3.44) leads to:
$\sum_{i=1}^{n} x_{i-1} \Delta x_{i} \xrightarrow[n \rightarrow \infty]{ } \int_{0}^{t} x(\tau) \mathrm{d} x(\tau)=\frac{x^{2}(t)-x^{2}(0)}{2}-D \underbrace{\int_{0}^{t} \mathrm{~d} \tau}_{t}=\frac{x^{2}(t)-x^{2}(0)}{2}-D t$
And substituting this result back in (3.42) leads to:

$$
\mathrm{d} P_{n \rightarrow \infty}^{=} \mathrm{d} x_{W} \exp \left(-\frac{k}{2 D}\left[\frac{x_{t}^{2}-x_{0}^{2}}{2}-D t\right]\right) \exp \left(-\frac{k^{2}}{4 D} \int_{0}^{t} x^{2}(\tau) \mathrm{d} \tau\right)
$$

From this expression we can compute transition probabilities. Let $T=[0, t]$ and \mathbb{R}^{T} be the space of continuous functions $T \rightarrow \mathbb{R}$, then:
$W\left(x_{t}, t \mid x_{0}, 0\right)=\left\langle\delta\left(x_{t}-x\right)\right\rangle_{W}=\int_{\mathbb{R}^{T}} \delta\left(x_{t}-x\right) \mathrm{d} P=$ $=\int_{\mathbb{R}^{T}} \mathrm{~d} x_{W} \delta(x(t)-x) \exp \left(-\frac{k}{2 D}\left[\frac{x_{t}^{2}-x_{0}^{2}}{2}-D t\right]\right) \exp \left(-\frac{k^{2}}{4 D} \int_{0}^{t} x^{2}(\tau) \mathrm{d} \tau\right)=$
$=\exp \left(-\frac{k}{2 D}\left[\frac{x_{t}^{2}-x_{0}^{2}}{2}-D t\right]\right) \underbrace{\int_{\mathbb{R}^{T}} \mathrm{~d} x_{W} \delta(x(t)-x) \exp \left(-\frac{k^{2}}{4 D} \int_{0}^{t} x^{2}(\tau) \mathrm{d} \tau\right)}_{\text {CFR } I_{4} \text { on } 28 / 10}=$
$=\exp \left(-\frac{k}{2 D}\left[\frac{x_{t}^{2}-x_{0}^{2}}{2}-D t\right]\right) \sqrt{\frac{k}{4 \pi D \sinh (k t)}} \exp \left(-\frac{k x_{t}^{2}}{4 D} \operatorname{coth}(k t)\right)$

Exercise 3.8.1 (Some more integrals):
Check that:

$$
W\left(x, 0 \mid x_{0}, 0\right)=\delta\left(x-x_{0}\right)
$$

Hint. Start from the case $x_{0}=0$. Using (B.4.5), after some algebra:

$$
\begin{equation*}
W(x, t \mid 0,0)=\sqrt{\frac{k}{2 \pi D\left(1-e^{-2 k t}\right)}} \exp \left(-\frac{k}{2 D} \frac{x^{2}}{1-e^{-2 k t}}\right) \tag{3.46}
\end{equation*}
$$

And then show $W(x, t \mid 0,0) \xrightarrow[t \rightarrow 0]{\longrightarrow} \delta(x)$. The general case follows by translating that solution.

Alternative derivation The same result can be found solving the FokkerPlanck equation for the transition probabilities $W\left(x, t \mid x_{0}, 0\right)$:

$$
\begin{equation*}
\dot{W}\left(x, t \mid x_{0}, 0\right)=\frac{\partial}{\partial x}\left(k x W+D \frac{\partial}{\partial x} W\right) \tag{3.47}
\end{equation*}
$$

A quick way to solve this differential equation is to note that $\left\{\Delta B_{i}\right\}$ are all i.i.d. gaussian variables, and so x, which is a sum of ΔB_{i} must have a gaussian pdf. So we can make an ansatz for the solution:

$$
\begin{equation*}
W\left(x, t \mid x_{0}, 0\right)=\frac{1}{Z(t)} \exp \left(-a(t) x^{2}+b(t) x\right) \tag{3.48}
\end{equation*}
$$

Where $a(t)$ and $b(t)$ are the gaussian parameters, and $Z(t)$ the normalization factor. All that's left is to substitute (3.48) in (3.47) and solve for a, b, Z.

3.8.1 Equilibrium distribution

As before, we expect the equilibrium distribution to follow Maxwell-Boltzmann formula:

$$
\begin{equation*}
W_{\mathrm{eq}}(x)=\frac{1}{Z} \exp (-\beta V(x))=\frac{1}{Z} \exp \left(-\frac{m \omega^{2} x^{2}}{2 k_{B} T}\right) \quad Z=\int_{\mathbb{R}} \exp (-\beta V(x)) \tag{3.49}
\end{equation*}
$$

Starting from (3.46) and taking the limit $t \rightarrow \infty$:

$$
\begin{equation*}
\lim _{t \rightarrow \infty} W(x, t \mid 0,0)=\sqrt{\frac{k}{2 \pi D}} \exp \left(-\frac{k}{2 D} x^{2}\right) \tag{3.50}
\end{equation*}
$$

Comparing (3.49) with (3.50) we find:

$$
\frac{m \omega^{2}}{2 k_{B} T}=\frac{k}{2 D}=\frac{m \omega^{2}}{2 \gamma D} \Rightarrow k_{B} T=\gamma D
$$

So we obtain the same relation between D and T that we found in the general case.

3.8.2 High dimensional generalization

We can generalize the previous results to the case where $\boldsymbol{\Delta} \boldsymbol{B}_{\boldsymbol{i}}=\left(\Delta B_{i}^{1}, \ldots, \Delta B_{i}^{d}\right)^{T}$ are d-dimensional vectors, following a multivariate gaussian distribution:

$$
\mathbb{P}\left(\boldsymbol{\Delta} \boldsymbol{B}_{\mathbf{1}}, \ldots, \boldsymbol{\Delta} \boldsymbol{B}_{\boldsymbol{n}}\right)=\prod_{i=1}^{n} \prod_{\alpha=1}^{d} \frac{\mathrm{~d} B_{i}^{\alpha}}{\sqrt{2 \pi \Delta t_{i}}} \exp \left(-\frac{\Delta B_{i}^{\alpha}}{2 \Delta t_{i}}\right)
$$

As different components of the same $\boldsymbol{\Delta} \boldsymbol{B}_{\boldsymbol{i}}$ are independent, by Ito's rules of integration:

$$
\mathrm{d} B_{i}^{\alpha} \mathrm{d} B_{i}^{\beta}=\delta_{\alpha \beta} \mathrm{d} t_{i} \quad \mathrm{~d} B_{i}^{\alpha} \mathrm{d} B_{i}^{\beta} \mathrm{d} B_{i}^{\gamma}=0
$$

We then need to write d different Langevin equations, one for each component:

$$
\mathrm{d} x^{\alpha}(t)=f^{\alpha}(x(t), t) \mathrm{d} t+\sqrt{2 D_{\alpha}(x(t), t)} \mathrm{d} B^{\alpha}(t)
$$

More in general, the stochastic term could be:

$$
\sum_{\beta=1}^{d} g_{\alpha \beta}(x(t), t) \mathrm{d} B^{\beta}(t)
$$

and in our case $g_{\alpha \beta}=2 \sqrt{2 D_{\alpha}} \delta_{\alpha \beta}$.
The Fokker-Planck equation then becomes:

$$
\dot{W}(\boldsymbol{x}, t)=\sum_{\alpha=1}^{d} \frac{\partial}{\partial x^{\alpha}}\left(-f_{\alpha}(\boldsymbol{x}, t) W(\boldsymbol{x}, t)+\frac{\partial}{\partial x^{\alpha}} D_{\alpha}(\boldsymbol{x}, t) W(\boldsymbol{x}, t)\right)
$$

And the joint probability for a discretized path:

$$
\mathbb{P}\left(\boldsymbol{\Delta} \boldsymbol{x}_{\mathbf{1}}, \ldots, \boldsymbol{\Delta} \boldsymbol{x}_{\boldsymbol{n}}\right)=\prod_{i=1}^{n} \prod_{\alpha=1}^{d} \frac{\mathrm{~d} \Delta x_{i}^{\alpha}}{\sqrt{4 \pi D_{\alpha} \Delta t_{i}}} \exp \left(-\sum_{i=1}^{n} \sum_{\alpha=1}^{d} \frac{\left(\Delta x_{i}^{\alpha}-f_{i-1}^{\alpha} \Delta t_{i}\right)^{2}}{4 D_{\alpha} \Delta t_{i}}\right)
$$

And taking the limit $n \rightarrow \infty$:

$$
\mathbb{P}(\boldsymbol{x}(\tau))=\prod_{\tau=0^{+}}^{t}\left(\frac{\mathrm{~d}^{d} \boldsymbol{x}(\tau)}{\sqrt{4 \pi \mathrm{~d} \tau} \prod_{\alpha=1}^{d} \sqrt{D_{\alpha}}}\right) \exp \left(-\sum_{\alpha=1}^{d} \frac{1}{4 D_{\alpha}} \int_{0}^{t}\left(\dot{x}^{\alpha}-f^{\alpha}\right)^{2} \mathrm{~d} \tau\right)
$$

3.8.3 Underdamped Harmonic Oscillator

If we do not ignore the inertia term in (B3.38) we are left with:

$$
m \ddot{\boldsymbol{x}}=m \dot{\boldsymbol{v}}=-\gamma \dot{\boldsymbol{x}}+\boldsymbol{F}(\boldsymbol{x})+\sqrt{2 D} \boldsymbol{\xi}
$$

This second order (stochastic) differential equation can be written as a system of two first order equations:

$$
\left\{\begin{array}{l}
\mathrm{d} \boldsymbol{x}=\boldsymbol{v} \mathrm{d} t \\
\mathrm{~d} \boldsymbol{v}=\left(-\frac{\gamma}{m} \boldsymbol{v}+\frac{\boldsymbol{F}(\boldsymbol{x})}{m}\right) \mathrm{d} t+\frac{\sqrt{2 D}}{m} \mathrm{~d} \boldsymbol{B}
\end{array}\right.
$$

This leads to a generalization of the Fokker-Planck equation, named Kramer equation:
$\dot{W}(\boldsymbol{x}, \boldsymbol{v}, t)=\boldsymbol{\nabla}_{\boldsymbol{v}}\left[\left(\frac{\gamma \boldsymbol{v}}{m}-\frac{\boldsymbol{F}}{m}\right) W(\boldsymbol{x}, \boldsymbol{v}, t)+\frac{\gamma^{2} D}{m^{2}} \boldsymbol{\nabla}_{\boldsymbol{v}} W(\boldsymbol{x}, \boldsymbol{v}, t)\right]+\boldsymbol{\nabla}_{\boldsymbol{x}}(-\boldsymbol{v} W(\boldsymbol{x}, \boldsymbol{v}, t))$
In the limit $t \rightarrow \infty$, the distribution at equilibrium will be:

$$
W(\boldsymbol{x}, \boldsymbol{v})=\frac{1}{Z} \exp \left(-\beta\left[\frac{m\|\boldsymbol{v}\|^{2}}{2}+V(\boldsymbol{x})\right]\right) \quad D=\frac{k_{B} T}{\gamma}
$$

3.9 Particle in a conservative force-field

In last section, we examined a particle of radius a immersed in a harmonic potential $U(x)=m \omega^{2} x^{2} / 2$, moving through a medium with viscosity η and subject to thermal fluctuations of amplitude proportional to $\sqrt{2 D}$, so that its dynamics are described by the following stochastic differential equation:

$$
\mathrm{d} x=-k x \mathrm{~d} t+\sqrt{2 D} \mathrm{~d} B \quad k=\frac{m \omega^{2}}{\gamma} \quad \gamma=6 \pi \eta a
$$

The solution, expressed as the transition probability between any two given points, is a path integral:
$W\left(x_{t}, t \mid x_{0}, 0\right)=\exp \left(-\frac{x_{t}^{2}-x_{0}^{2}}{4 D} k+\frac{k t}{2}\right)\left\langle\exp \left(-\int_{0}^{t} V(x(\tau)) \mathrm{d} \tau\right) \delta\left(x(t)-x_{t}\right)\right\rangle_{W}$
with $V(x(\tau))=k^{2} x^{2}(\tau) /(4 D)$. The average is computed with the Wiener measure:

$$
\langle f(x(\tau))\rangle_{W} \equiv \int_{\mathbb{R}^{T}}\left(\prod_{\tau=0^{+}}^{t} \frac{\mathrm{~d} x(\tau)}{\sqrt{4 \pi D \mathrm{~d} \tau}}\right) \exp \left(-\frac{1}{4 D} \int_{0}^{t} \dot{x}^{2}(\tau) \mathrm{d} \tau\right) f(x(\tau))
$$

with \mathbb{R}^{T} being the set of continuous functions $T \rightarrow \mathbb{R}$, and $T=[0, t]$.

We want now to show that, in the more general case of a particle immersed in a generic potential $U(x)$, a path integral similar to the highlighted term in (3.51) will appear. Of course, the function $V(x(\tau))$ will be different, but it will be proportional to $U(x)$ - as it is evident in the harmonic case.
So, let's consider a particle in a 3D space $\boldsymbol{r}=\left(x_{1}, x_{2}, x_{3}\right)^{T}$, immersed in a conservative force-field $\boldsymbol{F}(\boldsymbol{r})=-\boldsymbol{\nabla} U(\boldsymbol{r})$ with potential $U(\boldsymbol{r})$, and subject to thermal noise. The Langevin equation becomes:

$$
\begin{equation*}
\mathrm{d} \boldsymbol{r}=\boldsymbol{f}(\boldsymbol{r}) \mathrm{d} t+\sqrt{2 D} \mathrm{~d} \boldsymbol{B} \quad \boldsymbol{f}(\boldsymbol{r})=\frac{\boldsymbol{F}(\boldsymbol{r})}{\gamma} \quad \gamma=6 \pi \eta a \tag{3.52}
\end{equation*}
$$

with $\boldsymbol{B}=\left(B_{1}, B_{2}, B_{3}\right)^{T}$ being a $d=3$ vector with gaussian components:

$$
\begin{equation*}
\Delta B_{\alpha} \sim \frac{1}{\sqrt{2 \pi \Delta t}} \exp \left(-\frac{\Delta B_{\alpha}^{2}}{2 \Delta t}\right) \quad \alpha=1,2,3 \tag{3.53}
\end{equation*}
$$

As different components are independent, the joint pdf for the vector $\boldsymbol{\Delta} \boldsymbol{B}$ is just the product of the three terms in ($[3.53]$):

$$
\boldsymbol{\Delta} \boldsymbol{B} \sim \frac{1}{(2 \pi \Delta t)^{3 / 2}} \exp \left(-\frac{\|\Delta \boldsymbol{B}\|^{2}}{2 \Delta t}\right)
$$

As before, we introduce a time discretization $\left\{t_{j}\right\}_{j=0, \ldots, n}$ with $t_{0} \equiv 0$ and $t_{n} \equiv t$ fixed, so that (3.52) becomes:

$$
\boldsymbol{\Delta} \boldsymbol{r}_{i}=\boldsymbol{r}\left(t_{i}\right)-\boldsymbol{r}\left(t_{i-1}\right)=\boldsymbol{f}_{\boldsymbol{i}-\mathbf{1}} \Delta t_{i}+\sqrt{2 D} \boldsymbol{\Delta} \boldsymbol{B}_{\boldsymbol{i}}
$$

where the force $\boldsymbol{f}(\boldsymbol{r})$ is evaluated at the left side t_{i-1} of each discrete interval $\left[t_{i-1}, t_{i}\right]$, following Ito's prescription.
Then, starting from the joint pdf of the $\left\{\boldsymbol{\Delta} \boldsymbol{B}_{\boldsymbol{i}}\right\}$:

$$
\mathrm{d} P\left(\Delta \boldsymbol{B}_{1}, \ldots, \Delta \boldsymbol{B}_{n}\right)=\prod_{i=1}^{n} \frac{\mathrm{~d}^{3} \boldsymbol{\Delta} \boldsymbol{B}_{\boldsymbol{i}}}{(2 \pi \Delta t)^{3 / 2}} \exp \left(-\sum_{i=1}^{n} \frac{\left\|\boldsymbol{\Delta} \boldsymbol{B}_{\boldsymbol{i}}\right\|^{2}}{2 \Delta t_{i}}\right)
$$

we perform a change of variables by inverting (3.527):

$$
\boldsymbol{\Delta}_{\boldsymbol{i}}=\frac{\boldsymbol{\Delta} \boldsymbol{r}_{\boldsymbol{i}}-\boldsymbol{f}_{\boldsymbol{i}-\mathbf{1}} \Delta t_{i}}{\sqrt{2 D}} \Rightarrow\left|\frac{\partial\left\{\Delta B_{i}^{\alpha}\right\}}{\partial\left\{\Delta r_{j}^{\beta}\right\}}\right|=\left|\frac{\partial\left\{\Delta r_{j}^{\beta}\right\}}{\partial\left\{\Delta B_{i}^{\alpha}\right\}}\right|^{-1}=(2 D)^{3 / 2}
$$

This leads to the joint pdf for the increments $\left\{\boldsymbol{\Delta} \boldsymbol{r}_{i}\right\}$:

$$
\begin{equation*}
\mathrm{d} P\left(\boldsymbol{\Delta} \boldsymbol{r}_{\mathbf{1}}, \ldots, \boldsymbol{\Delta} \boldsymbol{r}_{\boldsymbol{n}}\right)=\left(\prod_{i=1}^{n} \frac{\mathrm{~d}^{3} \boldsymbol{\Delta} \boldsymbol{r}_{\boldsymbol{i}}}{\left(4 \pi D \Delta t_{i}\right)^{3 / 2}}\right) \exp \left[-\frac{1}{4 D} \sum_{i=1}^{n} \frac{\left\|\boldsymbol{\Delta} \boldsymbol{r}_{\boldsymbol{i}}-\boldsymbol{f}_{\boldsymbol{i}-\mathbf{1}} \Delta t_{i}\right\|^{2}}{\Delta t_{i}}\right] \tag{3.54}
\end{equation*}
$$

Expanding the square in the exponential:

$$
-\frac{1}{4 D} \sum_{i=1}^{n}\left[\frac{\left\|\boldsymbol{\Delta} \boldsymbol{r}_{i}\right\|^{2}}{\Delta t_{i}}+\left\|\boldsymbol{f}_{i-1}\right\|^{2} \Delta t_{i}-2 \boldsymbol{\Delta} \boldsymbol{r}_{\boldsymbol{i}} \cdot \boldsymbol{f}_{i-1}\right]
$$

allows to recognize the $d=3$ Wiener measure in (3.54):

$$
\begin{align*}
\mathrm{d} P\left(\left\{\boldsymbol{\Delta} \boldsymbol{r}_{i}\right\}\right)= & (\underbrace{\prod_{i=1}^{n} \frac{\mathrm{~d}^{3} \boldsymbol{\Delta} \boldsymbol{r}_{i}}{\left(4 \pi D \Delta t_{i}\right)^{3 / 2}} \exp \left[-\frac{1}{4 D} \sum_{i=1}^{n} \frac{\left\|\boldsymbol{\Delta} \boldsymbol{r}_{i}\right\|^{2}}{\Delta t_{i}}\right]}_{\mathrm{d}_{W}^{3} \boldsymbol{r}}) \\
& \cdot \exp (-\frac{1}{4 D} \underbrace{\sum_{i=1}^{n}\left\|\boldsymbol{f}_{i-\mathbf{1}}\right\|^{2} \Delta t_{i}}_{\int_{0}^{t}\|\boldsymbol{f}(\boldsymbol{r}(\tau))\|^{2} \mathrm{~d} \tau}+\frac{1}{2 D} \underbrace{\sum_{i=1}^{n} \boldsymbol{f}_{i-\mathbf{1}} \cdot \boldsymbol{\Delta} \boldsymbol{r}_{\boldsymbol{i}}}_{\int_{0}^{t} \boldsymbol{f}(\boldsymbol{r}(\tau)) \cdot \mathrm{d} \boldsymbol{r}(\tau)})
\end{align*}
$$

Let's focus on the stochastic integral (the one in $\mathrm{d} \boldsymbol{r}(\tau)$). For this we need to generalize to $d=3$ the integration formula we found in the previous section.
Consider a multi-variable scalar function $h(\boldsymbol{r}): \mathbb{R}^{3} \rightarrow \mathbb{R}, \boldsymbol{r} \mapsto h(\boldsymbol{r})$. As before, we start from the difference:

$$
\begin{align*}
h\left(\boldsymbol{r}_{n}\right)-h\left(\boldsymbol{r}_{0}\right) & =h\left(\boldsymbol{r}_{n}\right)-h\left(\boldsymbol{r}_{n-1}\right)+h\left(\boldsymbol{r}_{n-1}\right)-h\left(\boldsymbol{r}_{n-2}\right)+\cdots+h\left(\boldsymbol{r}_{1}\right)-h\left(\boldsymbol{r}_{0}\right)= \\
& =\sum_{i=1}^{n}\left(h\left(\boldsymbol{r}_{i}\right)-h\left(\boldsymbol{r}_{i-1}\right)\right)=\sum_{i=1}^{n} \Delta h_{i} \tag{3.56}
\end{align*}
$$

In the discretization, $\boldsymbol{r}_{i}=\boldsymbol{r}_{i-1}+\boldsymbol{\Delta} \boldsymbol{x}$, with $\boldsymbol{\Delta} \boldsymbol{x}=\left(\Delta x_{i}^{1}, \Delta x_{i}^{2}, \Delta x_{i}^{3}\right)$. Each differential Δh_{i} is then:

$$
\begin{align*}
\Delta h_{i} & =h\left(\boldsymbol{r}_{i}\right)-h\left(\boldsymbol{r}_{i-1}\right) \equiv h_{i}-h_{i-1}= \\
& =h\left(\boldsymbol{r}_{i-1}\right)+\sum_{\alpha=1}^{3}\left[\frac{\partial}{\partial x^{\alpha}} h\left(\boldsymbol{r}_{i-1}\right)\right] \Delta x_{i}^{\alpha}+\frac{1}{2} \sum_{\alpha, \beta=1}^{3}\left[\frac{\partial^{2}}{\partial x^{\alpha} \partial x^{\beta}} h\left(\boldsymbol{r}_{i-1}\right)\right] \Delta x_{i}^{\alpha} \Delta x_{i}^{\beta}+\cdots-\underline{h\left(\boldsymbol{r}_{\imath-1}\right)}= \\
& =\sum_{\alpha=1}^{3}\left[\frac{\partial}{\partial x^{\alpha}} h\left(\boldsymbol{r}_{i-1}\right)\right] \Delta x_{i}^{\alpha}+D \sum_{\alpha, \beta=1}^{3}\left[\frac{\partial^{2}}{\partial x^{\alpha} \partial x^{\beta}} h\left(\boldsymbol{r}_{i-1}\right)\right] \Delta t_{i} \tag{3.57}
\end{align*}
$$

where in (a) we expanded the first term in Taylor series about \boldsymbol{r}_{i-1}, and in (b) we used Ito's rules, and in particular the fact that:

$$
\Delta x_{i}^{\alpha} \Delta x_{i}^{\beta}=\Delta t_{i} 2 D \delta_{\alpha \beta}
$$

Substituting (3.57) back in (3.56) leads to:

$$
h\left(\boldsymbol{r}_{n}\right)-h\left(\boldsymbol{r}_{0}\right)=\sum_{i=1}^{n} \Delta h_{i}=\sum_{i=1}^{n} \sum_{\alpha=1}^{3} \frac{\partial}{\partial x^{\alpha}} h_{i-1} \Delta x_{i}^{\alpha}+D \sum_{\alpha=1}^{3} \frac{\partial^{2}}{\partial x^{\alpha^{2}}} h_{i-1} \Delta t_{i}
$$

and then, in the continuum limit:

$$
h(\boldsymbol{r}(t))-h(\boldsymbol{r}(0))=\int_{0}^{t} \nabla h(\boldsymbol{r}) \cdot \mathrm{d}^{3} \boldsymbol{r}+D \int_{0}^{t} \nabla^{2} h(\boldsymbol{r}(\tau)) \mathrm{d} \tau
$$

Rearranging we arrive at the desired formula for integration:

$$
\begin{equation*}
\int_{0}^{t} \nabla h(\boldsymbol{r}) \cdot \mathrm{d}^{3} \boldsymbol{r}=h(\boldsymbol{r}(t))-h(\boldsymbol{r}(0))-D \int_{0}^{t} \nabla^{2} h(\boldsymbol{r}(\tau)) \mathrm{d} \tau \tag{3.58}
\end{equation*}
$$

Thanks to (3.58) we can solve the stochastic integral in (3.5.5):

$$
\int_{0}^{t} \boldsymbol{f}(\boldsymbol{r}(\tau)) \cdot \mathrm{d}^{3} \boldsymbol{r}(\tau)
$$

Inserting $\boldsymbol{f}(\boldsymbol{r})=-\boldsymbol{\nabla} U(\boldsymbol{r}) / \gamma$ and applying the formula leads to:
$\int_{0}^{t} \boldsymbol{f}(\boldsymbol{r}(\tau)) \cdot \mathrm{d}^{3} \boldsymbol{r}(\tau)=-\frac{1}{\gamma} \int_{0}^{t} \nabla U(\boldsymbol{r}(\tau)) \cdot \mathrm{d}^{3} \boldsymbol{r}(\tau)=-\frac{1}{\gamma}\left[U(\boldsymbol{r}(t))-U(\boldsymbol{r}(0))-D \int_{0}^{t} \nabla^{2} U(\boldsymbol{r}(\tau)) \mathrm{d} \tau\right]$
Substituting back in (3.5.5):

$$
\begin{align*}
\mathrm{d} P & =\mathrm{d}_{W}^{3} \boldsymbol{r} \exp \left(-\frac{1}{4 D} \int_{0}^{t}\|\boldsymbol{f}\|^{2} \mathrm{~d} \tau+\frac{1}{2 D}\left[-\frac{1}{\gamma}[U(\boldsymbol{r}(t))-U(\boldsymbol{r}(0))]+\frac{D}{\gamma} \int_{0}^{t} \nabla^{2} U(\boldsymbol{r}(\tau)) \mathrm{d} \tau\right]\right)= \\
& =\mathrm{d}_{W}^{3} \boldsymbol{r} \exp (-\frac{1}{4 D} \int_{0}^{t} \mathrm{~d} \tau \underbrace{\left[\|\boldsymbol{f}\|^{2}-\frac{2 D}{\gamma} \nabla^{2} U\right]}_{V(\boldsymbol{r})}) \exp \left(-\frac{1}{2 D \gamma}[U(\boldsymbol{r}(t))-U(\boldsymbol{r}(0))]\right) \tag{3.59}
\end{align*}
$$

where:

$$
V=\boldsymbol{f}^{2}-\frac{2 D}{\gamma} \nabla^{2} U=\boldsymbol{f}^{2}-2 D \boldsymbol{\nabla} \cdot \boldsymbol{f}
$$

Using the just found measure $\mathrm{d} P$ we can compute path integrals, and in particular transition probabilities:

$$
\begin{aligned}
W\left(\boldsymbol{r}, t \mid \boldsymbol{r}_{0}, 0\right) & =\int_{\mathbb{R}^{T}} \mathrm{~d} P \delta(\boldsymbol{r}(t)-\boldsymbol{r}) \equiv\langle\delta(\boldsymbol{r}(t)-\boldsymbol{r}(0))\rangle_{W}= \\
& =\int_{\mathbb{R}^{T}} \mathrm{~d}_{W}^{3} \boldsymbol{r} \exp \left(-\frac{1}{4 D} \int_{0}^{t} V(\boldsymbol{r}(\tau)) \mathrm{d} \tau\right) \delta(\boldsymbol{r}(t)-\boldsymbol{r}) \exp \left(-\frac{1}{2 D \gamma}\left(U(\boldsymbol{r})-U\left(\boldsymbol{r}_{0}\right)\right)\right)= \\
& =\left\langle\exp \left(-\frac{1}{4 D} \int_{0}^{t} V(\boldsymbol{r}(\tau)) \mathrm{d} \tau\right) \delta(\boldsymbol{r}(t)-\boldsymbol{r})\right\rangle_{W} \exp \left(-\frac{1}{2 D \gamma}\left(U(\boldsymbol{r})-U\left(\boldsymbol{r}_{0}\right)\right)\right)
\end{aligned}
$$

This expression is indeed similar to that derived in the specific case of the harmonic oscillator ($\overline{B .5 D}$), meaning that the techniques we used to evaluate previous path integrals can be useful in much more general cases.
This observation has indeed a deeper meaning, as we found a way to describe the dynamics of conservative systems with a path integral. We already know that the behaviour of these systems can be also described with partial differential equations (e.g. the Fokker-Planck equation). So, there should be a link between path integrals and PDEs, that will be explored in the next section.

3.10 Feynman-Kac formula

It is possible to use the machinery of stochastic processes and path integrals to solve certain partial differential equations, which - as we will see - are of fundamental importance in Quantum Mechanics.
In this regard, a very important result is offered by the Feynman-Kac formula. The main idea is to use a Brownian process to simulate many paths,
and express the solution of the differential equation as the average of a certain functional computed over all these paths.
More precisely, consider the following partial differential equation (Bloch's equation):

$$
\begin{equation*}
\partial_{t} W_{B}(x, t)=D \partial_{x}^{2} W_{B}(x, t)-V(x) W_{B}(x, t) \quad D \in \mathbb{R}, V: \mathbb{R} \rightarrow \mathbb{R} \tag{3.60}
\end{equation*}
$$

The Feynman-Kac formula states that the function $W_{B}(x, t)$ that solves (B.6T]) can be found by computing a Wiener path integral:

$$
\begin{equation*}
W_{B}(x, t) \equiv\left\langle\exp \left(-\int_{0}^{t} V(x(\tau)) \mathrm{d} \tau\right) \delta(x(t)-x)\right\rangle_{W} \tag{3.61}
\end{equation*}
$$

Note that this result can be generalized to more dimensions - but we will limit ourselves to the $d=1$ case for simplicity.
 by defining a time discretization, $\left\{t_{i}\right\}_{i=0, \ldots, n+1}$, so that $t_{0} \equiv 0$ and $t_{n+1} \equiv \bar{t}$ is the instant at which we wish to evaluate the solution $W_{B}(x, t)$. Then ($[.6]$) at that instant will be obtained by the continuum limit of the discretized average $\psi_{n+1}(x)$:

$$
\begin{align*}
W_{B}(x, \bar{t}) & =\lim _{n \rightarrow \infty} \psi_{n+1}(x) \\
\psi_{n+1}(x) & =\int_{\mathbb{R}^{n+1}}\left(\prod_{i=1}^{n+1} \frac{\mathrm{~d} x_{i}}{\sqrt{4 \pi D \Delta t_{i}}}\right) \exp \left(-\sum_{i=1}^{n+1} \frac{\left(x_{i}-x_{i-1}\right)^{2}}{4 D \Delta t_{i}}-\sum_{i=1}^{n+1} \Delta t_{i} V\left(x_{i}\right)\right) \delta\left(x_{n+1}-x\right) \tag{3.62}
\end{align*}
$$

Note that $\psi_{n+1}(x)$ is the average of a functional over all paths that arrive in x at the instant \bar{t}, making exactly $n+1$ steps from their starting point 0 . In the following, the intuition is to see these paths as being generated, i.e. evolving step after step from 0 to x. For example, suppose we want to approximate (3.627). We would start by choosing an ensemble of paths arriving to x after $n+1$ timesteps, compute the functional on each of them, and average the results. However, we could also do it in another - a bit stranger - way. Consider the same ensemble of paths we already (supposedly) generated. From each of them, remove the last step. We now have a set of paths that arrive close to x, and will arrive exactly there if we let another timestep pass. However, we decide to compute the functional on each of these paths and then average the results, before letting them arrive at their destination. So, in a certain sense, we will estimate the value of the functional "a timestep in the past". Of course, we can repeat this process, removing more and more timesteps at every iteration. At the end, we will have a sequence of numbers detailing the "evolution" of the functional from the start to the end. Turns out that the rule for such an evolution is exactly (5.6T1). So, to prove Feynman-Kac, we just have to find that rule - meaning how to relate ψ_{n+1} to its "past" ψ_{n} (in the continuum limit $n \rightarrow \infty)$.
This is just an informal intuition, that will only be useful as a guide for the rest of the proof. So, let's go on.

For simplicity, we choose the time discretization as uniform, so that $\Delta t_{i} \equiv \epsilon$ $\forall i$, and:

$$
t_{n+1}=(n+1) \epsilon \equiv \bar{t} \Rightarrow \epsilon=\frac{\bar{t}}{n+1}
$$

We then rewrite (3.62), highlight the last term (the one with the x_{n+1}) and integrate to remove the δ :

$$
\begin{align*}
\psi_{n+1}(x)= & \int_{\mathbb{R}^{n}}\left(\prod_{i=1}^{n} \frac{\mathrm{~d} x_{i}}{\sqrt{4 \pi D \epsilon}}\right) \exp \left(-\sum_{i=1}^{n} \frac{\left(x_{i}-x_{i-1}\right)^{2}}{4 D \epsilon}-\sum_{i=1}^{n} \epsilon V\left(x_{i}\right)\right) . \\
& \cdot \int_{\mathbb{R}} \frac{\mathrm{d} x_{n+1}}{\sqrt{4 \pi D \epsilon}} \exp \left(-\frac{\left(x_{n+1}-x_{n}\right)^{2}}{4 D \epsilon}-\epsilon V\left(x_{n+1}\right)\right) \delta\left(x_{n+1}-x\right)= \\
= & \int_{\mathbb{R}^{n}}\left(\prod_{i=1}^{n} \frac{\mathrm{~d} x_{i}}{\sqrt{4 \pi D \epsilon}}\right) \exp \left(-\sum_{i=1}^{n} \frac{\left(x_{i}-x_{i-1}\right)^{2}}{4 D \epsilon}-\sum_{i=1}^{n} \epsilon V\left(x_{i}\right)\right) . \\
& \cdot \frac{1}{\sqrt{4 \pi D \epsilon}} \exp \left(-\frac{\left(x-x_{n}\right)^{2}}{4 D \epsilon}-\epsilon V(x)\right) \tag{3.63}
\end{align*}
$$

Now, with some algebra, we recognize in these integrals a term $\psi_{n}\left(x_{n}\right)$, indicating the expected value of the functional over all paths reaching x_{n} (which is close to the end-point x) at timestep $t_{n}=t-\epsilon$. We start by rearranging, putting the integration over $\mathrm{d} x_{n}$ at the front:

$$
\begin{align*}
(\text { B.6.3 })= & \int_{\mathbb{R}} \frac{\mathrm{d} x_{n}}{\sqrt{4 \pi D \epsilon}} \exp \left(-\frac{\left(x-x_{n}\right)^{2}}{4 D \epsilon}-\epsilon V(x)\right) . \\
& \cdot \frac{1}{\sqrt{4 \pi D \epsilon}} \int_{\mathbb{R}^{n-1}}\left(\prod_{i=1}^{n-1} \frac{\mathrm{~d} x_{i}}{\sqrt{4 \pi D \epsilon}}\right) \exp \left(-\sum_{i=1}^{n} \frac{\left(x_{i}-x_{i-1}\right)^{2}}{4 D \epsilon}-\epsilon \sum_{i=1}^{n} V\left(x_{i}\right)\right) \tag{3.64}
\end{align*}
$$

Now we change all the x_{i} in the second line to y_{i}, and then add a δ (with its integral) to connect y_{n} to x_{n}, which appears in the integral in the first line. In this way we will highlight the desired $\psi_{n}\left(x_{n}\right)$:

$$
\begin{align*}
\text { (B.64) }= & \int_{\mathbb{R}} \frac{\mathrm{d} x_{n}}{\sqrt{4 \pi D \epsilon}} \exp \left(-\frac{\left(x-x_{n}\right)^{2}}{4 D \epsilon}-\epsilon V(x)\right) \cdot \\
& \cdot \underbrace{\int_{\mathbb{R}^{n}}\left(\prod_{i=1}^{n} \frac{\mathrm{~d} y_{i}}{\sqrt{4 \pi D \epsilon}}\right) \exp \left(-\sum_{i=1}^{n} \frac{\left(y_{i}-y_{i-1}\right)^{2}}{4 D \epsilon}-\epsilon \sum_{i=1}^{n} V\left(y_{i}\right)\right) \delta\left(x_{n}-y_{n}\right)}_{\psi_{n}\left(x_{n}\right)} \tag{3.65}
\end{align*}
$$

And so:

$$
\begin{equation*}
\psi_{n+1}(x)=e^{-\epsilon V(x)} \int_{\mathbb{R}} \frac{\mathrm{d} x_{n}}{\sqrt{4 \pi D \epsilon}} \exp \left(-\frac{\left(x-x_{n}\right)^{2}}{4 D \epsilon}\right) \psi_{n}\left(x_{n}\right) \tag{3.66}
\end{equation*}
$$

This is relation between $\psi_{n+1}(x)$ and its "past" $\psi_{n}(x)$ that we were searching

We start by simplifying the integral, making it similar to a gaussian with a change of variables:

$$
-\frac{\left(x-x_{n}\right)^{2}}{4 D \epsilon} \stackrel{!}{=}-\frac{z^{2}}{2} \Rightarrow z=-\frac{x-x_{n}}{\sqrt{2 D \epsilon}} ; \quad x_{n}=x+\sqrt{2 D \epsilon} z ; \quad \mathrm{d} x_{n}=\sqrt{2 D \epsilon} \mathrm{~d} z
$$

which leads to:

$$
\begin{equation*}
\psi_{n+1}(x)=e^{-\epsilon V(x)} \int_{-\infty}^{+\infty} \frac{\mathrm{d} z}{\sqrt{2 \pi}} \exp \left(-\frac{z^{2}}{2}\right) \psi_{n}\left(x_{n}+z \sqrt{2 D \epsilon}\right) \tag{3.67}
\end{equation*}
$$

As $n \rightarrow \infty, z \rightarrow 0$. We will not prove this, but note that:

$$
z=-\frac{x-x_{n}}{\epsilon} \frac{\sqrt{\epsilon}}{\sqrt{2 D}}
$$

where the first factor is a velocity, which must be physically limited, and so $n \rightarrow \infty \Rightarrow \epsilon \rightarrow 0 \Rightarrow z \rightarrow 0$.
This means that we can expand ψ_{n} in Taylor series about x :

$$
\psi_{n}\left(x_{n}+z \sqrt{2 D \epsilon}\right)=\psi_{n}(x)+z \sqrt{2 D \epsilon} \psi_{n}^{\prime}(x)+z^{2} D \epsilon \psi_{n}^{\prime \prime}(x)+O\left(z^{3} \epsilon^{3 / 2}\right)
$$

Substituting back in (3.67):

$$
\begin{align*}
\psi_{n+1}(x)= & e^{-\epsilon V(x)}[\psi_{n}(x) \underbrace{\int_{\mathbb{R}} \frac{\mathrm{d} z}{\sqrt{2 \pi}} \exp \left(-\frac{z^{2}}{2}\right)}_{1}+\sqrt{2 D \epsilon} \psi_{n}^{\prime}(x) \underbrace{\int_{\mathbb{R}} \frac{\mathrm{d} z}{\sqrt{2 \pi}} z \exp \left(-\frac{z^{2}}{2}\right)}_{0}+ \\
& +D \epsilon \psi_{n}^{\prime \prime}(x) \underbrace{\int_{\mathbb{R}} \frac{\mathrm{d} z}{\sqrt{2 \pi}} z^{2} \exp \left(-\frac{z^{2}}{2}\right)}_{1}+O\left(\epsilon^{2}\right)] \tag{3.68}
\end{align*}
$$

as the integrand is just a standard gaussian $(\mu=0, \sigma=1)$. Note how the error term is of order ϵ^{2}, as the first non-null integral in the series will be that with z^{4} :

$$
\int_{\mathbb{R}} \frac{\mathrm{d} z}{\sqrt{2 \pi}} z^{k} \frac{(2 D \epsilon)^{k / 2}}{k!} \psi_{n}^{(k)}= \begin{cases}0 & k \text { odd } \\ 1^{k}(k-1)!! & k \text { even }\end{cases}
$$

Expanding also the $e^{-\epsilon V(x)}$ term:

$$
e^{-\epsilon V(x)}=1-\epsilon V(x)+\frac{\epsilon^{2} V^{2}(x)}{2}+O\left(\epsilon^{3}\right)
$$

Finally, substituting back in (3.68), expanding the product and ignoring all terms of order 2 or higher in ϵ :

$$
\psi_{n+1}(x)=\psi_{n}(x)+D \epsilon \psi_{n}^{\prime \prime}(x)-\epsilon V(x) \psi_{n}(x)+O\left(\epsilon^{2}\right)
$$

Rearranging:

$$
\frac{\psi_{n+1}-\psi_{n}}{\epsilon}=D \psi_{n}^{\prime \prime}-V \psi_{n}
$$

And when $\epsilon \rightarrow 0$ the first term becomes a time derivative, leading to Bloch's equation, and proving Feynman-Kac formula:

$$
\partial_{t} W_{B}(x, t)=D \partial_{x}^{2} W_{B}(x, t)-V(x) W_{B}(x, t)
$$

3.10.1 Application to Quantum Mechanics

It is possible to map the Schrödinger equation to the Bloch equation (3.60 T), and then use Feynman-Kac formula to solve it.
Recall the time-dependent Schrödinger equation for a particle immersed in a $d=1$ potential $v(x)$ and described by a wavefunction $\psi(x, t)$:

$$
i \hbar \partial_{t} \psi(x, t)=-\frac{\hbar^{2}}{2 m} \partial_{x}^{2} \psi(x, t)+v(x) \psi(x, t)
$$

This is already similar to ($3.6 \pi)_{\text {) , except }}$ for the presence of a complex coefficient i. We can remove it with a change of variable $t \mapsto i t$, leading to:

$$
i \hbar(i) \frac{\partial}{\partial t} \psi(x, i t)=-\hbar \frac{\partial}{\partial t} \psi(x, i t)=-\frac{\hbar^{2}}{2 m} \partial_{x}^{2} \psi(x, i t)+v(x) \psi(x, i t)
$$

Defining $\psi(x, i t) \equiv \hat{\psi}(x, t)$ and multiplying both sides by $-\hbar^{-1}$ leads to:

$$
\frac{\partial}{\partial t} \hat{\psi}(x, t)=\frac{\hbar}{2 m} \frac{\partial^{2}}{\partial x^{2}} \hat{\psi}(x, t)-\frac{v(x)}{\hbar} \hat{\psi}(x, t)
$$

which has the form of Bloch's equation:

$$
\frac{\partial}{\partial t} \hat{\psi}(x, t)=D \frac{\partial^{2}}{\partial x^{2}} \hat{\psi}(x, t)-V(x) \hat{\psi}(x, t) \quad D=\frac{\hbar}{2 m} ; \quad V(x)=\frac{v(x)}{\hbar}
$$

3.11 Variational methods

Consider a particle subject to an external conservative force $\boldsymbol{F}(\boldsymbol{r})=-\nabla U(\boldsymbol{r})$, moving through a viscous medium and subject to thermal noise. The probability density for a path $x(\tau)$ can be derived from (5.5.T), after "dividing by the volume element" and taking the limit $n \rightarrow \infty$:

$$
\begin{align*}
\Omega[\boldsymbol{r}(\tau)] & \equiv \frac{\mathrm{d} P}{\mathrm{~d} V}= \\
& =\exp (-\frac{1}{4 D} \int_{0}^{t} \mathrm{~d} \tau \dot{\boldsymbol{r}}^{2}(\tau)+\int_{0}^{t} \mathrm{~d} \tau \underbrace{\left(-\frac{1}{4 D}\right)\left[\|\boldsymbol{f}\|^{2}-\frac{2 D}{\gamma} \nabla^{2} U\right]}_{V(\boldsymbol{r})}-\frac{1}{2 D \gamma}[U(\boldsymbol{r}(t))-U(\boldsymbol{r}(0))])= \\
& =\exp (-\frac{1}{4 D} \int_{0}^{t} \mathrm{~d} \tau \dot{\boldsymbol{r}}^{2}(\tau)-\frac{1}{4 D} \int_{0}^{t} \mathrm{~d} \tau \underbrace{\left[\|\boldsymbol{F}\|^{2}+\frac{2 D}{\gamma} \nabla \cdot \boldsymbol{F}\right]}_{V(\boldsymbol{r})}+\frac{1}{2 D \gamma} \int_{\boldsymbol{r}(0)}^{\boldsymbol{r}(t)} \mathrm{d}^{3} \boldsymbol{r} \cdot \boldsymbol{F}(\boldsymbol{r})) \tag{3.69}
\end{align*}
$$

with $\boldsymbol{f}(\boldsymbol{r})=\boldsymbol{F} / \gamma$, and $\gamma=6 \pi \eta a$ (η being the medium viscosity, and a the particle radius). If we change variables in the last integral:

$$
\int_{\boldsymbol{r}(0)}^{\boldsymbol{r}(t)} \mathrm{d}^{3} \boldsymbol{r} \cdot \boldsymbol{F}(\boldsymbol{r})=\int_{0}^{t} \mathrm{~d} \tau \boldsymbol{F}(\boldsymbol{r}) \cdot \frac{\mathrm{d} \boldsymbol{r}(\tau)}{\mathrm{d} \tau}
$$

we can rewrite (3.69) as a single integral:

$$
\begin{equation*}
\Omega[\boldsymbol{r}(\tau)]=\exp \left(-\frac{1}{4 D} \int_{0}^{t} \mathrm{~d} \tau L(\boldsymbol{r}(\tau))\right) \tag{3.70}
\end{equation*}
$$

with the function $L: \mathbb{R} \rightarrow \mathbb{R}, \boldsymbol{r}(\tau) \mapsto L(\boldsymbol{r}(\tau))$ defined as:

$$
\begin{align*}
L(\boldsymbol{r}(\tau)) & \equiv \boldsymbol{r}^{2}(\tau)+\left\|\frac{\boldsymbol{F}(\boldsymbol{r}(\tau))}{\gamma}\right\|^{2}+\frac{2 D}{\gamma} \nabla \cdot \boldsymbol{F}(\boldsymbol{r}(\tau))-\frac{2}{\gamma} \boldsymbol{F}(\boldsymbol{r}(\tau)) \cdot \dot{\boldsymbol{r}}(\tau)= \\
& =\left\|\dot{\boldsymbol{r}}(\tau)-\frac{\boldsymbol{F}(\boldsymbol{r}(\tau))}{\gamma}\right\|^{2}+\frac{2 D}{\gamma} \boldsymbol{\nabla} \cdot \boldsymbol{F}(\boldsymbol{r}(\tau)) \tag{3.71}
\end{align*}
$$

Classical path.

Consider the classical limit $D \rightarrow 0$. Then the $\boldsymbol{\nabla} \cdot \boldsymbol{F}$ term in ($\bar{B} \cdot \boldsymbol{T}$) vanishes, and as $-1 /(4 D) \rightarrow \infty$, there will be only one path with non-zero probability, i.e. the one $\boldsymbol{r}_{\boldsymbol{c}}(\tau)$ for which the functional vanishes:

$$
\int_{0}^{t} \mathrm{~d} \tau L\left(\boldsymbol{r}_{\boldsymbol{c}}(\tau)\right)=0 \Rightarrow \int_{0}^{t} \mathrm{~d} \tau\left\|\dot{\boldsymbol{r}}_{c}(\tau)-\frac{\boldsymbol{F}\left(\boldsymbol{r}_{\boldsymbol{c}}(\tau)\right)}{\gamma}\right\|^{2}=0
$$

We can then compute that path. As the integrand is a non-negative function, for its integral to be 0 it must be $0 \forall t$, leading to:

$$
\frac{\mathrm{d} \boldsymbol{r}_{\boldsymbol{c}}}{\mathrm{d} \tau}=\frac{\boldsymbol{F}\left(\boldsymbol{r}_{\boldsymbol{c}}\right)}{\gamma}
$$

which is just the equation of motion from classical mechanics.

Let's now use the form (3.7d) to compute path integrals. For example, consider a transition probability:

$$
\begin{equation*}
W\left(\boldsymbol{r}_{t}, t \mid \boldsymbol{r}_{0}, 0\right)=\int_{\mathcal{C}\left\{\boldsymbol{r}_{0}, 0 ; \boldsymbol{r}_{t}, t\right\}} \mathrm{d} \boldsymbol{r}(\tau) \underbrace{\exp \left(-\frac{1}{4 D} \int_{0}^{t} \mathrm{~d} \tau L(\boldsymbol{r}(\tau))\right)}_{\Omega[\boldsymbol{r}(\tau)]} \tag{3.72}
\end{equation*}
$$

Let's define the functional:

$$
S[\boldsymbol{r}(\tau)]=\int_{0}^{t} \mathrm{~d} \tau L(\boldsymbol{r}(\tau))
$$

Given the form of (B. $\mathcal{T} \mathbf{z})$, the path $\boldsymbol{r}_{\boldsymbol{c}}(\tau)$ that minimizes $S[\boldsymbol{r}(\tau)]$ will give the greatest contribution to the path integral. The parameter D modulates the relative contributions of paths. If $D \rightarrow 0, \boldsymbol{r}_{c}(\tau)$ will be the only contributing path, but if $D \gg 1$, many different paths will have a significant contribution. Suppose that $\boldsymbol{r}_{\boldsymbol{c}}(\tau)$ is indeed important, meaning that D is sufficiently small (more precisely, that $\left.S\left[\boldsymbol{r}_{c}(\tau)\right]\right) / D \gg 1$). Then, we write any generic path $\boldsymbol{x}(\tau)$ as the most important one $\boldsymbol{x}_{\boldsymbol{c}}(\tau)$ plus a "deviation" $\boldsymbol{y}(\tau)$:

$$
\boldsymbol{x}(\tau)=\boldsymbol{x}_{\boldsymbol{c}}(\tau)+\underbrace{\left(\boldsymbol{x}(\tau)-\boldsymbol{x}_{\boldsymbol{c}}(\tau)\right)}_{\boldsymbol{y}(\tau)}
$$

Note that as the end-points of every path are fixed, $\boldsymbol{y}(0)=\boldsymbol{y}(t)=0$. Then, we expand in series the functional:

$$
S[\boldsymbol{x}(\tau)]=S\left[\boldsymbol{x}_{\boldsymbol{c}}(\tau)+y(\tau)\right]=S\left[\boldsymbol{x}_{\boldsymbol{c}}\right]+\delta S\left[\boldsymbol{x}_{\boldsymbol{c}}, \boldsymbol{y}\right]+\frac{1}{2!} \delta^{2} S\left[\boldsymbol{x}_{\boldsymbol{c}}, \boldsymbol{y}\right]+\ldots
$$

where the δ terms are the variations of the functional ${ }^{[\sqrt{[]}}$. For example, the first variation $\delta S\left[\boldsymbol{x}_{\boldsymbol{c}}, \boldsymbol{y}\right]$ is given by, measures how much S varies to first order when changing $\boldsymbol{y}(\tau)$. As $\boldsymbol{x}_{\boldsymbol{c}}$ is a minimum of S, it is also a stationary point, meaning that paths close to $\boldsymbol{x}_{\boldsymbol{c}}$ do not change the value $S\left[\boldsymbol{x}_{c}\right]$ to first order. Applying the definition of the first variation, this leads to the Euler-Lagrange equations for determining $\boldsymbol{x}_{\boldsymbol{c}}$:

$$
\delta S\left[\boldsymbol{x}_{\boldsymbol{c}}, \boldsymbol{y}\right]=\frac{\partial L(\boldsymbol{r}(\tau))}{\partial x_{i}}-\frac{\mathrm{d}}{\mathrm{~d} \tau} \frac{\partial L(\boldsymbol{r}(\tau))}{\partial \dot{x}_{i}} \stackrel{!}{=} 0 \quad i=1,2,3
$$

Then, note how all other terms of the series involve integrals of $\boldsymbol{y}(\tau)$, which do not depend on $x-$ as $\boldsymbol{y}(\tau)$ starts from 0 and returns to 0 at t. So:

$$
S[\boldsymbol{x}(\tau)]=S\left[\boldsymbol{x}_{\boldsymbol{c}}\right]+\underbrace{\frac{1}{2!} \delta^{2} S\left[\boldsymbol{x}_{\boldsymbol{c}}, \boldsymbol{y}\right]+\ldots}_{h(t)}
$$

Substituting back in (3.72):

$$
W\left(\boldsymbol{r}_{t}, t \mid \boldsymbol{r}_{0}, 0\right)=\underbrace{-\frac{1}{4 D} \exp (h(t))}_{\Phi(t)} \exp \left(-\frac{1}{4 D} S\left[\boldsymbol{x}_{\boldsymbol{c}}\right]\right)=\Phi(t) \exp \left(-\frac{1}{4 D} \int_{0}^{t} \mathrm{~d} \tau L\left[\boldsymbol{r}_{\boldsymbol{c}}(\tau)\right]\right)
$$

The function $\Phi(t)$ is called fluctuation factor, and its computation is not trivial in the general case. However, if we are dealing with transition probabilities, we can use the normalization condition to find it:

$$
\int_{\mathbb{R}^{3}} \mathrm{~d}^{3} \boldsymbol{r} W(\boldsymbol{r}, t \mid \boldsymbol{r}, 0) \equiv 1
$$

Example 12 (Simple integral with variational methods):
An example will hopefully clarify the essence of the variational method.
Let's start with a already known integral, in the $d=1$ case:

$$
\begin{align*}
W\left(x, t \mid x_{0}, 0\right) & =\int_{\mathbb{R}^{T}}\left(\prod_{\tau=0^{+}}^{t} \frac{\mathrm{~d} x(\tau)}{\sqrt{4 \pi D \mathrm{~d} \tau}}\right) \exp \left(-\frac{1}{4 D} \int_{0}^{t} \dot{x}^{2}(\tau) \mathrm{d} \tau\right) \delta(x-x(t))= \tag{3.73}\\
& =\frac{1}{\sqrt{4 \pi D t}} \exp \left(-\frac{\left(x-x_{0}\right)^{2}}{4 D t}\right)
\end{align*}
$$

Let's compute it again, this time using variations. In this case we are interested in the functional:

$$
\begin{equation*}
S[x(\tau)]=\int_{0}^{t} \dot{x}^{2}(\tau) \mathrm{d} \tau \tag{3.74}
\end{equation*}
$$

To minimize it, we solve the Euler-Lagrange equations:

$$
\frac{\mathrm{d}}{\mathrm{~d} \tau} \frac{\partial S\left(x_{c}\right)}{\partial \dot{x}}-\frac{\partial S\left(x_{c}\right)}{\partial x}=0 \Rightarrow 0-2 \ddot{x}_{c}=0 \Rightarrow \ddot{x}_{c}(\tau)=0
$$

[^5]Integrating two times:

$$
\dot{x}_{c}(\tau)=a \Rightarrow x_{c}(\tau)=a \tau+b
$$

The boundary conditions are path's two extrema:

$$
x_{c}(0)=b \stackrel{!}{=} 0 ; \quad x_{c}(t)=a t+x_{0} \stackrel{!}{=} x \Rightarrow a=\frac{x-x_{0}}{t}
$$

leading to:

$$
x_{c}(\tau)=x_{0}+\frac{x-x_{0}}{t} \tau
$$

So the path minimizing S is just the straight line joining x_{0} to x. We can now express any path $x(\tau)$ as a deviation from the $x_{c}(\tau)$:

$$
\begin{equation*}
x(\tau)=x_{c}(\tau)+y(\tau) \quad y(0)=y(t)=0 \tag{3.75}
\end{equation*}
$$

This is a change of variables for ($[.73)$, from $x(\tau)$ to $y(\tau)\left(x_{c}(\tau)\right.$ is a fixed path). As this is just a translation, $\mathrm{d} x(\tau)=\mathrm{d} y(\tau)$ and the path integral becomes:

$$
\begin{align*}
W\left(x, t \mid x_{0}, 0\right) & =\int_{\mathbb{R}^{T}}\left(\prod_{\tau=0^{+}}^{t} \frac{\mathrm{~d} y(\tau)}{\sqrt{4 \pi D \mathrm{~d} \tau}}\right) \delta(y(t)-0) S\left[x_{c}(\tau)+y(\tau)\right]= \\
& =\int_{\mathcal{C}\{0,0 ; 0, t\}}\left(\prod_{\tau=0^{+}}^{t} \frac{\mathrm{~d} y(\tau)}{\sqrt{4 \pi D \mathrm{~d} \tau}}\right) S\left[x_{c}(\tau)+y(\tau)\right] \tag{3.76}
\end{align*}
$$

To compute S, first we differentiate (3.75):

$$
\dot{x}(\tau)=\dot{x}_{c}(\tau)+\dot{y}(\tau)
$$

and substitute in (3.T4), leading to:

$$
S[x(\tau)]=\int_{0}^{t} \mathrm{~d} \tau\left(\dot{x}_{c}+\dot{y}\right)^{2}=\int_{0}^{t} \dot{x}_{c}^{2}(\tau) \mathrm{d} \tau+2 \int_{0}^{t} \dot{x}_{c}(\tau) \dot{y}(\tau) \mathrm{d} \tau+\int_{0}^{t} \dot{y}^{2}(\tau) \mathrm{d} \tau
$$

Note that the middle term vanishes. We can see it by integrating by parts:

$$
\int_{0}^{t} \dot{x}_{c}(\tau) \dot{y}(\tau) \mathrm{d} \tau=\left.\dot{x}_{c}(\tau) y(\tau)\right|_{0} ^{t}-\int_{0}^{t} \ddot{x}_{c}(\tau) y(\tau) \mathrm{d} \tau=0
$$

as $y(0)=y(t)=0$ and $\ddot{x}_{c}(\tau) \equiv 0$. Going back to (3.761):

$$
W\left(x, t \mid x_{0}, 0\right)=\int_{\mathbb{R}^{T}}\left(\prod_{\tau=0^{+}}^{t} \frac{\mathrm{~d} y(\tau)}{\sqrt{4 \pi D \mathrm{~d} \tau}}\right) \delta(y(t)-0) \exp \left(-\frac{1}{4 D}\left[\int_{0}^{t} \dot{x}_{c}^{2}(\tau) \mathrm{d} \tau+\int_{0}^{t} \dot{y}^{2}(\tau) \mathrm{d} \tau\right]\right)
$$

As $x_{c}(\tau)$ is fixed, we can bring it outside the integral:

$$
=\exp \left(-\int_{0}^{t} \dot{x}_{c}^{2}(\tau) \mathrm{d} \tau\right) \underbrace{\int_{\mathbb{R}^{T}}\left(\prod_{\tau=0^{+}}^{t} \frac{\mathrm{~d} y(\tau)}{\sqrt{4 \pi D \mathrm{~d} \tau}}\right) \delta(y(t)-0) \exp \left(-\frac{1}{4 D} \int_{0}^{t} \dot{y}^{2}(\tau) \mathrm{d} \tau\right)}_{\Phi(t)}
$$

We recognize the remaining path integral as a function $\Phi(t)$ of time only, and finally:

$$
\begin{aligned}
W\left(x, t \mid x_{0}, 0\right) & =\Phi(t) \int_{0}^{t} \mathrm{~d} \tau \dot{x}_{c}^{2}(\tau)=\Phi(t) \exp [-\frac{1}{4 D}\left(\frac{x^{2}-x_{0}^{2}}{t^{2}}\right) \underbrace{\int_{0}^{t} \mathrm{~d} \tau}_{t}]= \\
& =\Phi(t) \exp \left(-\frac{\left(x-x_{0}\right)^{2}}{4 D t}\right)
\end{aligned}
$$

To find the remaining $\Phi(t)$ we can now use the normalization condition:

$$
\int_{-\infty}^{+\infty} \mathrm{d} x W\left(x, t \mid x_{0}, 0\right) \stackrel{!}{=} 1
$$

In this case, this is just a gaussian integral:

$$
\int_{\mathbb{R}} \mathrm{d} x \Phi(t) \exp \left(-\frac{\left(x-x_{0}\right)^{2}}{4 D t}\right)=\Phi(t) \sqrt{4 \pi D t} \stackrel{!}{=} 1 \Rightarrow \Phi(t)=\frac{1}{\sqrt{4 \pi D t}}
$$

And so we retrieve the correct result:

$$
W\left(x, t \mid x_{0}, 0\right)=\frac{1}{\sqrt{4 \pi D t}} \exp \left(-\frac{\left(x-x_{0}\right)^{2}}{4 D t}\right)
$$

Gaussian integrals. There is another, more specific, way to interpret the results we discussed in this section. Instead of working in the continuum, we could use a discretization, and see path integrals as (B.T3) as integrals of a highly dimensional gaussian. For example, in the case just examined, we have:

$$
\begin{aligned}
W\left(x, t \mid x_{0}, 0\right) & =" \lim _{n \rightarrow \infty} " I_{N} \\
I_{n} & =\int_{\mathbb{R}^{n}}\left(\prod_{i=1}^{n} \frac{\mathrm{~d} x_{i}}{\sqrt{4 \pi D \Delta t_{i}}}\right) \exp \left(-\sum_{i=1}^{n} \frac{\left(x_{i}-x_{i-1}\right)^{2}}{4 D \Delta t_{i}}\right) \delta\left(x-x_{n}\right)
\end{aligned}
$$

Performing the integration over the $\mathrm{d} x_{n}$ we can remove the δ, leaving only a multivariate gaussian:

$$
I_{n}=\left.\int_{\mathbb{R}^{n-1}} \frac{1}{\sqrt{4 \pi D \Delta t_{i}}}\left(\prod_{i=1}^{n} \frac{\mathrm{~d} x_{i}}{\sqrt{4 \pi D \Delta t_{i}}}\right) \exp \left(-\sum_{i=1}^{n} \frac{\left(x_{i}-x_{i-1}\right)^{2}}{4 D \Delta t_{i}}\right)\right|_{x_{n}=x}
$$

This is a gaussian in the form of:

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \mathrm{~d}^{n} \boldsymbol{x} \exp \left(-\frac{1}{2} \boldsymbol{x}^{T} A \boldsymbol{x}+\boldsymbol{b}^{T} \boldsymbol{x}\right) \tag{3.77}
\end{equation*}
$$

Note that removing the δ inserts a linear term in the exponential, here high-
lighted:

$$
\left.\sum_{i=1}^{n} \frac{\left(x_{i}-x_{i-1}\right)^{2}}{4 D \Delta t_{i}}\right|_{x=x_{n}}=\sum_{i=1}^{n-1} \frac{\left(x_{i}-x_{i-1}\right)^{2}}{4 D \Delta t_{i}}+\frac{x_{n}^{2}+2 x_{n} x_{n-1}+x_{n-1}^{2}}{4 D \Delta t_{n}}
$$

and so $\boldsymbol{b} \neq \mathbf{0}$.
Recall that to solve (B.TV) we proceeded with a change of variables, $\boldsymbol{x}=\boldsymbol{x}_{\boldsymbol{c}}+\boldsymbol{y}$, where $\boldsymbol{x}_{\boldsymbol{c}}$ is the minimum of the gaussian (see 10/10 notes). This leads to a result that is proportional to the exponential evaluated at $\boldsymbol{x}_{\boldsymbol{c}}$:

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}} \mathrm{~d}^{n} \boldsymbol{x} \exp \left(-\frac{1}{2} \boldsymbol{x}^{T} A \boldsymbol{x}+\boldsymbol{b}^{T} \boldsymbol{x}\right)=\frac{(2 \pi)^{n / 2}}{\sqrt{\operatorname{det}(A)}} \exp \left(\frac{1}{2} \boldsymbol{b}^{T} A^{-1} \boldsymbol{b}\right)= \\
&=\frac{(2 \pi)^{n / 2}}{\sqrt{\operatorname{det}(A)}} \exp \left(\operatorname{Stat}_{\boldsymbol{x}}\left[-\frac{1}{2} \boldsymbol{x}^{T} A \boldsymbol{x}+\boldsymbol{b} \cdot \boldsymbol{x}\right]\right) \\
& \operatorname{Stat}_{\boldsymbol{x}} F(\boldsymbol{x})=F\left(\boldsymbol{x}_{c}\right) ; \quad \boldsymbol{x}_{\boldsymbol{c}} \text { such that }\left.\frac{\partial F(\boldsymbol{x})}{\partial x_{i}}\right|_{\boldsymbol{x}=\boldsymbol{x}_{c}}=0 \quad \forall i=1, \ldots, n
\end{aligned}
$$

So, in the discrete case, the same variational result just derives from choosing the best set of coordinates to describe the multivariate gaussian.

Variational Methods for Path Integrals

4.1 Variational methods

Example 13 (Overdamped harmonic oscillator with variational methods):
Consider a particle immersed in a harmonic potential $U(x)=m \omega^{2} x^{2} / 2$ and subject to thermal noise, moving in a viscous medium. In the overdamped limit $m / \gamma \rightarrow 0$ (where $\gamma=6 \pi \eta a$, with η the medium's viscosity and a the particle's radius), the equation of motion becomes:

$$
\mathrm{d} x(t)=-k x(t) \mathrm{d} t+\sqrt{2 D} \mathrm{~d} B(t) \quad k=\frac{m \omega^{2}}{\gamma}
$$

A path $\{x(\tau)\}$ solving that equation has a infinitesimal probability given by:

$$
\mathrm{d} P=\left(\prod_{\tau=0^{+}}^{t} \frac{\mathrm{~d} x(\tau)}{\sqrt{4 \pi D \mathrm{~d} \tau}}\right) \exp \left(-\frac{1}{4 D} \int_{0}^{t}(\dot{x}+k x)^{2} \mathrm{~d} \tau\right)
$$

as we already derived. We are now interested in computing the transition probabilities:

$$
W\left(x, t \mid x_{0}, 0\right)=\int_{\mathbb{R}^{T}} \delta(x(t)-x) \mathrm{d} P
$$

Following the variational method, we arrive to:

$$
\begin{equation*}
W\left(x, t \mid x_{0}, 0\right)=\Phi(t) \exp \left(-\frac{1}{4 D} S\left[x_{c}(\tau)\right]\right) \tag{4.1}
\end{equation*}
$$

where S is the action functional for the harmonic potential:

$$
S[x(\tau)]=\int_{0}^{t} L(\dot{x}, x) \mathrm{d} \tau \quad L(\dot{x}, x)=(\dot{x}+k x)^{2}
$$

and $x_{c}(\tau)$ is the path that stationarizes $S[x(\tau)]$, meaning that $\delta S\left[x_{c}(\tau)\right]=0$ and so it satisfies the Euler-Lagrange equation:

$$
\left.0 \stackrel{!}{=} \frac{\partial L}{\partial x}\right|_{x_{c}}-\left.\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{x}}\right|_{x_{c}}=2 k\left(\dot{x}_{c}+k x_{c}\right)-2\left(\ddot{x}_{c}+k \dot{x}_{c}\right)=2\left(k^{2} x_{c}-\ddot{x}_{c}\right)
$$

as:

$$
\begin{aligned}
& \frac{\partial L}{\partial x}=2 k(\dot{x}+k x) \\
& \frac{\partial L}{\partial \dot{x}}=2(\dot{x}+k x)
\end{aligned}
$$

So, to find $x_{c}(\tau)$ we need to solve:

$$
\left\{\begin{array}{l}
\ddot{x}_{c}=k^{2} x_{c} \\
x_{c}(0)=x_{0} \\
x_{c}(t)=x
\end{array}\right.
$$

This is the second order ordinary differential equation for an harmonic repulsor, which has the following general integral:

$$
x_{c}(\tau)=A e^{k \tau}+B e^{-k \tau}
$$

Imposing the boundary conditions leads to:

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ x _ { 0 } \stackrel { ! } { = } A + B } \\
{ x \stackrel { ! } { = } A e ^ { k t } + B e ^ { - k t } }
\end{array} \Rightarrow \left\{\begin{array}{l}
B=x_{0}-A \\
x e^{k t}=A e^{2 k t}+B
\end{array} \Rightarrow x e^{k t}-x_{0}=A\left[e^{2 k t}-1\right]\right.\right. \\
& \Rightarrow A=\frac{x e^{k t}-x_{0}}{e^{2 k t}-1} \frac{e^{-k t}}{e^{-k t}}=\frac{\left(x e^{k t}-x_{0}\right) e^{-k t}}{\frac{e^{k t}-e^{-k t}}{2} 2}=\frac{x-x_{0} e^{-k t}}{2 \sinh (k t)} \\
& B=x_{0}-A=-\frac{x-x_{0} e^{k t}}{2 \sinh (k t)}
\end{aligned}
$$

Then we evaluate the action at the stationary path $x_{c}(\tau)$:

$$
\begin{aligned}
S\left[x_{c}(\tau)\right] & =\int_{0}^{t}(\dot{x}+k x)^{2} \mathrm{~d} \tau=\int_{0}^{t}\left[2 k A e^{k \tau}\right]^{2} \mathrm{~d} \tau=\left.4 k^{2} A^{2} \frac{1}{2 k} e^{2 k \tau}\right|_{0} ^{t}= \\
& =4 k A^{2} \frac{e^{2 k t}-1}{2} \frac{e^{-k t}}{e^{-k t}}=4 k A^{2} \sinh (k t) e^{k t}= \\
& =4 k \frac{\left(x-x_{0} e^{-k t}\right)^{2}}{4 \sinh (k t)} e^{k t}=\frac{k\left(x-x_{0} e^{-k t}\right)^{2}}{e^{k t}-e^{-k t}} \frac{2}{e^{-k t}}=\frac{2 k\left(x-x_{0} e^{-k t}\right)^{2}}{1-e^{-2 k t}}
\end{aligned}
$$

Substituting back in (4. (1)):

$$
W\left(x, t \mid x_{0}, 0\right)=\Phi(t) \exp \left(-\frac{k}{2 D\left(1-e^{-2 k t}\right)}\left[x-x_{0} e^{-k t}\right]^{2}\right)
$$

All that's left to find $\Phi(t)$ is to use the normalization condition:

$$
\begin{aligned}
1 & \stackrel{!}{=} \int_{\mathbb{R}} \mathrm{d} x W\left(x, t \mid x_{0}, 0\right)=\Phi(t) \int_{\mathbb{R}} \mathrm{d} x \exp (-\overbrace{\frac{k}{2 D\left(1-e^{-2 k t}\right)}}^{\alpha}\left[x-x_{0} e^{-k t}\right]^{2})= \\
& =\Phi(t) \sqrt{\frac{\pi}{\alpha}}=\Phi(t) \sqrt{\frac{2 \pi D\left(1-e^{-2 k t}\right)}{k}} \Rightarrow \Phi(t)=\sqrt{\frac{k}{2 \pi D}} \frac{1}{\sqrt{1-e^{-2 k t}}}
\end{aligned}
$$

And so the full solution is:

$$
\begin{aligned}
W\left(x, t \mid x_{0}, 0\right) & =\sqrt{\frac{k}{2 \pi D}} \frac{1}{\sqrt{1-e^{-2 k t}}} \exp \left(-\frac{k}{2 D} \frac{\left(x-x_{0} e^{-k t}\right)^{2}}{\left(1-e^{-2 k t}\right)}\right) \\
& \xrightarrow[t \rightarrow \infty]{ } \sqrt{\frac{k}{2 \pi D}} \exp \left(-\frac{k}{2 D x^{2}}\right)
\end{aligned}
$$

As before, we can compute the $t \rightarrow \infty$ with a Maxwell-Boltzmann distribution $e^{-\beta U(x)}$, obtaining:

$$
\frac{1}{2} \beta m \omega^{2} x^{2}=\frac{k}{2 D} x^{2} \Rightarrow D=\frac{k}{\beta m \omega^{2}}=\frac{1}{\beta \gamma}=\frac{k_{B} T}{\gamma} \Rightarrow D \gamma=k_{B} T
$$

as we previously derived.
If we do not consider the overdamped limit, however, the equation of motion is given by:

$$
m \ddot{x}=-\gamma \dot{x}-m \omega^{2} x+\sqrt{2 D} \gamma \xi
$$

This can be rewritten as a system of two first order (stochastic) differential equations:

$$
\left\{\begin{array}{l}
\mathrm{d} x(\tau)=v(\tau) \mathrm{d} \tau \\
\mathrm{~d} v(\tau)=-\frac{\gamma}{m} v(\tau) \mathrm{d} \tau+\frac{\gamma \sqrt{2 D}}{m} \mathrm{~d} B
\end{array}\right.
$$

It is convenient to "symmetrize" the system, by adding a stochastic term also in the first equation:

$$
\left\{\begin{array}{l}
\mathrm{d} x(\tau)=v(\tau) \mathrm{d} \tau+2 \hat{D} \sqrt{\mathrm{~d} \hat{B}} \\
\mathrm{~d} v(\tau)=-\frac{\gamma}{m} v(\tau) \mathrm{d} \tau+\frac{\gamma \sqrt{2 D}}{m} \mathrm{~d} B
\end{array}\right.
$$

and then we'll consider the limit $\hat{D} \rightarrow 0$.
First, as usual, we discretize, with $\left\{t_{i}\right\}_{i=0, \ldots, n}$ and $t_{0} \equiv 0, t_{n} \equiv t$, arriving to:

$$
\left\{\begin{array}{l}
\Delta x_{i}=v_{i-1} \Delta t_{i}+\sqrt{2 \hat{D}} \Delta \hat{B}_{i} \\
\Delta v_{i}=-\frac{\gamma}{m} v_{i-1} \Delta t_{i}+\frac{\gamma}{m} \sqrt{2 D} \Delta B_{i}
\end{array}\right.
$$

Where the velocity is evaluated at t_{i-1} as per Ito's prescription. As ΔB_{i} and $\Delta \hat{B}_{i}$ are independent gaussian increments, their joint distribution is just a product:
$\mathrm{d} P\left(\Delta B_{1}, \Delta \hat{B}_{1}, \ldots, \Delta B_{n}, \Delta \hat{B}_{n}\right)=\left(\prod_{i=1}^{n} \frac{\mathrm{~d} \Delta B_{i}}{\sqrt{2 \pi \Delta t_{i}}} \frac{\mathrm{~d} \Delta \hat{B}_{i}}{\sqrt{2 \pi \Delta t_{i}}}\right) \exp \left(-\frac{1}{2} \sum_{i=1}^{n} \frac{\Delta B_{i}^{2}}{\Delta t_{i}}-\frac{1}{2} \sum_{i=1}^{n} \frac{\Delta \hat{B}_{i}^{2}}{\Delta t_{i}}\right)$

As done previously (see $14 / 11$ notes), to get the distribution for Δx_{i} and Δv_{i} we make a change of random variables:

$$
\begin{aligned}
\Delta \hat{B}_{i} & =\frac{\Delta x_{i}-v_{i-1} \Delta t_{i}}{\sqrt{2 \hat{D}}} \\
\Delta B_{i} & =\left(\Delta v_{i}+\frac{\gamma}{m} v_{i-1} \Delta t_{i}\right) \frac{m}{\gamma \sqrt{2 D}}
\end{aligned}
$$

with jacobian:

$$
\begin{aligned}
& \operatorname{det}\left|\frac{\partial\left\{\Delta \hat{B}_{i}\right\}}{\partial\left\{\Delta x_{i}\right\}}\right|=(2 \hat{D})^{-n / 2} \\
& \operatorname{det}\left|\frac{\partial\left\{\Delta B_{i}\right\}}{\partial\left\{\Delta x_{i}\right\}}\right|=\operatorname{det}\left|\frac{\partial\left\{\Delta x_{i}\right\}}{\partial\left\{\Delta B_{i}\right\}}\right|^{-1}=\left(\frac{\gamma}{m} \sqrt{2 D}\right)^{-n}=\left(\frac{\gamma^{2}}{m^{2}} 2 D\right)^{-n / 2}
\end{aligned}
$$

leading to:

$$
\begin{align*}
\mathrm{d} P\left(\left\{\Delta x_{i}\right\},\left\{\Delta v_{i}\right\}\right)= & \left(\prod_{i=1}^{n} \frac{\mathrm{~d} \Delta x_{i}}{\sqrt{4 \pi D \Delta t_{i}}} \frac{\mathrm{~d} \Delta v_{i}}{\sqrt{4 \pi D \Delta t_{i} \gamma^{2} / m^{2}}}\right) \\
& \cdot \exp \left(-\frac{1}{2} \sum_{i=1}^{n} \frac{m^{2}}{2 \gamma^{2} D}\left[\left(\frac{\Delta v_{i}+\gamma / m v_{i-1} \Delta t_{i}}{\Delta t_{i}}\right)^{2} \Delta t_{i}\right]\right) . \\
& \cdot \exp \left(-\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2 \hat{D}}\left[\left(\frac{\Delta x_{i}-v_{i-1} \Delta t_{i}}{\Delta t_{i}}\right)^{2} \Delta t_{i}\right]\right)= \\
= & \left(\prod_{i=1}^{n} \frac{\mathrm{~d} \Delta x_{i}}{\sqrt{4 \pi D \Delta t_{i}}} \frac{\mathrm{~d} \Delta v_{i}}{\sqrt{4 \pi D \Delta t_{i} \gamma^{2} / m^{2}}}\right) \\
& \cdot \exp \left(-\frac{m^{2}}{4 D \gamma^{2}} \sum_{i=1}^{n}\left[\left(\frac{\Delta v_{i}}{\Delta t_{i}}+\frac{\gamma}{m} v_{i-1}\right)^{2} \Delta t_{i}\right]\right) \\
& \cdot \exp \left(-\frac{1}{4 \hat{D}} \sum_{i=1}^{n}\left[\left(\frac{\Delta x_{i}}{\Delta t_{i}}-v_{i-1}\right)^{2} \Delta t_{i}\right]\right) \tag{4.2}
\end{align*}
$$

Taking the continuum limit $n \rightarrow \infty$ leads to:

$$
\begin{aligned}
\mathrm{d} P(\{x(\tau), v(\tau)\})= & \left(\prod_{\tau=0^{+}}^{t} \frac{\mathrm{~d} x(\tau)}{\sqrt{4 \pi \hat{D} \mathrm{~d} \tau}} \frac{\mathrm{~d} v(\tau)}{\sqrt{4 \pi D \mathrm{~d} \tau \gamma^{2} / m^{2}}}\right) \\
& \cdot \exp \left(-\frac{m^{2}}{4 D \gamma^{2}} \int_{0}^{t} \mathrm{~d} \tau\left[\dot{v}(\tau)+\frac{\gamma}{m} v(\tau)\right]^{2}-\frac{1}{4 \hat{D}} \int_{0}^{t} \mathrm{~d} \tau[\dot{x}(\tau)-v(\tau)]^{2}\right)
\end{aligned}
$$

In the limit $\hat{D} \rightarrow 0^{+}, 1 /(4 \hat{D}) \rightarrow+\infty$, and so the gaussian pdf for the $\Delta \hat{B}_{i}$ becomes infinitely thin, and the only path with a non-vanishing probability will be the one where:

$$
\int_{0}^{t} \mathrm{~d} \tau[\dot{x}-v(\tau)]^{2}=0
$$

As any >0 value will lead to $\exp (-\infty)=0$. In particular, the i-th factor of the discretization becomes:

$$
\frac{1}{\sqrt{4 \pi \hat{D} \Delta t_{i}}} \exp \left[-\frac{1}{4 \hat{D}}\left(\frac{\Delta x_{i}}{\Delta t_{i}}-v_{0}^{2}\right) \Delta t_{i}\right]=
$$

$$
=\frac{1}{\sqrt{4 \pi \hat{D} \Delta t_{i}}} \exp \left(-\frac{1}{4 \hat{D} \Delta t_{i}}\left(\Delta x_{i}-v_{i-1} \Delta t_{i}\right)^{2}\right) \underset{\hat{D} \rightarrow 0}{\longrightarrow} \delta\left(\Delta x_{i}-v_{i-1} \Delta t_{i}\right)
$$

where we used a limit definition for the δ :

$$
\lim _{\epsilon \rightarrow 0} \frac{1}{\sqrt{4 \pi \epsilon}} \exp \left(-\frac{x^{2}}{4 \epsilon}\right)=\delta(x)
$$

with $\epsilon=\hat{D} \Delta t_{i}$ and $x=\Delta x_{i}-v_{i-1} \Delta t_{i}$.
Substituting back in (4.2):

$$
\begin{aligned}
\mathrm{d} P\left(\left\{\Delta x_{i}\right\},\left\{\Delta v_{i}\right\}\right)= & \left(\prod_{i=1}^{n} \mathrm{~d} \Delta x_{i} \delta\left(\Delta x_{i}-v_{i-1} \Delta t_{i}\right) \frac{\mathrm{d} \Delta v_{i}}{\sqrt{4 \pi D \Delta t_{i} \gamma^{2} / m^{2}}}\right) . \\
& \cdot \exp \left(-\frac{m^{2}}{4 D \gamma^{2}} \sum_{i=1}^{n}\left[\left(\frac{\Delta v_{i}}{\Delta t_{i}}+\frac{\gamma}{m} v_{i-1}\right)^{2} \Delta t_{i}\right]\right)
\end{aligned}
$$

Now consider the discretized transition probability:

$$
\begin{aligned}
W\left(x_{n}, v_{n}, t_{n} \mid x_{0}, v_{0}, 0\right)= & \int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} \mathrm{~d} P\left(\left\{x_{i}, v_{i}\right\}\right) \delta\left(x_{n}-x\right) \delta\left(v_{n}-x\right)= \\
= & \int_{\mathbb{R}^{n} \times \mathbb{R}^{n}}\left(\prod_{i=1}^{n} \mathrm{~d} \Delta x_{i} \delta\left(\Delta x_{i}-v_{i-1} \Delta t_{i}\right) \frac{\mathrm{d} \Delta v_{i}}{\sqrt{4 \pi D \Delta t_{i} \gamma^{2} / m^{2}}}\right) \\
& \cdot \exp \left(-\frac{m^{2}}{4 D \gamma^{2}} \sum_{i=1}^{n}\left[\left(\frac{\Delta v_{i}}{\Delta t_{i}}+\frac{\gamma}{m} v_{i-1}\right)^{2} \Delta t_{i}\right]\right) \delta\left(v_{n}-v\right) \delta\left(x_{n}-x\right)
\end{aligned}
$$

Let's focus on the integrations over x_{i} :

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}}\left(\prod_{i=1}^{n} \mathrm{~d} \Delta x_{i} \delta\left(\Delta x_{i}-v_{i-1} \Delta t_{i}\right)\right) \delta\left(x_{n}-x\right)= \\
& =\int_{\mathbb{R}^{n}} \mathrm{~d} \Delta x_{1} \ldots \mathrm{~d} \Delta x_{n} \delta\left(\Delta x_{1}-v_{0} \Delta t_{1}\right) \ldots \delta\left(\Delta x_{n}-v_{n-1} \Delta t_{n}\right) \delta\left(x_{n}-x\right)
\end{aligned}
$$

We then perform the change of variables $\Delta x_{1}=x_{1}-x_{0}$, with x_{0} constant, so that $\mathrm{d} \Delta x_{1}=\mathrm{d} x_{1}$. Then we integrate over $\mathrm{d} x_{1}$, eliminating the first δ and setting $x_{1}=x_{0}-v_{0} \Delta t_{1}$:

$$
\begin{gathered}
\int_{\mathbb{R}^{n}} \mathrm{~d} x_{1} \mathrm{~d} \Delta x_{2} \ldots \mathrm{~d} \Delta x_{n} \delta\left(x_{1}-x_{0}-v_{0} \Delta t_{1}\right) \delta\left(\Delta x_{2}-v_{1} \Delta t_{2}\right) \ldots \delta\left(\Delta x_{n}-v_{n-1} \Delta t_{n}\right) \delta\left(x_{n}-x\right)= \\
\int_{\mathbb{R}^{n-1}} \mathrm{~d} \Delta x_{2} \ldots \mathrm{~d} \Delta x_{n} \delta\left(x_{2}-x_{0}-v_{0} \Delta t_{1}-v_{1} \Delta t_{2}\right) \ldots \delta\left(\Delta x_{n}-v_{n-1} \Delta t_{n}\right) \delta\left(x_{n}-x\right)
\end{gathered}
$$

Repeating these steps for all the other variables except the last one, we arrive to:

$$
=\int_{\mathbb{R}} \mathrm{d} x_{n} \delta\left(x_{n}-x_{0}-\sum_{i=1}^{n} v_{i-1} \Delta t_{i}\right) \delta\left(x_{n}-x\right)=\delta\left(x-x_{0}-\sum_{i=1}^{n} v_{i-1} \Delta t_{i}\right)
$$

In the continuum limit, this becomes:

$$
\delta\left(x-x_{0}-\int_{0}^{t} v(\tau) \mathrm{d} \tau\right)
$$

Substituting back in (4.3) and finally taking the limit $n \rightarrow \infty$:

$$
\begin{aligned}
W\left(x, v, t \mid x_{0}, v_{0}, 0\right)= & \int_{\mathbb{R}^{T}}\left(\prod_{\tau=0^{+}}^{t} \frac{\mathrm{~d} v(\tau)}{\sqrt{4 \pi D \mathrm{~d} \tau \gamma / m^{2}}}\right) \exp \left(-\frac{m^{2}}{4 D \gamma} \int_{0}^{t}\left(\dot{v}(\tau)+\frac{\gamma}{m} v(\tau)\right)^{2} \mathrm{~d} \tau\right) \\
& \cdot \delta(v(t)-v) \delta\left(x-x_{0}-\int_{0}^{t} v(\tau) \mathrm{d} \tau\right)
\end{aligned}
$$

We can now use the variational method to compute that integral. So, let $v_{c}(\tau)$ be the path, starting at $v(0)=v_{0}$ that stationarizes the action functional:

$$
S[v(\tau)]=\int_{0}^{t}\left(\dot{v}(\tau)+\frac{\gamma}{m} v(\tau)\right)^{2} \mathrm{~d} \tau
$$

so that $\delta S\left[v_{c}(\tau)\right]=0$, and also satisfies the constraints imposed by the δ :

$$
v(t) \stackrel{!}{=} v \quad x-x_{0} \stackrel{!}{=} \int_{0}^{t} v(\tau) \mathrm{d} \tau
$$

Then, the path integral is given by:

$$
\begin{equation*}
W\left(x, v, t \mid x_{0}, v_{0}, 0\right)=\Phi(t) \exp \left(-\frac{m^{2}}{4 D \gamma} \int_{0}^{t}\left(\dot{v}_{c}(\tau)+\frac{\gamma}{m} v_{c}(\tau)\right)^{2} \mathrm{~d} \tau\right) \tag{4.4}
\end{equation*}
$$

All that's left is to compute $v_{c}(\tau)$ and evaluate the integral. This is a problem of constrained optimization, for which we use the method of Lagrange multipliers.

Brief refresher of Lagrange multipliers. Suppose we have two functions $F, g: \mathbb{R}^{2} \rightarrow \mathbb{R}$, with $F(x, y)$ being the function to maximize, and $g(x, y)=$ $c \in \mathbb{R}$ a constraint. A stationary point $\left(x_{0}, y_{0}\right)$ of F subject to the constraint $g(x, y)=c$ is such that if we move slightly from $\left(x_{0}, y_{0}\right)$ along the contour $g(x, y)=c$, the value of $F(x, y)$ does not change (to first order). This happens if the contour of F passing through the stationary point $F(x, y)=F\left(x_{0}, y_{0}\right)$ is parallel at $\left(x_{0}, y_{0}\right)$ to that of $g(x, y)=c$, meaning that at $\left(x_{0}, y_{0}\right)$ the gradients of F and g are parallel:

$$
\nabla_{x, y} F=\lambda \nabla_{x, y} g \quad \lambda \in \mathbb{R}
$$

(Here we assume that $\left.\nabla_{x, y} g\left(x_{0}, y_{0}\right) \neq \mathbf{0}\right)$. Rearranging:

$$
\nabla_{x, y}(F(x, y)-\lambda g(x, y))=\mathbf{0}
$$

Together with the constraint equation $g(x, y)=c$, we have now 3 equations in 3 unknowns (x, y, λ) that can be solve to yield the desired stationary point $\left(x_{0}, y_{0}\right)$.

In this case, we have functionals instead of functions, and functionals derivatives (i.e. variations) instead of derivatives. So, to find the stationary points of:

$$
\begin{equation*}
\int_{0}^{t}\left(\dot{v}(\tau)+\frac{\gamma}{m} v(\tau)\right)^{2} \mathrm{~d} \tau \tag{a}
\end{equation*}
$$

subject to the constraint:

$$
\begin{equation*}
\int_{0}^{t} v(\tau) \mathrm{d} \tau=x-x_{0} \tag{b}
\end{equation*}
$$

we need to solve:

$$
\delta \int_{0}^{t} \underbrace{\left[\left(\dot{v}(\tau)+\frac{\gamma}{m} v(\tau)\right)^{2}-\lambda v(\tau)\right]}_{L(v, \dot{v})} \mathrm{d} \tau=0
$$

And applying the definition of first variation (the δ above) leads to solving the Euler-Lagrange equations:

$$
\frac{\partial L}{\partial v}-\left.\frac{\mathrm{d}}{\mathrm{~d} \tau} \frac{\partial L}{\partial \dot{v}}\right|_{v=v_{c}} \stackrel{!}{=} 0
$$

Expanding the computations:

$$
2\left(\dot{v}_{c}+\frac{\gamma}{m} v_{c}\right) \frac{\gamma}{m}-\lambda-\frac{\mathrm{d}}{\mathrm{~d} \tau}\left[2\left(\dot{v}_{c}+\frac{\gamma}{m} v_{c}\right)\right]=0 \Rightarrow \ddot{v}_{c}(\tau)=v_{c}(\tau)\left(\frac{\gamma}{m}\right)^{2}-\frac{\lambda}{2}
$$

The homogeneous solution is again a combination of exponentials:

$$
v_{c}(\tau)=A \exp \left(-\frac{\gamma}{m} \tau\right)+B \exp \left(\frac{\gamma}{m} \tau\right)
$$

And for the inhomogeneous general integral we just need to add a particular solution, for example the one with constant velocity $\dot{v}(\tau)=\operatorname{const} \Rightarrow \ddot{v}_{c}(\tau)=0$, given by:

$$
v_{c}(\tau)=\frac{\lambda}{2}\left(\frac{m}{\gamma}\right)^{2}
$$

Then, we need to impose the boundary conditions:

$$
v_{c}(0)=v_{0} \quad v_{c}(t)=v \quad \int_{0}^{t} v(\tau) \mathrm{d} \tau=\left(x-x_{0}\right)
$$

So we have 3 parameters (the two constants of integration A, B and λ) and 3 equations. After finding all of them, we just need to evaluate the integral (4.4) (computations omitted).

4.2 Diffusion with obstacles

Consider a particle in a potential $U(x)$ (fig. 4.01), with a local minimum separated by a barrier. In the classical case, if the particle's energy is sufficiently low, it can become forever trapped inside the minimum. However, in the presence of thermal fluctuations there may be a possibility of escape - a sort of classical tunnelling.

Figure (4.1) - Potential graph

We first consider an easier problem, that of the diffusion process on a compact domain $[a, b]$, representing the boundaries of the potential well of fig. [...]. We then suppose that the particle cannot escape from the left side a, but it can do so - and always does - from the right one b. This means that a is a "reflecting" boundary - i.e. if the particle hits $x=a$ it "bounces back"), while $x=b$ is an absorbing boundary, that is a particle reaching b can be "absorbed by the environment" and disappear from the system. In the more general case, the probability of reflection at $x=a$ or absorption at $x=b$ will not be certain, but will depend on the particle's energy.

Recall the Langevin equation:

$$
\begin{equation*}
\mathrm{d} x(t)=\underbrace{\frac{F(x, t)}{\gamma}}_{f(x, t)} \mathrm{d} t+\sqrt{2 D(x, t)} \mathrm{d} B \quad F(x)=-U^{\prime}(x) ; x \in[a, b] \tag{4.5}
\end{equation*}
$$

This is equivalent to the Fokker-Planck equation:

$$
\begin{align*}
\frac{\partial}{\partial t} W\left(x, t \mid x_{0}, 0\right) & =-\frac{\partial}{\partial x}\left[f(x, t) W\left(x, t \mid x_{0}, 0\right)-\frac{\partial}{\partial x}\left(D(x, t) W\left(x, t \mid x_{0}, 0\right)\right)\right]= \\
& =-\frac{\partial}{\partial x} \overbrace{[\underbrace{-\frac{U^{\prime}(x)}{\gamma}}_{A(x)} W\left(x, t \mid x_{0}, 0\right)-\frac{\partial}{\partial x}(\underbrace{\frac{k_{B} T}{\gamma}}_{D} W\left(x, t \mid x_{0}, 0\right))]}^{J(x, t)}= \tag{4.6}\\
& =-\partial_{x}\left[A(x) W\left(x, t \mid x_{0}, 0\right)\right]+\partial_{x}^{2}\left[D(x) W\left(x, t \mid x_{0}, 0\right)\right] \tag{4.7}
\end{align*}
$$

where we inserted $D(x, t) \equiv D=k_{B} T / \gamma$ (derived from the equilibrium limit). $J(x, t)$ is the probability flux coming out from x at instant t.
To solve (4.61) we need a precise mathematical description for the reflecting and absorbing boundaries:

- In $x=a$, the reflecting boundary condition means that:

$$
\begin{equation*}
J(a, t)=A(a) W\left(a, t \mid x_{0}, 0\right)-\left.\left[\partial_{x} D(x) W\left(x, t \mid x_{0}, 0\right)\right]\right|_{x=a} \stackrel{!}{=} 0 \quad \forall t \tag{4.8}
\end{equation*}
$$

As every particle that goes in a immediately comes out after being reflected, the inward flux and outward one are the same, and so their sum is 0 .

- In b, however, the absorbing boundary condition means that the probability to find the particle here is exactly 0 :

$$
\begin{equation*}
W\left(b, t \mid x_{0}, 0\right) \stackrel{!}{=} 0 \tag{4.9}
\end{equation*}
$$

As $x \in[a, b]$, the domain of equation (4.6$)$ is not isotropic anymore - meaning that the solution $W\left(x, t \mid x_{0}, 0\right)$ will depend on x_{0}, making the problem much
difficult. The idea is then to translate the problem from finding the full transition probability $W\left(x, t \mid x_{0}, 0\right)$ to finding a simpler, but still interesting, function, that depends on less parameters.
One possible choice is given by the survival probability, i.e. the probability that a particle starting at a given point x will still be inside the interval $[a, b]$ at a later time t :

$$
G(x, t)=\int_{a}^{b} \mathrm{~d} y W(y, t \mid x, 0)
$$

Note that we keep the starting time fixed at 0, and integrate over all the possible destinations of the particle - reducing the number of variables from 4 to 2 .
Note that generally $G(x, t) \neq 1$, as the boundary in b offers a possibility of escape, leading to a violation of the conservation of probability. In fact the condition (4.प) $W\left(b, t \mid x_{0}, t_{0}\right)=0$ does not mean that the flux here is null. Recalling the definition of $J(x, t)$ from (4.6):

$$
\begin{aligned}
& J(b, t)=A(b) W\left(b, t\left|\overline{\left.x_{0}, t_{0}\right)}-\partial_{x}\left(D(x) W\left(x, t \mid x_{0}, t_{0}\right)\right)\right|_{x=b}=\right. \\
&=-\left(\partial_{x} D\right) W\left(b, t \mid x, x_{0}, t_{0}\right) \\
&-\left.D(b) \partial_{x} W\left(x, t \mid x_{0}, t_{0}\right)\right|_{x=b} \neq 0
\end{aligned}
$$

Now, we need to translate (4.6) to a differential equation for $G(x, t)$. We can start by evaluating the time derivative of $G(x, t)$:

$$
\begin{equation*}
\frac{\partial}{\partial t} G(x, t)=\int_{a}^{b} \mathrm{~d} x^{\prime} \frac{\partial}{\partial t} W\left(x^{\prime}, t \mid x, 0\right) \tag{4.10}
\end{equation*}
$$

We could use (4.7) to expand the $\partial_{t} W\left(x^{\prime}, t \mid x, 0\right)$ term - but this does not really work:

$$
\frac{\partial}{\partial t} G(x, t)=\int_{a}^{b} \mathrm{~d} x^{\prime}\left[-\partial_{x^{\prime}}\left(A\left(x^{\prime}\right) W\left(x^{\prime}, t \mid x, 0\right)\right)+\partial_{x^{\prime}}^{2}\left(D\left(x^{\prime}\right) W\left(x^{\prime}, t \mid x, 0\right)\right)\right]
$$

To reconstruct derivatives of $G(x, t)$ in the right side, we would need to bring the $\partial_{x^{\prime}}$ out of the integrals - but this is not possible, as x^{\prime} is the variable of integration. One way to solve this would be to somehow move the derivative from $\partial_{x^{\prime}}$ to ∂_{x}.
To do this, we start from the ESCK relation:

$$
\int_{a}^{b} \mathrm{~d} x_{1} W\left(x_{2}, t_{2} \mid x_{1}, t_{1}\right) W\left(x_{1}, t_{1} \mid x_{0}, t_{0}\right)=W\left(x_{2}, t_{2} \mid x_{0}, t_{0}\right) \quad t_{0}<t_{1}<t_{2}
$$

Differentiating with respect to the middle time t_{1} :
$\int_{a}^{b} \mathrm{~d} x_{1}\left[W\left(x_{1}, t_{1} \mid x_{0}, t_{0}\right) \partial_{t_{1}} W\left(x_{2}, t_{2} \mid x_{1}, t_{1}\right)+W\left(x_{2}, t_{2} \mid x_{1}, t_{1}\right) \partial_{t_{1}} W\left(x_{1}, t_{1} \mid x_{0}, t_{0}\right)\right]=0$
We then use (4.7) to expand the highlighted term:

$$
\begin{aligned}
& \int_{a}^{b} \mathrm{~d} x_{1} W\left(x_{1}, t_{1} \mid x_{0}, t_{0}\right) \partial_{t_{1}} W\left(x_{2}, t_{2} \mid x_{1}, t_{1}\right)+ \\
+ & \int_{a}^{b} \mathrm{~d} x_{1} W\left(x_{2}, t_{2} \mid x_{1}, t_{1}\right)\left[-\partial_{x_{1}} A\left(x_{1}\right) W\left(x_{1}, t_{1} \mid x_{0}, t_{0}\right)+\partial_{x_{1}}^{2} D\left(x_{1}\right) W\left(x_{1}, t_{1} \mid x_{0}, t_{0}\right)\right]=0
\end{aligned}
$$

And then we integrate by parts the second term, to move the $\partial_{x_{1}}$ and $\partial_{x_{1}}^{2}$ derivatives:

$$
\begin{aligned}
& \int_{a}^{b} \mathrm{~d} x_{1} W\left(x_{1}, t_{1} \mid x_{0}, t_{0}\right) \partial_{t_{1}} W\left(x_{2}, t_{2} \mid x_{1}, t_{1}\right)+ \\
- & \left.A\left(x_{1}\right) W\left(x_{1}, t_{1} \mid x_{0}, t_{0}\right) W\left(x_{2}, t_{2} \mid x_{1}, t_{1}\right)\right|_{x_{1}=a} ^{x_{1}=b}+\left.W\left(x_{2}, t_{2} \mid x_{1}, t_{1}\right)\left[\partial_{x_{1}} D\left(x_{1}\right) W\left(x_{1}, t_{1} \mid x_{0}, t_{0}\right)\right]\right|_{x_{1}=a} ^{x_{1}=b} \\
- & \left.D\left(x_{1}\right) W\left(x_{1}, t_{1} \mid x_{0}, t_{0}\right)\left[\partial_{x_{1}} W\left(x_{2}, t_{2} \mid x_{1}, t_{1}\right)\right]\right|_{x_{1}=a} ^{x_{1}=b} \\
+ & \int_{a}^{b} \mathrm{~d} x_{1}\left[A\left(x_{1}\right) W\left(x_{1}, t_{1} \mid x_{0}, t_{0}\right) \partial_{x_{1}} W\left(x_{2}, t_{2} \mid x_{1}, t_{1}\right)+D\left(x_{1}\right) W\left(x_{1}, t_{1} \mid x_{0}, t_{0}\right)\right] \partial_{x_{1}}^{2} W\left(x_{2}, t_{2} \mid x_{1}, t_{1}\right)=0
\end{aligned}
$$

In the limit $t_{1} \rightarrow 0, W\left(x_{1}, t_{1} \mid x_{0}, t_{0}\right)=\delta\left(x_{1}-x_{0}\right) \delta\left(t_{1}-t_{0}\right)$. This makes all the boundary terms vanish (given that $x_{0} \neq a, b$), and allows to compute the other integrals (with $x_{1}=x_{0}$ and $t_{1}=t_{0}$), leading to:

$$
\frac{\partial}{\partial t_{0}} W\left(x_{2}, t_{2} \mid x_{0}, t_{0}\right)+A\left(x_{0}\right) \frac{\partial}{\partial x_{0}} W\left(x_{2}, t_{2} \mid x_{0}, t_{0}\right)+D\left(x_{0}\right) \frac{\partial^{2}}{\partial x_{0}^{2}} W\left(x_{2}, t_{2} \mid x_{0}, t_{0}\right)=0
$$

Rearranging, and dropping some subscripts:

$$
\begin{equation*}
\partial_{t_{0}} W\left(x, t \mid x_{0}, t_{0}\right)=-A\left(x_{0}\right) \partial_{x_{0}} W\left(x, t \mid x_{0}, t_{0}\right)-D\left(x_{0}\right) \partial_{x_{0}}^{2} W\left(x, t \mid x_{0}, t_{0}\right) \tag{4.11}
\end{equation*}
$$

This is the backward Fokker-Planck equation, as all derivatives are with respect to the starting time or position - meaning that it can be use to "retrodict" the past given the future. This could be used for computing $\partial_{t} G(x, t)$ but first we need to express the derivative $\partial_{t_{0}}$ in terms of the derivative ∂_{t} that appears in $\partial_{t} G(x, t)$.
Supposing that $A(x)$ and $D(x)$ are time-independent (as we implicitly did in the previous notation), then (4.7) is an autonomous differential equation, meaning that the solution does not change after a time translation:

$$
W\left(x, t \mid x_{0}, t_{0}\right)=W\left(x, t-t_{0} \mid x_{0}, 0\right)
$$

Differentiating with respect to t_{0} :
$\partial_{t_{0}} W\left(x, t \mid x_{0}, t_{0}\right)=\left.\partial_{t^{\prime}} W\left(x, t^{\prime} \mid x_{0}, 0\right)\right|_{t^{\prime}=t-t_{0}} \partial_{t_{0}}\left(t-t_{0}\right)=-\partial_{t} W\left(x, t-t_{0} \mid x_{0}, 0\right)=-\partial_{t} W\left(x, t \mid x_{0}, t_{0}\right)$
Substituting this relation in (4. TD) we get:

$$
\begin{equation*}
\partial_{t} W\left(x, t \mid x_{0}, t_{0}\right)=A\left(x_{0}\right) \partial_{x_{0}} W\left(x, t \mid x_{0}, t_{0}\right)+D\left(x_{0}\right) \partial_{x_{0}}^{2} W\left(x, t \mid x_{0}, t_{0}\right) \tag{4.12}
\end{equation*}
$$

Finally, we can use (4. 2π) in (4.10):

$$
\begin{align*}
\frac{\partial}{\partial t} G(x, t) & =\int_{a}^{b} \mathrm{~d} x^{\prime} \partial_{t} W\left(x^{\prime}, t \mid x, 0\right)= \tag{4.13}\\
& =\int_{a}^{b} \mathrm{~d} x^{\prime}\left[A(x) \partial_{x} W\left(x^{\prime}, t \mid x, 0\right)+D(x) \partial_{x}^{2} W\left(x^{\prime}, t \mid x, 0\right)\right]= \\
& =A(x) \partial_{x} \underbrace{\int_{a}^{b} \mathrm{~d} x^{\prime} W\left(x^{\prime}, t \mid x, 0\right)}_{G(x, t)}+D(x) \partial_{x}^{2} \underbrace{\int_{a}^{b} \mathrm{~d} x^{\prime} W\left(x^{\prime}, t \mid x, 0\right)}_{G(x, t)}=
\end{align*}
$$

$$
\begin{equation*}
=A(x) \partial_{x} G(x, t)+D(x) \partial_{x}^{2} G(x, t) \tag{4.14}
\end{equation*}
$$

We have now a differential equation for $G(x, t)$, and we need to translate the appropriate boundary conditions (4.8) and ($4 . .4)$. The latter is immediate:

$$
\begin{equation*}
W\left(b, t \mid x_{0}, 0\right)=\left.0 \quad \forall t \forall x_{0} \in[a, b] \Rightarrow G(x, t)\right|_{x=b}=0 \tag{4.15}
\end{equation*}
$$

However, the analogous of (4.8) requires a bit more work. So we start again from the ESCK relation, and differentiate with respect to the mid-time:

$$
\partial_{\tau} \int_{a}^{b} \mathrm{~d} y W\left(x^{\prime}, t \mid y, \tau\right) W(y, \tau \mid x, 0)=\partial_{\tau} W\left(x^{\prime}, t \mid x, 0\right)=0
$$

Expanding the left side:

$$
\int_{a}^{b} \mathrm{~d} y\left[W(y, \tau \mid x, 0) \partial_{\tau} W\left(x^{\prime}, t \mid y, \tau\right)+W\left(x^{\prime}, t \mid y, \tau\right) \partial_{\tau} W(y, \tau \mid x, 0)\right]=0
$$

We can now use (4.1 T) for the term highlighted in yellow, and (4.7) (also called forward Fokker-Planck equation) for the term in green, leading to:

$$
\begin{aligned}
& \int_{a}^{b} \mathrm{~d} y\left[-A(y) \partial_{y} W\left(x^{\prime}, t \mid y, \tau\right)-D(y) \partial_{y}^{2} W\left(x^{\prime}, t \mid y, \tau\right)\right] W(y, \tau \mid x, 0)+ \\
& \int_{a}^{b} \mathrm{~d} y\left[-\partial_{y} A(y) W(y, \tau \mid X, 0)+\partial_{y}^{2} D(y) W(y, \tau \mid x, 0)\right] W\left(x^{\prime}, t \mid y, \tau\right)
\end{aligned}
$$

We now integrate by parts the first term, moving the ∂_{y} and ∂_{y}^{2} derivatives away from $W\left(x^{\prime}, t \mid y, \tau\right)$:

$$
\begin{aligned}
& -\left.A(y) W\left(x^{\prime}, t \mid y, \tau\right) W(y, \tau \mid x, 0)\right|_{y=a} ^{y=b}+\int_{a}^{b} \mathrm{~d} y\left[\partial_{y} A(y) W(y, \tau \mid x, 0)\right] W\left(x^{\prime}, t \mid y, \tau\right)+ \\
& -\left.D(y) W(y, \tau \mid x, 0)\left[\partial_{y} W\left(x^{\prime}, t \mid y, \tau\right)\right]\right|_{y=a} ^{y=b}+\left.W\left(x^{\prime}, t \mid y, \tau\right)\left[\partial_{y} D(y) W(y, \tau \mid x, 0)\right]\right|_{y=a} ^{y=b}+ \\
& -\int_{a}^{b} \mathrm{~d} y\left[\partial_{y}^{2} D(y) W(y, \tau \mid x, 0)\right] W\left(x^{\prime}, t \mid y, \tau\right)-\int_{a}^{b} \mathrm{~d} y \partial_{y}[A(y) W(y, \tau \mid x, 0)] W\left(x^{\prime}, t \mid y, \tau\right)+ \\
& +\int_{a}^{b} \mathrm{~d} y \partial_{y}^{2}[D(y) W(y, \tau \mid x, 0)] W\left(x^{\prime}, t \mid y, \tau\right)=0
\end{aligned}
$$

The highlighted terms cancel out, leaving only boundaries:

$$
\begin{aligned}
& -\left.A(y) W\left(x^{\prime}, t \mid y, \tau\right) W(y, \tau \mid x, 0)\right|_{y=a}-\left.D(y) W(y, \tau \mid x, 0)\left[\partial_{y} W\left(x^{\prime}, t \mid y, \tau\right)\right]\right|_{y=a} ^{y=b}+ \\
& +\left.W\left(x^{\prime}, t \mid y, \tau\right)\left[\partial_{y} D(y) W(y, \tau \mid x, 0)\right]\right|_{y=a} ^{y=b}=0
\end{aligned}
$$

Now $W\left(b, t \mid x_{0}, 0\right)=0(4 . T)$, and also $W\left(x^{\prime}, t \mid b, \tau\right)=0$, as a particle starting in b escapes immediately from $[a, b]$. This makes all the boundary terms vanish at $y=b$, leaving only:

$$
\begin{aligned}
& +A(a) W\left(x^{\prime}, t \mid a, \tau\right) W(a, \tau \mid x, 0)+\left.D(a) W(a, \tau \mid x, 0)\left[\partial_{y} W\left(x^{\prime}, t \mid y, \tau\right)\right]\right|_{y=a}+ \\
& -\left.W\left(x^{\prime}, t \mid a, \tau\right)\left[\partial_{y} D(y) W(y, \tau \mid x, 0)\right]\right|_{y=a}=0
\end{aligned}
$$

Collecting $W\left(x^{\prime}, t \mid a, \tau\right)$ allows to recognize a $J(x, t)$ term:

$$
\begin{aligned}
& \left.D(a) W(a, \tau \mid x, 0)\left[\partial_{y} W\left(x^{\prime}, t \mid y, \tau\right)\right]\right|_{y=a}+ \\
+ & W\left(x^{\prime}, t \mid a, \tau\right)[A(a) W(a, \tau \mid x, 0)-\underbrace{\left.\left.\left[\partial_{y} D(y) W(y, \tau \mid x, 0)\right]\right|_{y=a}\right]}_{J(a, \tau)}=0
\end{aligned}
$$

But recall that $J(a, \tau)=0 \forall \tau$ as per (4.T). So only a term remains:
$\left.D(a) W(a, \tau \mid x, 0)\left[\partial_{y} W\left(x^{\prime}, t \mid y, \tau\right)\right]\right|_{y=a}=0 \Rightarrow W(a, \tau \mid x, 0)=\left.0 \vee \partial_{y} W\left(x^{\prime}, t \mid y, \tau\right)\right|_{y=a}=0 \quad \forall \tau$
Finally, by integrating the second term:

$$
\int_{a}^{b} \mathrm{~d} x^{\prime} \partial_{y} W\left(x^{\prime}, t \mid y, \tau\right)=\partial_{y} \int_{a}^{b} \mathrm{~d} x^{\prime} W\left(x^{\prime}, t \mid y, \tau\right)=\partial_{y} G(y, \tau)
$$

And evaluating at $y=a$ leads to:

$$
\begin{equation*}
\left.\partial_{x} G(x, t)\right|_{x=a}=0 \tag{4.16}
\end{equation*}
$$

which is the last boundary condition we needed for $G(x, t)$.
So, the problem now becomes:

$$
\left\{\begin{array}{l}
\partial_{t} G(x, t)=A(x) \partial_{x} G(x, t)+D(x) \partial_{x}^{2} G(x, t) \\
\left.\partial_{x} G(x, t)\right|_{x=a}=0 \\
\left.G(x, t)\right|_{x=b}=0
\end{array}\right.
$$

We can make one last simplification by removing the time coordinate. Let's introduce $T(x)$ as being the lifetime of a particle starting at x - meaning the amount of time needed for that particle to "disappear" by reaching b (so, in this case, $T(x)$ coincides with $T_{\mathrm{ftv}}(b, x)$, i.e. the time to the first visit of $\left.b\right)$. The exact value of $T(x)$ will depend on the particle's path, making $T(x)$ a random variable. Note that:

$$
G(x, t)=\mathbb{P}(T(x)>t)
$$

That is, the survival probability is the probability that the particle has not yet reached b during the time interval $[0, t]$, which is equivalent to saying that its lifetime is greater than t. Denoting with $\mathbb{P}_{\mathrm{ftv}}\left(T_{b}\right) \mathrm{d} T_{b}$ the probability that a particle will visit b in the time range $\left[T_{b}, T_{b}+\mathrm{d} T_{b}\right]$, we have:

$$
G(x, t)=\mathbb{P}(T(x)>t)=\int_{t}^{+\infty} \mathbb{P}_{\mathrm{ftv}}\left(T_{b}\right) \mathrm{d} T_{b}=-\int_{+\infty}^{t} \mathbb{P}_{\mathrm{ftv}}\left(T_{b}\right) \mathrm{d} T_{b}
$$

Differentiating with respect to t :

$$
\partial_{t} G(x, t)=-\mathbb{P}_{\mathrm{fvt}}(t)
$$

As we need a function, and $T(x)$ is a random variable, we consider its average, i.e. the mean time of arrival at $b T_{b}(x)$:

$$
T_{b}(x) \equiv\langle T(x)\rangle \equiv \int_{0}^{+\infty} t \mathbb{P}_{\mathrm{fvt}}(t) \mathrm{d} t=-\int_{0}^{+\infty} t \partial_{t} G(x, t) \mathrm{d} t=
$$

$$
\begin{equation*}
=-\left.t G(x, t)\right|_{t=0} ^{t=+\infty}+\int_{0}^{+\infty} G(x, t) \mathrm{d} t \underset{(a)}{=}\langle G(x)\rangle \tag{4.17}
\end{equation*}
$$

In (a) we used that $t G(x, t)$ vanishes at $t=0$ and also at $t=+\infty$, because the particle will eventually reach $x=b$ if given infinite time to do so. It is not clear if $G(x, t) \xrightarrow[t \rightarrow \infty]{ } 0$ faster than $t \rightarrow \infty$, so that $t G(x, t) \xrightarrow[t \rightarrow \infty]{\longrightarrow}$. Here, we will just assume it, as it is physically reasonable.

Then, we need to translate once again everything to expressions involving $T_{b}(x)$. Fortunately, this time it is much quicker. To get the differential equation, we just integrate (4.14):

$$
\int_{0}^{+\infty} \mathrm{d} t \partial_{t} G(x, t)=A(x) \partial_{x} \int_{0}^{+\infty} G(x, t) \mathrm{d} t+D(x) \partial_{x}^{2} \int_{0}^{+\infty} G(x, t) \mathrm{d} t
$$

And applying (4.J7) we get:

$$
\left.G(x, t)\right|_{t=0} ^{t=+\infty}=G(x,+\infty)-G(x, 0)=-1=A(x) \partial_{x} T_{b}(x)+D(x) \partial_{x}^{2} T_{b}(x)
$$

as $G(x,+\infty)=0$ (no particle lives eternally) and $G(x, 0)=0$ (as a particle does not "disappear" immediately for $x \neq b$). Similarly, integrating (4.I6) and (4.15) leads to:

$$
\left\{\begin{array}{l}
A(x) \partial_{x} T_{b}(x)+D(x) \partial_{x}^{2} T_{b}(x)=-1 \\
\left.T_{b}(x)\right|_{x=b}=0 \\
\left.\partial_{x} T_{b}(x)\right|_{x=a}=0
\end{array}\right.
$$

This is a linear ordinary differential equation. We start by letting $f(x)=$ $\partial_{x} T_{b}(x)$, leading to:

$$
f^{\prime}(x)=-\frac{A(x)}{D(x)} f(x)-\frac{1}{D(x)} \quad f(a)=0
$$

First consider the homogeneous equation:

$$
A(x) \Phi(x)+D(x) \Phi^{\prime}(x)=0
$$

This can be solved by separation of variables:

$$
A \Phi+D \frac{\mathrm{~d} \Phi}{\mathrm{~d} x}=0 \Rightarrow \frac{\mathrm{~d} \Phi}{\Phi}=-\frac{A}{D} \mathrm{~d} x \Rightarrow \ln |\Phi(x)|=-\int_{x_{0}}^{x} \frac{A(y)}{D(y)} \mathrm{d} y+c
$$

where x_{0} is a fixed point $\in[a, b]$ (it does not matter which one). Exponentiating:

$$
\Phi(x)=\exp \left(-\int_{x_{0}}^{x} \frac{A(y)}{D(y)} \mathrm{d} y\right) k
$$

Where $k=e^{c}$ will be fixed by the boundary condition $f(a)=0$. First, we need to find the general integral of the inhomogeneous equation - for example by using the method of variation of parameters.

Refresher of variation of parameters. Consider the following Cauchy problem:

$$
\left\{\begin{array}{l}
y^{\prime}=A(t) y+b(t) \\
y\left(t_{0}\right)=y_{0}
\end{array}\right.
$$

Suppose we know a solution $\Phi(t)$ of the homogeneous equation $y^{\prime}=A(t) y$. Then $\Phi^{\prime}=A \Phi$. We search for a particular solution for the full equation in the form $\tilde{\varphi}(t)=\Phi(t) c(t)$. Substituting in the equation:

$$
\Phi^{\prime} c+c^{\prime} \Phi=A \Phi c+c^{\prime} \Phi=A \Phi c+b \Rightarrow c^{\prime}=\Phi^{-1} b
$$

This can be integrated to find c, and then $\tilde{\varphi}$. Then, the general integral will be the sum of the homogeneous solution $\Phi(t)$ and the particular one $\tilde{\varphi}$. Imposing the boundary condition will lead to the general integral:

$$
\begin{equation*}
\varphi(t)=\Phi(t) \Phi\left(t_{0}\right)^{-1} y_{0}+\Phi(t) \int_{t_{0}}^{t} \Phi(\tau)^{-1} b(\tau) \mathrm{d} \tau \tag{4.18}
\end{equation*}
$$

Applying formula (4.18) leads to the desired $f(x)$:

$$
\begin{aligned}
f(x) & =\Phi(x) \Phi(a) \cdot 0+\Phi(x) \int_{a}^{x} \mathrm{~d} z \Phi(z)^{-1}\left[-\frac{1}{D(z)}\right]= \\
& =\exp \left(-\int_{x_{0}}^{x} \frac{A(y)}{D(y)} \mathrm{d} y\right) \int_{a}^{x}-\frac{\mathrm{d} z}{D(z)} \exp \left(+\int_{x_{0}}^{z} \frac{A(y)}{D(y)} \mathrm{d} y\right)= \\
& =-\int_{a}^{x} \frac{\mathrm{~d} z}{D(z)} \exp \left(+\int_{x}^{z} \frac{A(y)}{D(y)} \mathrm{d} y\right)
\end{aligned}
$$

Recall that $f(x)=\partial_{x} T_{b}(x)$, with $T_{b}(b)=0$. So, to find $T_{b}(x)$ we need one last integration:

$$
T_{b}(x)=\int_{x_{0}}^{x} \mathrm{~d} y f(y)+c
$$

Imposing $T_{b}(b)=0$ leads to:

$$
T_{b}(b)=\int_{x_{0}}^{b} \mathrm{~d} y f(y)+c \stackrel{!}{=} 0 \Rightarrow c=-\int_{x_{0}}^{b} \mathrm{~d} y f(y)
$$

Leading to:

$$
\begin{equation*}
T_{b}(x)=\int_{b}^{x} \mathrm{~d} y f(y)=\int_{x}^{b} \mathrm{~d} y \int_{a}^{y} \frac{\mathrm{~d} z}{D(z)} \exp \left(-\int_{z}^{y} \mathrm{~d} v \frac{A(v)}{D(v)}\right) \tag{4.19}
\end{equation*}
$$

4.2.1 Escape from a potential well

Let's now use (4.19) to solve the problem we started from. So, suppose to have a potential $U(x)$ with a local minimum at $x=c$, and a local maximum at $x=d$, with $c<d$. Consider a particle starting at $x=c$. We wish to compute the average first visit time of d, denoted with $\langle T(c \rightarrow d)\rangle$. This can be done by
redefining the system as the half-line $[-\infty, d]$, with $x=-\infty$ being a reflective boundary, and $x=d$ an absorbing one. We can do this because we are not interested in the behaviour after passing d, but just in the mean arrival times. So $A(x)=-\partial_{x} U(x) / \gamma$. Supposing to be at equilibrium, $D(x) \equiv D=1 /(\gamma B)$. Letting $a=-\infty$ and $b=d$ leads to:

$$
\begin{aligned}
T_{d}(x) & =\int_{x}^{d} \mathrm{~d} y \int_{-\infty}^{y} \beta \gamma \mathrm{~d} z \exp \left(-\int_{z}^{y}-\mathrm{d} v \frac{\partial_{v} U(v)}{\gamma} \gamma \beta\right)= \\
& =\beta \gamma \int_{x}^{d} \mathrm{~d} y \int_{-\infty}^{y} \mathrm{~d} z \exp (\beta[U(y)-U(z)])= \\
& =\beta \gamma \int_{x}^{d} \mathrm{~d} y e^{\beta U(y)} \underbrace{\int_{-\infty}^{y} \mathrm{~d} z e^{-\beta U(z)}}_{e^{F(y)}}=\beta \gamma \int_{x}^{d} \mathrm{~d} y e^{\beta U(y)+F(y)}
\end{aligned}
$$

It is not possible to evaluate this integral in the general case. However, in the limit $\beta \rightarrow \infty(T \rightarrow 0)$ we can use the saddle-point approximation.
Recall Laplace's formula:

$$
\int_{a}^{b} e^{M f(x)} \mathrm{d} x \underset{M \rightarrow+\infty}{\approx} \sqrt{\frac{2 \pi}{M\left|f^{\prime \prime}\left(x_{0}\right)\right|}} e^{M f\left(x_{0}\right)}
$$

where $f^{\prime}\left(x_{0}\right)=0$ and $f^{\prime \prime}\left(x_{0}\right)<0$.
For the integral in $\mathrm{d} z, f(z)=-U(z)$. We search for a maximum of $f(z)$, i.e. a minimum of $U(z)$, which is $z=c$. So:

$$
\int_{-\infty}^{y} e^{-\beta U(z)} \mathrm{d} z=\sqrt{\frac{2 \pi}{\beta U^{\prime \prime}(c)}} e^{-\beta U(c)}
$$

This is a constant, and can be brought outside the integral over $\mathrm{d} y$. Then, by applying Laplace's formula once again:

$$
\int_{c}^{d} \mathrm{~d} y e^{\beta U(y)}=\sqrt{\frac{2 \pi}{\beta\left|U^{\prime \prime}(d)\right|}} e^{\beta U(d)}
$$

as now $f(y)=U(y)$, and U has a local maximum in $y=d$. Finally, this leads to:

$$
\begin{equation*}
T_{d}(c) \underset{T \rightarrow 0}{\approx} \frac{2 \pi \gamma}{\sqrt{U^{\prime \prime}(c)\left|U^{\prime \prime}(d)\right|}} \exp (\beta[U(d)-U(c)]) \tag{4.20}
\end{equation*}
$$

Note that the mean transition time from c to d diverges exponentially as the barrier's height $U(d)-U(c)$ rises. Equivalently, the escape transition rate $1 / T_{d}(c) \rightarrow 0$.

4.3 Feynman Path Integral

We finish our discussion about the diffusion formalism noting several correspondences with quantum processes.

Recall the Schödinger equation:

$$
\begin{aligned}
i \hbar \frac{\partial}{\partial t} \psi(x, t) & =-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \psi(x, t)+V(x) \psi(x, t)= \\
& =H\left(x, \partial_{x}^{2}, t\right) \psi(x, t)
\end{aligned}
$$

where H is the Hamiltonian operator:

$$
H\left(x, \partial_{x}^{2}, t\right) \equiv-\frac{\hbar^{2}}{2 m} \partial_{x}^{2}+V(x, t)
$$

If we consider a free particle $(V(x, t) \equiv 0)$, the Schrödinger equation becomes:

$$
\begin{equation*}
\partial_{t} \psi=i \frac{\hbar}{2 m} \partial_{x}^{2} \psi \quad \psi(x, 0)=\delta\left(x-x_{0}\right) \tag{4.21}
\end{equation*}
$$

which is very similar to the diffusion equation:

$$
\begin{equation*}
\partial_{t} W(x, t)=\left.D \partial_{x} W(x, t) \quad W\left(x, t \mid x_{0}, 0\right)\right|_{t=0}=\delta\left(x-x_{0}\right) \tag{4.22}
\end{equation*}
$$

In fact, we can map ($\mathbf{6 . 2 4]}$) to ($\mathbb{(2 . 2 2)}$) by defining a quantum diffusion coefficient $D_{Q M}=i \hbar /(2 m)$.
Does this mean that all properties of the diffusion equation - and its solution - can be mapped to the quantum case? Unfortunately, the answer is a bit complex.
Recall that the solution of (4.22) for a particle initially starting in x_{0} at t_{0} is:

$$
\begin{equation*}
W\left(x, t \mid x_{0}, t_{0}\right)=\frac{1}{\sqrt{4 \pi D\left(t-t_{0}\right)}} \exp \left(-\frac{\left(x-x_{0}\right)^{2}}{4 D\left(t-t_{0}\right)}\right) \tag{4.23}
\end{equation*}
$$

By substituting $D \leftrightarrow D_{\mathrm{QM}}$ we can construct the analogous quantum solution:

$$
\begin{equation*}
\psi(x, t)=\sqrt{\frac{2 m}{4 \pi\left(t-t_{0}\right) i \hbar}} \exp \left(i \frac{m}{2 \hbar} \frac{\left(x-x_{0}\right)^{2}}{t-t_{0}}\right) \tag{4.24}
\end{equation*}
$$

Note that now the exponential argument is complex, making basic properties of (4.2 .23) not-trivial. For example, if $t \rightarrow t_{0}$, the exponential in (4.23) tends to a δ :

$$
\lim _{t \rightarrow t_{0}} W\left(x, t \mid x_{0}, t_{0}\right)=\delta\left(x-x_{0}\right)
$$

giving back the starting distribution, as expected.
The same, however, does not happen for ($\mathbb{4} \cdot 24)$, given the presence of the i. Nonetheless, it is true that in the limit $t \rightarrow t_{0}$, (4.24) is a infinitely oscillating function, meaning that it is 0 almost everywhere. This can be proven by using more sophisticated techniques, such as the stationary phase approximation.

What about path integrals? If we start with the usual definition and make the substitution $D \leftrightarrow D_{\mathrm{QM}}$ we get:
$\psi(x, t)=\langle\delta(x(t)-x)\rangle_{W}=$

$$
\begin{aligned}
& =\int_{\mathbb{R}^{T}} \prod_{\tau=0^{+}}^{t} \frac{\mathrm{~d} x(\tau)}{\sqrt{4 \pi D_{\mathrm{QM}}} \mathrm{~d} \tau} \exp \left(-\frac{1}{4 D_{\mathrm{QM}}} \int_{0}^{t}\left[\frac{\mathrm{~d} x(\tau)}{\mathrm{d} \tau}\right]^{2} \mathrm{~d} \tau\right) \delta(x(t)-x)= \\
& =\int_{\mathbb{R}^{T}} \prod_{\tau=0^{+}}^{t} \frac{\mathrm{~d} x(\tau)}{\sqrt{4 \pi D_{Q M} \mathrm{~d} t}} \exp \left(\frac{i}{\hbar} \frac{1}{2} m \int_{0}^{t}\left[\frac{\mathrm{~d} x(\tau)}{\mathrm{d} \tau}\right]^{2} \mathrm{~d} \tau\right) \delta(x(t)-x)
\end{aligned}
$$

Note that now trajectories are weighted by a complex number. This means that they are not probabilities - and in particular, we cannot use Kolmogorov extension theorem to prove the existence of such a measure as the continuum limit of a measure defined on discretized paths.
However, we note that in the limit $\hbar \rightarrow 0$, the integral can be approximated with the saddle-point method, which returns the classical trajectory - the one where the phases oscillate slowly.
In fact, it can be proven that $Q M$ cannot be derived by statistical mechanics alone: quantum "noise" is very much different from thermal "noise"!
Consider now the more general case of non-zero potential:

$$
\frac{\partial}{\partial t} \psi(x, t)=i \frac{\hbar}{2 m} \partial_{x}^{2} \psi(x, t)-\frac{i V(x)}{\hbar} \psi(x, t)
$$

which is just the quantum evaluated version of the Fokker-Planck equation:

$$
\partial_{t} W(x, t)=D \partial_{x}^{2} W(x, t)-V(x) W(x, t)
$$

with the substitutions:

$$
\begin{align*}
D & \rightarrow D_{Q M}=\frac{i \hbar}{2 m} \tag{4.25}\\
V & \rightarrow \frac{i}{\hbar} V
\end{align*}
$$

The solution we obtained from discussing the diffusion process is:

$$
\begin{aligned}
W\left(x, t \mid x_{0}, t_{0}\right) & =\left\langle\exp \left(-\int_{0}^{t} V(x(\tau)) \mathrm{d} \tau\right) \delta(x(t)-x)\right\rangle_{W}= \\
& =\int_{\mathbb{R}^{T}} \prod_{\tau=0^{+}}^{t} \frac{\mathrm{~d} x(\tau)}{\sqrt{4 D \pi} \mathrm{~d} \tau} \exp \left(-\frac{1}{4 D} \int_{0}^{t} \dot{x}^{2}(\tau) \mathrm{d} \tau-\int_{0}^{t} V(x(\tau)) \mathrm{d} \tau\right) \delta(x(t)-x)
\end{aligned}
$$

Applying (4.25) we arrive to the Feynman path integral:

$$
\begin{equation*}
\psi(x, t)=\int_{\mathbb{R}^{T}} \prod_{\tau=0^{+}}^{t} \frac{\mathrm{~d} x(\tau)}{\sqrt{4 \pi D_{Q M}} \mathrm{~d} \tau} \exp (\frac{i}{\hbar} \int_{0}^{t} \mathrm{~d} \tau \underbrace{\left[\frac{\dot{x}^{2}(\tau)}{2}-V(x(\tau))\right]}_{L(\dot{x}, x)}) \delta(x(t)-x) \tag{4.26}
\end{equation*}
$$

To compute it we can resort to variational methods. We define the action functional S as:

$$
S \equiv \int_{0}^{t} \mathrm{~d} \tau L(\dot{x}(\tau), x(\tau))
$$

Note that the Feynman path integral weights every trajectory with the following quantity:

$$
\exp \left(\frac{i}{\hbar} S\left(\{x(\tau)\}_{\tau \in[0, t]}\right)\right)
$$

Then, according to the variational method, we can approximate $\psi(x, t)$ by evaluating it only for the most contributing trajectory, i.e. the one that stationarizes $S: \delta S=0$, implying:

$$
x_{c}: \frac{\partial L}{\partial x}-\left.\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{x}}\right|_{x_{c}}=0
$$

Part II

Baiesi's Lectures

Gaussian integrals

5.1 Moments and Generating Functions

Consider a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto f(x)$. The n-th moment of f about a point $c \in \mathbb{R}$ is defined as the integral:

$$
\mu_{n}=\int_{-\infty}^{\infty}(x-c)^{n} f(x) \mathrm{d} x
$$

Moments provide a way to quantify, in a certain sense, the shape of f. For example, if $f(x)$ is a linear density $\left(\left[\mathrm{kg} \mathrm{m}^{-1}\right]\right)$, then the 0 -th moment is the total mass, the first one (with $c=0$) is the center of mass, and the second is the moment of inertia.

Moments are especially useful if $f(x)$ is a probability density function (pdf), i.e. a non-negative normalized function. In this case the first moment about 0 is the mean:

$$
\mu_{1} \equiv \int_{-\infty}^{\infty} x f(x) \mathrm{d} x=\mathrm{E}[X] \equiv \mu ; \quad X \sim f
$$

where X is a random variable sampled from f. Note that, if not specified, a moment is intended to be centered around $c=0$ (it is a raw moment or crude moment).

The central second moment, that is μ_{2} with $c=\mu$ is the variance:

$$
\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) \mathrm{d} x \equiv \mathrm{E}\left[(X-\mu)^{2}\right]=\operatorname{Var}[X]
$$

A moment-generating function of a real-valued random variable is a certain function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, \boldsymbol{x} \mapsto f(\boldsymbol{x})$ that can be used to compute the moment of the distribution where X comes from.
More precisely, for a random variable X, the moment-generating function M_{X} is defined as:

$$
\begin{equation*}
M_{X}(t) \equiv \mathrm{E}\left[e^{t X}\right], \quad t \in \mathbb{R} \tag{5.1}
\end{equation*}
$$

In fact, recall that:

$$
e^{t X}=1+t X+\frac{t^{2} X^{2}}{2!}+\ldots
$$

Hence, as the expected value is a linear operator:

$$
\begin{aligned}
M_{X}(t) & =\mathrm{E}\left[e^{t X}\right]=1+t \mathrm{E}[X]+\frac{t^{2} \mathrm{E}\left[X^{2}\right]}{2!}+\cdots= \\
& =1+t \mu_{1}+\frac{t^{2} \mu_{2}}{2!}+\ldots
\end{aligned}
$$

Note that the distribution's moments are the coefficients of the power series that defines $M_{X}(t)$.

In fact, the more general definition of a generating function is that of a power-series with "hand-picked" coefficients a_{n}, such that by simply knowing the function one can compute a_{n} in an iterative way.

To recover a certain μ_{n} we start by differentiating $M_{X} n$ times with respect to t, such that the first $n-1$ terms vanish:

$$
\frac{\mathrm{d}^{n}}{\mathrm{~d} t^{n}} M_{X}(t)=\underbrace{\frac{n(n-1) \ldots 1}{n!}}_{=1} \mu_{n}+\frac{(n+1) n \ldots 2}{(n+1)!} t \mu_{n+1}+\ldots
$$

Then, by setting $t=0$, all μ_{r} with $r>n$ vanish, leaving only the desired μ_{n} :

$$
\left.\frac{\mathrm{d}^{n}}{\mathrm{~d} t^{n}} M_{X}(t)\right|_{t=0}=\mu_{n}
$$

Finally, we note that a moment-generating function can be constructed even for a multi-dimensional vector $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)^{T}$ of random variables, by simply taking a scalar product in the exponential:

$$
M_{\boldsymbol{X}}(\boldsymbol{t}) \equiv \mathrm{E}\left(e^{t^{T} \boldsymbol{X}}\right) \quad \boldsymbol{t} \in \mathbb{R}^{n}
$$

5.2 Multivariate Gaussian

Consider now a normal pdf in $d=1$:

$$
f(x ; \mu, \sigma)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

We denote a random variable sampled from $f(x ; \mu, \sigma)$ as $X \sim \mathcal{N}(\mu, \sigma)$.
Suppose that we have multiple random variables $\left\{X_{i}\right\}_{i=1, \ldots, n}$, each normally distributed $\left(X_{i} \sim \mathcal{N}\left(\mu_{i}, \sigma_{i}\right)\right)$, with covariance matrix $\Sigma \in \mathbb{R}^{n \times n}$ defined as:

$$
\Sigma_{i j}=\mathrm{E}\left[\left(X_{i}-\mu_{i}\right)\left(X_{j}-\mu_{j}\right)\right]
$$

Their joint pdf is given by a multivariate normal distribution :

$$
f\left(x_{1}, \ldots, x_{n} ; \boldsymbol{\mu}, \Sigma\right)=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det}(\Sigma)}} \exp \left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{T} \Sigma^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right)
$$

5.3 Moments and Gaussians

We want now to compute the moment generating function for a multivariate gaussian, that is the value of the integral:

$$
\begin{equation*}
M_{\boldsymbol{X}}(\boldsymbol{t})=\int_{\mathbb{R}^{n}} e^{\boldsymbol{t} \cdot \boldsymbol{x}} f(\boldsymbol{x} ; \boldsymbol{\mu}, \Sigma) \mathrm{d}^{n} x \tag{5.2}
\end{equation*}
$$

Let's start from the easiest case, and work our way out to the most general one.

Recall that the gaussian integral, i.e. the 0-th moment of a normal univariate distribution is:

$$
\int_{-\infty}^{\infty} \exp \left(-\frac{a}{2} x^{2}\right) \mathrm{dx}=\sqrt{\frac{2}{a} \pi}
$$

Proof. The integral as is can't be computed in terms of elementary functions. However, its square can be calculated:

$$
\left(\int_{-\infty}^{\infty} \mathrm{d} x \exp \left(-\frac{a}{2} x^{2}\right)\right)^{2}=\int_{-\infty}^{\infty} \mathrm{d} x \int_{-\infty}^{\infty} \mathrm{d} y \exp \left(-\frac{2}{2}\left(x^{2}+y^{2}\right)\right)
$$

Transforming to polar coordinates:

$$
=\int_{0}^{2 \pi} \mathrm{~d} \theta \int_{0}^{\infty} \mathrm{d} r \exp \left(-\frac{a}{2} r^{2}\right) r=-\left.\frac{2 \pi}{a} \exp \left(-\frac{a}{2} r^{2}\right)\right|_{0} ^{\infty}=\frac{2 \pi}{a}
$$

and we arrive at the desired result by simply taking the square root.

Consider now the integral of the multivariate case, with $\boldsymbol{\mu}=\mathbf{0}$ (meaning we applied a translation from the general case):

$$
Z(\Sigma)=\int_{\mathbb{R}^{n}} \mathrm{~d}^{n} \boldsymbol{x} \exp \left(-\frac{1}{2} \boldsymbol{x}^{T} \Sigma^{-1} \boldsymbol{x}\right)
$$

Notice that the inverse of the covariance matrix $\Sigma^{-1} \equiv A$ is a symmetric positive-definite matrix, thus can be used to define a quadratic form:

$$
\mathbb{A}(\boldsymbol{x})=\sum_{i, j=1}^{n} x_{i} A_{i j} x_{j}
$$

The integral can be computed by applying a change of variables, rotating \boldsymbol{x} such that A becomes diagonal:

$$
\boldsymbol{y}=O \boldsymbol{x} ; \quad O \in \mathbb{R}^{n \times n} ; \quad O^{T}=O^{-1}, \operatorname{det}(O)=1
$$

where O is an orthogonal matrix, with a set of orthogonal eigenvectors of A as columns, such that:

$$
O A O^{-1}=\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)
$$

with a_{i} being the eigenvalues of A.
Note that, as $\operatorname{det}(O)=1$, the volume element in the integral does not change.
So, by substituting:

$$
\boldsymbol{x}=O^{-1} \boldsymbol{y} ; \quad \boldsymbol{x}^{T}=\boldsymbol{y}^{T}\left(O^{-1}\right)^{T}=\boldsymbol{y}^{T} O
$$

in the integral, we get:

$$
\begin{align*}
Z(A) & =\int_{\mathbb{R}^{n}} \mathrm{~d}^{n} \boldsymbol{y} \exp \left(-\frac{1}{2} \boldsymbol{y}^{T} O A O^{T} \boldsymbol{y}\right)=\int_{\mathbb{R}^{n}} \mathrm{~d}^{n} \boldsymbol{y} \exp \left(-\frac{1}{2} \sum_{i=1}^{n} a_{i} y_{i}^{2}\right)= \\
& =\prod_{i=1}^{n} \int_{\mathbb{R}} \mathrm{d} y_{i} \exp \left(-\frac{1}{2} a_{i} y_{i}^{2}\right)=(2 \pi)^{n / 2} \prod_{i=1}^{n} a_{i}^{-1 / 2} \underset{(a)}{=}(2 \pi)^{n / 2}(\operatorname{det}(A))^{-1 / 2} \tag{5.3}
\end{align*}
$$

where in (a) we noted that the determinant of a matrix is the product of its eigenvalues.

We are now ready to consider the more general case of (5.2), by simply adding a linear term in the exponential of $Z(A)$:

$$
\begin{equation*}
Z(A, \boldsymbol{b}) \equiv \int_{-\infty}^{\infty} \mathrm{d}^{n} \boldsymbol{x} \exp \left(-\frac{1}{2} \mathbb{A}(\boldsymbol{x})+\boldsymbol{b} \cdot \boldsymbol{x}\right) \quad \boldsymbol{b} \cdot \boldsymbol{x}=\sum_{i=1}^{n} b_{i} x_{i} \tag{5.4}
\end{equation*}
$$

To compute this integral, a trick is to translate the maximum of the exponential to the origin. So we start by differentiating:

$$
\begin{equation*}
\frac{\partial}{\partial x_{i}}\left(\frac{1}{2} \mathbb{A}(\boldsymbol{x})-\boldsymbol{b} \cdot \boldsymbol{x}\right) \stackrel{!}{=} 0 \quad \forall i \tag{5.5}
\end{equation*}
$$

Note that:

$$
\begin{aligned}
\frac{\partial}{\partial x_{i}} \mathbb{A}(\boldsymbol{x}) & =\frac{\partial}{\partial x_{i}} \sum_{a b} x_{a} A_{a b} x_{b}=\sum_{a b} \delta_{a i} A_{a b} x_{b}+\sum_{a b} x_{a} A_{a b} \delta_{b i}= \\
& =\sum_{b} A_{i b} x_{b}+\sum_{a} x_{a} A_{a i}
\end{aligned}
$$

By renaming the first summation variable to a, we get:

$$
=\sum_{a}\left(A_{i a}+A_{a i}\right) x_{a} \underset{(b)}{=} 2 \sum_{a} A_{i a} x_{a}=2 A \boldsymbol{x}
$$

where in (b) we used the fact that A is symmetrical $\left(A_{i j}=A_{j i}\right)$. Substituting in (5.5):

$$
\frac{1}{\mathscr{2}} \nsupseteq \sum_{j} A_{i j} x_{j}=b_{i} \quad \forall i \underset{(c)}{\underset{(c)}{\Leftrightarrow}} A^{T} \boldsymbol{x}=\boldsymbol{b} \underset{(d)}{\underset{\sim}{x}} \boldsymbol{x}^{*}=A^{-1} \boldsymbol{b}
$$

In (c) we noted that b_{i} is the scalar product between the i-th column of A and \boldsymbol{x}, leading to the transpose in the matrix notation. Of course, as $A=A^{T}$, in (d) we simply dropped the transpose.

We can now apply the coordinate change:

$$
x=x^{*}+y
$$

Substituting in the exponential argument:

$$
\begin{align*}
-\frac{\mathbb{A}(\boldsymbol{x})}{2}+\boldsymbol{b} \cdot \boldsymbol{x} & =-\frac{1}{2} \boldsymbol{x}^{T} A \boldsymbol{x}+\boldsymbol{x}^{T} \boldsymbol{b}=-\frac{1}{2}\left(\boldsymbol{x}^{*}+\boldsymbol{y}\right)^{T} A\left(\boldsymbol{x}^{*}+\boldsymbol{y}\right)+\left(\boldsymbol{x}^{*}+\boldsymbol{y}\right)^{T} \boldsymbol{b}= \\
& =-\frac{1}{2}\left[\boldsymbol{x}^{* T} A \boldsymbol{x}^{*}+\boldsymbol{y}^{T} A \boldsymbol{y}+\boldsymbol{x}^{* T} A \boldsymbol{y}+\boldsymbol{y}^{T} A \boldsymbol{x}^{*}\right]+\boldsymbol{x}^{* T} A \boldsymbol{x}^{*}+\boldsymbol{y}^{T} A \boldsymbol{x}^{*} \tag{5.6}
\end{align*}
$$

Note, in fact, that $\boldsymbol{y}^{T} A \boldsymbol{x}^{*}=\left(\boldsymbol{x}^{* T} A^{T} \boldsymbol{y}\right)^{T}=\left(\boldsymbol{x}^{* T} A \boldsymbol{y}\right)^{T}$ because A is symmetric, and then $\left(\boldsymbol{x}^{* T} A \boldsymbol{y}\right)^{T}=\boldsymbol{x}^{* T} A \boldsymbol{y}$ because they are scalars.
Then:

$$
\boldsymbol{x}^{* T} A \boldsymbol{x}^{*}=\left(A^{-1} \boldsymbol{b}\right)^{T} A A^{-1} \boldsymbol{b}=\boldsymbol{b}^{T}\left(A^{-1}\right)^{T} \boldsymbol{b}=\boldsymbol{b}^{T} A^{-1} \boldsymbol{b}=\boldsymbol{b} \cdot \boldsymbol{x}^{*}
$$

And substituting in (5.6)):

$$
-\frac{\mathbb{A}(\boldsymbol{x})}{2}+\boldsymbol{b} \cdot \boldsymbol{x}=-\frac{1}{2} \boldsymbol{y}^{T} A \boldsymbol{y}+\underbrace{\frac{1}{2} \boldsymbol{b} \cdot \boldsymbol{x}^{*}}_{\omega_{2}(\boldsymbol{b})}
$$

To simplify notation, let's define:

$$
\begin{equation*}
w_{2}(\boldsymbol{b})=\frac{1}{2} \sum_{i, j=1}^{n} b_{i}\left(A^{-1}\right)_{i j} b_{i}=\frac{1}{2} \boldsymbol{b} \cdot \boldsymbol{x}^{*} \tag{5.7}
\end{equation*}
$$

As the change of variables involves only a translation by a constant value, the volume element in the integral does not change, leading to:

$$
Z(A, \boldsymbol{b})=\int_{-\infty}^{\infty} \mathrm{d}^{n} \boldsymbol{y} \exp \left(-\frac{\mathbb{A}(\boldsymbol{y})}{2}+\omega_{2}(\boldsymbol{b})\right)
$$

Note that $\omega_{2}(\boldsymbol{b})$ is constant, thus can be extracted from the integral:

$$
\begin{equation*}
=e^{\omega_{2}(\boldsymbol{b})} \int_{-\infty}^{\infty} \mathrm{d}^{n} \boldsymbol{y} \exp \left(-\frac{\mathbb{A}(\boldsymbol{y})}{2}\right) \underset{(\underline{5} 3)}{=} e^{\omega_{2}(\boldsymbol{b})}(2 \pi)^{n / 2}(\operatorname{det} A)^{-1 / 2} \tag{5.8}
\end{equation*}
$$

Another way to solve the integral for $Z(A, \boldsymbol{b})$ is by using the matrix equivalent of "completing the square". We start by considering the argument of the exponential in (5.4):

$$
-\frac{1}{2}\left(\boldsymbol{x}^{T} A \boldsymbol{x}-2 \boldsymbol{b}^{T} \boldsymbol{x}\right)
$$

$\boldsymbol{x}^{T} A \boldsymbol{x}$ has the role of the square, and $-2 \boldsymbol{b}^{T} \boldsymbol{x}$ that of the double product.
We can then sum and subtract a constant vector \boldsymbol{c} in order to rewrite:

$$
\boldsymbol{x}^{T} A \boldsymbol{x}-2 \boldsymbol{b}^{T} \boldsymbol{x}+\boldsymbol{c}-\boldsymbol{c}=\boldsymbol{y}^{T} A \boldsymbol{y}-\boldsymbol{c}
$$

for some $\boldsymbol{y} \in \mathbb{R}^{n}$.
Comparing to a generic square:

$$
(\boldsymbol{a}+\boldsymbol{b})^{T} A(\boldsymbol{a}+\boldsymbol{b})=\boldsymbol{a}^{T} A \boldsymbol{a}+\boldsymbol{b}^{T} A \boldsymbol{b}+2 \boldsymbol{a}^{T} A \boldsymbol{b}
$$

we note that $\boldsymbol{a}=\boldsymbol{x}$ and $\boldsymbol{b}=-A^{-1} \boldsymbol{b}$, leading to:

$$
\boldsymbol{x}^{T} A \boldsymbol{x}-2 \boldsymbol{b}^{T} \boldsymbol{x}=\left(\boldsymbol{x}-A^{-1} \boldsymbol{b}\right)^{T} A\left(\boldsymbol{x}-A^{-1} \boldsymbol{b}\right)-\boldsymbol{b}^{T} A^{-1} \boldsymbol{b}
$$

Defining $A^{-1} \boldsymbol{b} \equiv \boldsymbol{x}^{*}$ and $\boldsymbol{y}=\boldsymbol{x}-\boldsymbol{x}^{*}$ then leads to the same calculations as before.

Exercise 5.3.1 (Multivariate Gaussian Integral):

Compute $Z(A)$ and $Z(A, \vec{b})$ with:

$$
A=\left(\begin{array}{cc}
3 & -1 \\
-1 & 3
\end{array}\right) ; \quad b=\binom{1}{0}
$$

Note that $\operatorname{det} A=8$, and:

$$
A^{-1}=\frac{1}{8}\left(\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right)
$$

So, by simply using (5.3) and (5.8):

$$
\begin{aligned}
& Z(A, 0)=\frac{(2 \pi)^{2 / 2}}{\sqrt{8}}=\frac{\pi}{\sqrt{2}} \\
& \frac{1}{2}\left(\begin{array}{ll}
1 & 0
\end{array}\right) \frac{1}{8}\left(\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right)\binom{1}{0}=\frac{3}{16} \\
& Z(A, \boldsymbol{b})=\frac{\pi}{\sqrt{2}} \exp \left(\frac{3}{16}\right)
\end{aligned}
$$

5.3.1 Gaussian expectation values

The result in (5.8) is exactly what we need to compute the moment generating function for the multivariate normal (5.2).

So, we can finally compute moments:

$$
\left\langle x_{k_{1}} x_{k_{2}} \ldots x_{k_{l}}\right\rangle \equiv \frac{1}{Z(A)} \int \mathrm{d}^{n} \boldsymbol{x} x_{k_{1}} x_{k_{2}} \ldots x_{k_{l}} \exp \left(-\frac{1}{2} \mathbb{A}(\boldsymbol{x})\right)
$$

by simply deriving the generating function $Z(A, \boldsymbol{b})$ with respect to certain variables in \boldsymbol{b}. For example:

$$
\left\langle x_{k}\right\rangle=\frac{1}{Z(A)} \frac{\partial}{\partial b_{k}} Z(A, \vec{b})=\frac{1}{Z(A)} \int \mathrm{d}^{n} \boldsymbol{x} x_{k} \exp \left(-\frac{\mathbb{A}(\boldsymbol{x})}{2}+\boldsymbol{b}^{T} \boldsymbol{x}\right)
$$

For the general case:

$$
\left\langle x_{k_{1}} x_{k_{2}} \ldots x_{k_{l}}\right\rangle=(2 \pi)^{-n / 2}(\operatorname{det} A)^{-1 / 2}\left[\frac{\partial}{\partial b_{k_{1}}} \frac{\partial}{\partial b_{k_{2}}} \ldots \frac{\partial}{\partial b_{k_{l}}} Z(A, \boldsymbol{b})\right]_{\boldsymbol{b}=\mathbf{0}}=
$$

$$
=\left.\frac{\partial}{\partial b_{k_{1}}} \frac{\partial}{\partial b_{k_{2}}} \cdots \frac{\partial}{\partial b_{k_{l}}} e^{w_{2}(\boldsymbol{b})}\right|_{\boldsymbol{b}=\mathbf{0}}
$$

In physics, we say that b_{k} is "coupled" to x_{k}, and that $Z(A, \boldsymbol{b})$ is used as "generating function" for \boldsymbol{x}.

5.3.2 Wick's Theorem

From the previous formula we know that:

$$
\frac{\partial}{\partial b_{i}} \text { pulls down a } b_{i}
$$

Explicitly, recall that:

$$
\omega_{2}(\boldsymbol{b})=\frac{1}{2} \boldsymbol{b}^{T} A^{-1} \boldsymbol{b}
$$

and so:

$$
\frac{\partial}{\partial b_{i}} e^{\omega_{2}(\boldsymbol{b})}=\frac{1}{2} e^{\omega_{2} \boldsymbol{b}} \frac{\partial}{\partial b_{i}} \sum_{t k} b_{t} A_{t k}^{-1} b_{k}=e^{\omega_{2} \boldsymbol{b}} \sum_{k} A_{i k}^{-1} b_{k}
$$

If we now set $\boldsymbol{b}=\mathbf{0}$, the result will be 0 , meaning that:

$$
\left\langle x_{i}\right\rangle=\frac{\partial}{\partial b_{i}} \frac{Z(A, \boldsymbol{b})}{Z(A)}=0
$$

This result is expected, as in $Z(A, \boldsymbol{b})$ all random variables are centered in 0 .
However, note that if we derive one more time, with respect to some b_{l} :

$$
\frac{\partial}{\partial b_{i}} \frac{\partial}{\partial b_{l}} e^{\omega_{2}(\boldsymbol{b})}=e^{\omega_{2} \boldsymbol{b}} \sum_{s} A_{l s}^{-1} b_{s} \sum_{k} A_{i k}^{-1} b_{k}+e^{\omega_{2} \boldsymbol{b}} A_{i l}^{-1}
$$

And now, if we set $\boldsymbol{b}=\mathbf{0}$, the result may be $\neq 0$.
Note that if we derive one more time we return to the previous situation - and the result will be also 0 .

In general, every moment of odd-order is 0 , due to the symmetry of the gaussian, we have:

$$
\left\langle x_{i} x_{j} x_{k}\right\rangle=0
$$

So the expectation value of the product of different random variables, sampled from the same gaussian distribution centered on 0 , is only non-zero for an even number of variables. This result is known as the Wick's theorem (also known in literature as the Isserlis theorem).

By extending this argument, one can find a way to compute the even-order moments, leading to the following formula (which we will not prove):
$\left\langle x_{k_{1}} x_{k_{2}} \ldots x_{k_{l}}\right\rangle=\sum_{P \in \sigma(K)} A_{k_{P_{1}} k_{P_{2}}}^{-1} A_{k_{P_{3}} k_{P_{4}}}^{-1} \ldots A_{k_{P_{l-1}} k_{P_{l}}}^{-1}=\sum_{P \in \sigma(K)}\left\langle x_{k_{P_{1}}} x_{k_{P_{2}}}\right\rangle \ldots\left\langle x_{k_{P_{l-1}}} x_{k_{P_{l}}}\right\rangle$
where $\left(k_{p}, k_{q}\right)$ are a pair of indices from $K=\left\{k_{1}, \ldots, k_{l}\right\}$, and P is a permutation of K, so that $\left(k_{P_{1}}, k_{P_{2}}\right)$ is the first pair of indices after the permutation P. The sum is over all the distinct ways of partitioning $l=2 s$ variables in pairs to obtain distinct products of s groups.
So, the total number of terms to be added will be $(2 s)!/\left(2^{s} s!\right)$ - that is the total number of permutation of $2 s$ elements, where the order within couples does not matter $\left(2^{s}\right)$ and neither the order of the couples themselves $(s!)$.
Note that:

$$
\frac{(2 s)!}{2^{s} s!}=(2 s-1)!!=(2 s-1)(2 s-3)(2 s-5) \ldots
$$

Where !! denotes the double factorial, not to be confused with the factorial of a factorial (which requires brackets: (a!)!).

Exercise 5.3.2 (Wick's theorem):

Consider a univariate normal distribution:

$$
f(x)=\frac{1}{Z(A)} \exp \left(-\frac{a}{2} x^{2}\right)
$$

Show that:

$$
\begin{aligned}
\left\langle x^{2}\right\rangle & =\frac{1}{a} \\
\left\langle x^{4}\right\rangle & =\frac{3}{a^{2}}=3\left(\left\langle x^{2}\right\rangle\right)^{2}
\end{aligned}
$$

Here the A matrix is just the scalar $a=\sigma^{-2}$. As the pdf is univariate, there is only one index possible $K=\{1\}$. As $(2-1)!!=1!!=1$, there is only one term in the summation, thus:

$$
\left\langle x^{2}\right\rangle=A_{11}^{-1}=\frac{1}{a}
$$

For the 4 -th order, however, we have more combinations: $(4-1)!!=3!!=$ $3 \cdot 1=3$. Again, there is only one possible index, so all terms will be the same:

$$
\left\langle x^{4}\right\rangle=A_{11}^{-1} A_{11}^{-1}+A_{11}^{-1} A_{11}^{-1}+A_{11}^{-1} A_{11}^{-1}=\frac{3}{a^{2}}=3\left(\left\langle x^{2}\right\rangle\right)^{2}
$$

5.4 Steepest Descent Integrals

It is possible to use gaussian integrals to solve a more general set of integrals, thanks to the Steepest Descent approximation.
We start with an integral of the form:

$$
\begin{equation*}
I(\lambda) \equiv \int_{S} \mathrm{~d}^{n} x \exp \left(-\frac{F(\boldsymbol{x})}{\lambda}\right) \tag{5.9}
\end{equation*}
$$

where λ is a small parameter (the approximation is more and more accurate as $\lambda \rightarrow 0), F(\boldsymbol{x})$ has a global minimum in $\boldsymbol{x}_{\mathbf{0}} \in(a, b)$ and $S \subseteq \mathbb{R}^{n}$ is a sufficiently large region.
Note that, if λ is lowered, the integral is dominated by the neighborhood of the minimum $\boldsymbol{x}_{\mathbf{0}}$. In fact:

$$
h(\boldsymbol{x}) \equiv \exp \left(-\frac{F(\boldsymbol{x})}{\lambda}\right) ; \quad \frac{h\left(\boldsymbol{x}_{\mathbf{0}}\right)}{h(\boldsymbol{x})}=\exp \left(-\frac{1}{\lambda}\left(F\left(\boldsymbol{x}_{\mathbf{0}}\right)-F(\boldsymbol{x})\right)\right)
$$

As $F\left(\boldsymbol{x}_{\mathbf{0}}\right)-F(\boldsymbol{x})<0$, the ratio becomes exponentially higher if $\lambda \rightarrow 0$. Basically, for $\lambda \rightarrow 0$, the integrand function becomes "more and more similar to a gaussian".

To compute the integral, then, we translate the coordinates about $\boldsymbol{x}_{\mathbf{0}}$:

$$
\boldsymbol{x}=\boldsymbol{x}_{\mathbf{0}}+\sqrt{\lambda} \boldsymbol{y} \quad \mathrm{d}^{n} \boldsymbol{x}=\lambda^{n / 2} \mathrm{~d}^{n} \boldsymbol{y}
$$

Then we perform a second order Taylor expansion about $\lambda=0$ and $\boldsymbol{x}=\boldsymbol{x}_{\mathbf{0}}$:
$\frac{1}{\lambda} F(\boldsymbol{x})=\frac{1}{\lambda} F\left(\boldsymbol{x}_{\mathbf{0}}\right)+\frac{1}{\lambda} \sum_{i} \partial_{x_{i}} F\left(\boldsymbol{x}_{\mathbf{0}}\right) y_{i} \sqrt{\lambda}+\frac{1}{\chi} \frac{1}{2!} \sum_{i j} \partial_{x_{i} x_{j}}^{2} F\left(\boldsymbol{x}_{\mathbf{0}}\right) y_{i} y_{j} X+O\left(\lambda^{1 / 2}\right)$
where we cancelled the first derivative, as $\boldsymbol{x}_{\mathbf{0}}$ is a stationary point for F.
Substituting back in the integral we get:

$$
I(\lambda)=\lambda^{n / 2} \exp \left(-\frac{F\left(\boldsymbol{x}_{\mathbf{0}}\right)}{\lambda}\right) \int_{S^{\prime}} \mathrm{d}^{n} \boldsymbol{y} \exp \left[-\frac{1}{2} \sum_{i j} \partial_{x_{i} x_{j}}^{2} F\left(\boldsymbol{x}_{\mathbf{0}}\right) y_{i} y_{j}-R(\boldsymbol{y})\right]
$$

This is a gaussian integral $Z(A)$, with A being the Hessian of F evaluated at the minimum $\boldsymbol{x}_{\mathbf{0}}$ (or, equivalently, at the maximum of $-F(\boldsymbol{x})$).
Now, for λ sufficiently small, we can ignore $R(\boldsymbol{y})$ and compute the integral with (5.31), leading to the approximation:

$$
\begin{equation*}
I(\lambda) \underset{\lambda \rightarrow 0}{\approx}(2 \pi \lambda)^{n / 2}\left[\operatorname{det} \partial_{x_{i} x_{i}}^{2} F\left(\boldsymbol{x}_{\mathbf{0}}\right)\right]^{-1 / 2} \exp \left(-\frac{F\left(\boldsymbol{x}_{\mathbf{0}}\right)}{\lambda}\right) \tag{5.10}
\end{equation*}
$$

Doing this, we implicitly integrated over the entire \mathbb{R}^{n}. This is fine because, for $\lambda \rightarrow 0$, the gaussian is "peaked" in a small region around $\boldsymbol{x}_{\mathbf{0}}$, and vanishes exponentially moving further away.

The Steepest Descent approximation generalizes Laplace's method for calculating integrals, which has a much simpler expression for the limited case of univariate integrals:

$$
\begin{equation*}
I(s)=\int g(z) e^{s f(z)} d z \underset{s \rightarrow \infty}{\approx} \frac{(2 \pi)^{1 / 2} g\left(z_{c}\right) e^{s f\left(z_{c}\right)}}{\left|s f^{\prime \prime}\left(z_{c}\right)\right|^{1 / 2}} \tag{5.11}
\end{equation*}
$$

with $f, g \in \mathbb{R}$, and z_{c} is the maximum of f, i.e. $f\left(z_{c}\right) \geq f(z) \forall z \in(a, b)$.
This formula is useful in physics: s can model the system's size, and $s \rightarrow \infty$ is then the limit for a large system.

Example 14 (Stirling approximation):

We can use the Steepest Descent approximation to derive the formula for the Stirling approximation of factorials.
Recall that a factorial is merely the Γ function evaluated on \mathbb{N} :

$$
s!=\int_{0}^{\infty} x^{s} e^{-x} d x
$$

We then perform a change of variables:

$$
x=z s
$$

so that:

$$
s!=s^{s+1} \int_{0}^{\infty} e^{s(\ln z-z)} d z
$$

This is an integral in the form:

$$
\int \exp \left(-\frac{F(x)}{\lambda}\right)
$$

if we let $\lambda=1 / s$ and $F(z)=z-\ln z$. So we need to find the minimum of $F(z)$:

$$
\begin{aligned}
& F^{\prime}(z)=\frac{\mathrm{d}}{\mathrm{~d} z}(z-\ln z)=1-\frac{1}{z} \stackrel{!}{=} 0 \Rightarrow z_{c}=1 \\
& F^{\prime \prime}(z)=\frac{1}{z^{2}} \Rightarrow F^{\prime \prime}\left(z_{c}\right)=1>0
\end{aligned}
$$

We can now apply (5.10), leading to:

$$
s!\underset{s \rightarrow \infty}{\approx}\left(\frac{2 \pi}{s}\right)^{1 / 2}(1)^{1 / 2} e^{-s}=\sqrt{2 \pi} s^{s+\frac{1}{2}} e^{-s}
$$

Taking the \ln we arrive at the usual form for the Stirling approximation:

$$
\ln s!\approx s \ln n s-s+\frac{1}{2} \ln (2 \pi s)+O\left(\frac{1}{s}\right)
$$

Note that the same result can be obtained by using the much simpler (ㄴ.ा), with $g(z) \equiv 1$ and $f(z)=\ln z-z$.

Exercise 5.4.1 (Steepest Descent Approximation):

Compute the Steepest Descent Approximation for the following integral (for $s \rightarrow \infty)$:

$$
I(s)=\int_{-\infty}^{\infty} e^{s x-\cosh x} d x
$$

By collecting a s in the exponential argument:

$$
I(s)=\int_{-\infty}^{\infty} \exp \left(s\left(x-\frac{\cosh x}{s}\right)\right)
$$

we can bring back to the form of (5. y$)$ with $F(x)=\cosh x / s-x$ and $\lambda=$ s^{-1}.
We find the minimum of $F(x)$ by differentiating:

$$
\begin{aligned}
& F^{\prime}(x)=\frac{\sinh x}{s}-1 \stackrel{!}{=} 0 \Rightarrow x_{0}=\sinh ^{-1} s \\
& F^{\prime \prime}(x)=\frac{\cosh x}{s} \Rightarrow F^{\prime \prime}\left(x_{0}\right)=\frac{\cosh \sinh ^{-1} s}{s}=\frac{\sqrt{1+s^{2}}}{s}>0
\end{aligned}
$$

Finally, by applying (5.

$$
\begin{aligned}
I(s) & \underset{s \rightarrow \infty}{ } \sqrt{\frac{2 \pi}{s}} \sqrt{\frac{s}{\sqrt{1+s^{2}}}} \exp \left(\frac{\sqrt{1+s^{2}}}{s}-\sinh ^{-1} s\right)= \\
& =\frac{\sqrt{2 \pi}}{\left(1+s^{2}\right)^{1 / 4}} \exp \left(\frac{\sqrt{1+s^{2}}}{s}-\sinh ^{-1} s\right)
\end{aligned}
$$

Note that, for this peculiar case, the simple 1D formula does not work (why?) - and so one should proceed with the general method (full steps: find maximum, second derivative...).

Exercise 5.4.2 (Laplace's formula):

Compute:

$$
I(N)=\int_{0}^{\infty} \cos (x) \exp \left(-N\left[\left(x-\frac{\pi}{3}\right)^{2}+\left(x-\frac{\pi}{3}\right)^{4}\right]\right) d x
$$

in the limit $N \rightarrow \infty$.

For this exercise we can use Laplace's formula (5. (1) with:

$$
g(x)=\cos (x) \quad f(x)=-\left[\left(x-\frac{\pi}{3}\right)^{2}+\left(x-\frac{\pi}{3}\right)^{4}\right]
$$

By looking at $f(x)$ one can see directly that it has a global maximum in $x_{0}=\pi / 3$. In fact:

$$
f^{\prime}(x)=-\left[2\left(x-\frac{\pi}{3}\right)+4\left(x-\frac{\pi}{3}\right)^{3}\right] \stackrel{!}{=} 0 \Leftrightarrow x_{0}=\frac{\pi}{3}
$$

$$
f^{\prime \prime}(x)=-\left[2+12\left(x-\frac{\pi}{3}\right)^{2}\right] \Rightarrow f^{\prime \prime}\left(x_{0}\right)=-2<0
$$

And so we arrive at:

$$
I(N) \underset{N \rightarrow \infty}{\approx} \frac{(2 \pi)^{1 / 2} \cos (\pi / 3) e^{N \cdot 0}}{|N(-2)|^{1 / 2}}=\frac{1}{2} \sqrt{\frac{\pi}{N}}
$$

Chapter 6

Integrals of complex variables

In this chapter we discuss several techniques for computing integrals on the complex plane.

6.1 Fourier Transform

One of the most frequent kind of complex integral is given by the Fourier Transform (FT). Let $f(x) \in L_{2}(\mathbb{R})$ be a square-integrable function. Then the Fourier transform maps $f(x)$ to another function $\tilde{f}(k)$ defined as follows:

$$
\begin{equation*}
\mathcal{F}[f(x)](k)=\tilde{f}(k) \equiv \int_{\mathbb{R}} e^{-i k x} f(x) \mathrm{d} x \quad f \in L_{2}(\mathbb{R}) \tag{6.1}
\end{equation*}
$$

Similarly, it is possible to define the inverse Fourier transform, linking $\tilde{f}(k)$ back to $f(x)$:

$$
\mathcal{F}^{-1}[\tilde{f}(k)](x)=f(x)=\frac{1}{2 \pi} \int_{\mathbb{R}} e^{i k x} \tilde{f}(k) \mathrm{d} k
$$

The 2π factor is needed for normalization, so that:

$$
\begin{equation*}
\mathcal{F}^{-1}[\mathcal{F}[f(x)](k)](x)=f(x) \tag{6.2}
\end{equation*}
$$

As long as (6.2$)$ is satisfied, any different definition of the Fourier transforms is acceptable. For example, it is possible to switch the signs in the $e^{i k x}$, or split differently the normalization factor between \mathcal{F} and \mathcal{F}^{-1}.

6.1.1 Refresher on functional analysis

The definition (5.]) is quite limited, as several interesting functions are not in $L_{2}(\mathbb{R})$ - for example $\sin (x), \cos (x), \theta(x)$. Fortunately, it is possible to extend the Fourier transform by considering generalized functions (distributions).
We start by defining a space $\mathcal{S}(\mathbb{R})$ (Schwartz space) containing all functions $\varphi \in C^{\infty}(\mathbb{R})$ that are rapidly decreasing, i.e. such that $\sup _{x \in \mathbb{R}}\left|x^{\alpha} \varphi^{(\beta)}(x)\right|<\infty$ $\forall \alpha, \beta \in \mathbb{N}$. These are also called test functions.
Then a tempered distribution T is a continuous linear mapping $\mathcal{S}(\mathbb{R}) \rightarrow$

Inverse Fourier transform

Conventions

Schwartz space
\mathbb{R}. So it is possible to "apply" a distribution T to any test function $\varphi \in \mathcal{S}(\mathbb{R})$, resulting in a real number, denoted with $\langle T, \varphi\rangle$.
The choice of \mathcal{S} is made expressly so that the Fourier transform is a linear and invertible operator on \mathcal{S}. However, other choices can be made for the space of test functions. For example, one can take the set \mathcal{D} of all functions with compact support, i.e. that vanish (along with all their derivatives) outside a compact region.

We can now see that distributions generalize the concept of function. We start by noting that any locally integrable function $f: \mathbb{R} \rightarrow \mathbb{R}$ can be used to define a distribution, by considering its inner product with a test function:

$$
\begin{equation*}
\left\langle T_{f}, \varphi\right\rangle \equiv \int_{\mathbb{R}} \mathrm{d} x f(x) \varphi(x) \quad \forall \varphi \in \mathcal{S}(\mathbb{R}) \tag{6.3}
\end{equation*}
$$

Distributions that can be defined like this are called regular.
In the complex case, where $f: \mathbb{R} \rightarrow \mathbb{C}$, we instead use the Hermitian inner product:

$$
\left\langle T_{f}, \varphi\right\rangle=\int_{\mathbb{R}} \mathrm{d} x f(x)^{*} \varphi(x)
$$

where $f(x)^{*}$ is the complex conjugate of $f(x)$. The choice of the position of this conjugate (on the first or second entry) is a convention. Physicists tend to use the first position (due to Dirac notation), while mathematicians the second one.

Not all distributions are regular: in general, it is not possible to find a function $f(x)$ for a generic distribution T such that ([6.3) is satisfied. The distributions for which this is not possible are called singular.

The simplest (and most important) singular distribution is the Dirac Delta $\delta(x)$, defined as follows:

$$
\langle\delta, \varphi\rangle \equiv \varphi(0) \quad \varphi \in S(\mathbb{R})
$$

Dirac Delta

In other words, applying the δ to any test function φ returns the value of φ at 0 .
In practice, we often write formally:

$$
\langle\delta, \varphi\rangle=\int_{\mathbb{R}} \delta(x) \varphi(x) \mathrm{d} x
$$

as if $\delta(x)$ were a function (but keep in mind that it isn't). This expression is often just a shortcut for quickly reaching useful results, as we will see in the following.

The point of defining distributions is that they provide a way to extend rigorously may operations that cannot be done on normal functions. One such example is differentiation. Given a distribution T, its distributional derivative is defined as:

$$
\begin{equation*}
\left\langle T^{\prime}, \varphi\right\rangle \equiv-\left\langle T, \varphi^{\prime}\right\rangle \quad \forall \varphi \in S(\mathbb{R}) \tag{6.4}
\end{equation*}
$$

This is done so that, for a regular distribution T_{f}, that result comes from integration by parts:

$$
\begin{equation*}
\left\langle T_{f}^{\prime}, \varphi\right\rangle=\int_{\mathbb{R}} f^{\prime}(x) \varphi(x) \mathrm{d} x=\left.\underline{f(x) \varphi(x)}\right|_{-\infty} ^{+\infty}-\int_{\mathbb{R}} f(x) \varphi^{\prime}(x)=-\left\langle T_{f}, \varphi^{\prime}\right\rangle \tag{6.5}
\end{equation*}
$$

For a singular distribution we use directly the definition (6.4), as the construction in (5.5) has no meaning (but still, sometimes we will write it nonetheless, as a merely formal expression).
In the distributional sense, it is possible to differentiate the Heaviside function $\theta(x)$:

$$
\theta(x) \equiv \begin{cases}1 & x>0 \tag{6.6}\\ \frac{1}{2} & x=0 \\ 0 & x<0\end{cases}
$$

Heaviside step function

As $\theta(x)$ is locally integrable, we can define a corresponding distribution - that we denote with the same symbol θ. Then:

$$
\begin{align*}
\left\langle\theta^{\prime}, \varphi\right\rangle & =-\left\langle\theta, \varphi^{\prime}\right\rangle=-\int_{\mathbb{R}} \theta(x) \varphi^{\prime}(x) \mathrm{d} x=-\int_{0}^{+\infty} \varphi^{\prime}(x) \mathrm{d} x=-[\varphi(+\infty)-\varphi(0)]= \\
& =\varphi(0)=\langle\delta \mid \varphi\rangle \tag{6.7}
\end{align*}
$$

So $\theta^{\prime}=\delta$ in the distributional sense - i.e. applying θ^{\prime} or δ to any test function φ leads to the same result.

6.1.2 Fourier transform of distributions

We are finally ready to extend the Fourier Transform to tempered distributions. In fact, $S(\mathbb{R})$ has been chosen ${ }^{\mathbb{D}}$ such that any $\varphi(x) \in S(\mathbb{R})$ has a well-defined transform $\tilde{\varphi}(k)$. Then we define the Fourier transform of a distribution as follows:

Fourier Transform of distributions

Again, this comes from the expression for regular distributions:

$$
\begin{aligned}
\left\langle\mathcal{F}\left[T_{f}\right], \varphi\right\rangle & =\int_{\mathbb{R}} \mathrm{d} k\{\mathcal{F}[f(x)](k)\}^{*} \varphi(k)=\int_{\mathbb{R}} \mathrm{d} k \int_{\mathbb{R}} \mathrm{d} x\left[e^{-i k x} f(x)\right]^{*} \varphi(x)= \\
& =\int_{\mathbb{R}} \mathrm{d} x f(x) \int_{\mathbb{R}} \mathrm{d} k e^{i k x} \varphi(k)=\int_{\mathbb{R}} 2 \pi f(x) \mathcal{F}^{-1}[\varphi(k)](x)=2 \pi\left\langle T, \mathcal{F}^{-1}[\varphi]\right\rangle
\end{aligned}
$$

Note that:

$$
\begin{equation*}
\langle\mathcal{F}[T], \mathcal{F}[\varphi]\rangle=2 \pi\left\langle T, \mathcal{F}^{-1} \mathcal{F}[\varphi]\right\rangle=2 \pi\langle T, \varphi\rangle \tag{6.8}
\end{equation*}
$$

[^6]
Delta transform

Finally, we can use all this machinery to compute Fourier transforms of some generalized functions. We start with the δ :

$$
\langle\mathcal{F}[\delta], \varphi\rangle=2 \pi\left\langle\delta, \mathcal{F}^{-1}[\varphi]\right\rangle=2 \pi \mathcal{F}^{-1}[\varphi(x)](0)
$$

where:

$$
\mathcal{F}^{-1}[\varphi(x)](k)=\frac{1}{2 \pi} \int_{\mathbb{R}} \mathrm{d} x e^{i k x} \varphi(x) \Rightarrow 2 \pi \mathcal{F}^{-1}[\varphi(x)](0)=\int_{\mathbb{R}} \mathrm{d} x \varphi(x)=\langle 1, \varphi\rangle
$$

And so $\mathcal{F}[\delta]=1$.
Note that the same result could be obtained in a simpler way by treating δ as a "formal function":

$$
\mathcal{F}[\delta](k)=\int_{\mathbb{R}} e^{-i k x} \delta(x)=e^{-i k 0}=1
$$

This leads to an equivalent definition for the δ "function":

$$
\delta(x)=\mathcal{F}^{-1}[1](x)=\frac{1}{2 \pi} \int_{\mathbb{R}} e^{i k x} \mathrm{~d} k
$$

Also, note that:

$$
\begin{equation*}
\mathcal{F}[1](k)=\int_{\mathbb{R}} e^{-i k x} \mathrm{~d} x=\int_{\mathbb{R}} e^{i k x} \mathrm{~d} x=2 \pi\left(\frac{1}{2 \pi} \int_{\mathbb{R}} e^{i k x}\right)=2 \pi \delta(k) \tag{6.9}
\end{equation*}
$$

Heaviside transform

We can use the result for the δ to aid the computation of $\mathcal{F}[\theta]$, where $\theta(x)$ is the regular distribution defined from ($\sqrt[6]{ } \mathbf{6}$). We have already seen in (5.7) that $\theta^{\prime}=\delta$. So, we can use the formula for the Fourier transform of a derivative (which naturally generalizes to distributions):

$$
\begin{equation*}
\mathcal{F}\left[T^{\prime}\right]=i k \tilde{T} \tag{6.10}
\end{equation*}
$$

Fourier transform of a derivative

In our case:

$$
\begin{equation*}
\mathcal{F}\left[\theta^{\prime}\right] \underset{(\mathbb{K} \mathcal{I})}{=} \mathcal{F}[\delta]=1=i k \tilde{\theta} \tag{6.11}
\end{equation*}
$$

However, ($5 . \mathrm{D}_{\text {l }}$) cannot be used to reconstruct $\tilde{\theta}$ by itself, that is we cannot just "solve by $\tilde{\theta}$ " and write:

$$
\begin{equation*}
\tilde{\theta}(k)=\frac{1}{i k} \tag{6.12}
\end{equation*}
$$

In fact, consider a different $\theta^{*}(x) \equiv \theta(x)+c$, with $c \in \mathbb{R}$ constant. Their derivatives coincide, and so formula ($\overline{6}$. \square) would give the same result for both of them. However:

$$
\mathcal{F}\left[\theta^{*}(x)\right](k)=\mathcal{F}[\theta(x)](k)+\mathcal{F}[c](k)=\tilde{\theta}(k)+c \delta(k) \neq \tilde{\theta}(k)
$$

So we are missing a δ term, meaning that the correct Fourier transform should be:

$$
\begin{equation*}
\tilde{\theta}(k)=\mathcal{P}\left(\frac{1}{i k}\right)+c \delta(k) \tag{6.13}
\end{equation*}
$$

for some constant $c . \mathcal{P}$ denotes the Cauchy principal value, which needs to be used to "fix" the singularity at $k=0$ (see the following green boxes for the details).
There are several ways to fix c in ([.].]). One of the quickest is to reason with symmetries.
Let f be an even function (i.e. a gaussian). Symmetry is preserved by the Fourier transform, and so:

$$
\begin{equation*}
\langle\tilde{\theta}, \tilde{f}\rangle=\mathcal{P} \int_{\mathbb{R}} \frac{1}{i k} \tilde{f}(k) \mathrm{d} k+c\langle\delta, \tilde{f}\rangle=c \tilde{f}(0)=c \int_{\mathbb{R}} f(x) \mathrm{d} x \tag{6.14}
\end{equation*}
$$

The principal value vanishes because \tilde{f} is even (as f is even). The corresponding scalar product without the Fourier transforms is:

$$
\begin{equation*}
\langle\theta, f\rangle=\int_{0}^{+\infty} f(x) \mathrm{d} x \underset{(a)}{=} \frac{1}{2} \int_{\mathbb{R}} f(x) \mathrm{d} x \tag{6.15}
\end{equation*}
$$

where in (a) we again used the symmetry of f. Then, recalling (6.8), we have:

$$
\langle\tilde{\theta}, \tilde{f}\rangle=2 \pi\langle\theta, f\rangle \Rightarrow c \int_{\mathbb{R}} f(x) \mathrm{d} x=\frac{2 \pi}{2} \int_{\mathbb{R}} f(x) \mathrm{d} x \Rightarrow c=\pi
$$

(Note that c depends on the choice we made for the normalization in the Fourier transforms).
A similar argument can be made noting that $\theta(x)$ is just a scaled and shifted sgn function, which is odd:

$$
\theta(x)=\frac{1}{2}+\frac{1}{2} \operatorname{sgn}(x) \quad \operatorname{sgn}(x)= \begin{cases}1 & x>0 \\ 0 & x=0 \\ -1 & x<0\end{cases}
$$

By linearity we have:

$$
\begin{equation*}
\tilde{\theta}(k)=\mathcal{F}\left(\frac{1}{2}\right)+\frac{1}{2} \mathcal{F}[\operatorname{sgn}(x)](k) \tag{6.16}
\end{equation*}
$$

Noting that $\mathrm{sgn}^{\prime}=2 \delta$ and using ($\bar{\sigma} . \mathrm{I}(\mathrm{d})$ leads to:

$$
2=i k \mathcal{F}[\operatorname{sgn}](k)
$$

Inverting with ($[] 3$.$) , we have:$

$$
\mathcal{F}[\operatorname{sgn}](k)=\mathcal{P}\left(\frac{2}{i k}\right)+c \delta(k)=\mathcal{P}\left(\frac{2}{i k}\right)
$$

As this time c must be 0 , otherwise $\mathcal{F}[\operatorname{sgn}](k)$ wouldn't be odd (the δ is even). Substituting in (6.56) we have:

$$
\tilde{\theta}(k)=\frac{1}{2} \underbrace{\mathcal{F}[1]}_{2 \pi}+\frac{1}{\not 2} \mathcal{P}\left(\frac{\mathscr{2}}{i k}\right)=\mathcal{P}\left(\frac{1}{i k}\right)+\pi \delta(k)
$$

Why is (6.12) wrong? There are two main reasons:

- $1 /(i k)$ is not locally integrable (as it diverges for $k=0$), so it cannot be used to define a distribution, such as $\tilde{\theta}$. This can be solved by using the principal part of $1 /(i k)$ instead.
- The most general solution to the equation $x T=1$, where T is a tempered distribution, is not just $T=\mathcal{P}(1 / x)$, but:

$$
T=\mathcal{P}\left(\frac{1}{x}\right)+c \delta
$$

for some constant $c \in \mathbb{R}$.
First, to be precise, the product of a function, such as $f(x)=x$, with a distribution T is defined as the following distribution:

$$
\begin{equation*}
\langle f(x) T, \varphi\rangle \equiv\langle T, f(x) \varphi\rangle \tag{6.17}
\end{equation*}
$$

where $f(x)$ must be such that $f(x) \varphi \in \mathcal{S} \forall \varphi \in \mathcal{S}$, which is indeed the case for any polynomial.
Now consider the distributional equation $x T=1$. If we apply both sides to some test function φ, we have:

$$
\begin{equation*}
\langle T, x \varphi\rangle=\langle 1, \varphi\rangle=\int_{\mathbb{R}} \varphi(x) \mathrm{d} x \tag{6.18}
\end{equation*}
$$

The problem of finding T satisfying ($\overline{6} .18)$ is called the (distributional) division problem. To solve it, we want to reduce the equation to something in the form of $x T^{\prime}=0$, that can then be solved. So we rewrite the rhs as follows:

$$
\int_{\mathbb{R}} \varphi(x) \mathrm{d} x=\lim _{\epsilon \rightarrow 0^{+}} \int_{\mathbb{R} \backslash[-\epsilon, \epsilon]} \varphi(x) \mathrm{d} x=\lim _{\epsilon \rightarrow 0^{+}} \int_{\mathbb{R} \backslash[-\epsilon, \epsilon]} \frac{x \varphi(x)}{x} \mathrm{~d} x
$$

Then we define the principal value distribution $\mathcal{P}(1 / x)$ as:

$$
\left\langle\mathcal{P}\left(\frac{1}{x}\right), \varphi\right\rangle=\lim _{\epsilon \rightarrow 0^{+}} \int_{\mathbb{R} \backslash[-\epsilon, \epsilon]} \frac{\varphi(x)}{x} \mathrm{~d} x
$$

so that:

$$
\int_{\mathbb{R}} \varphi(x) \mathrm{d} x=\left\langle\mathcal{P}\left(\frac{1}{x}\right), x \varphi\right\rangle
$$

Substituting back in (6.18) and rearranging we get:

$$
\langle T, x \varphi\rangle=\left\langle\mathcal{P}\left(\frac{1}{x}\right), x \varphi\right\rangle \Rightarrow\left\langle T-\mathcal{P}\left(\frac{1}{x}\right), x \varphi\right\rangle=0 \underset{(\underset{\mathrm{~L}}{\mathrm{~L}})}{\Rightarrow} x\left[T-\mathcal{P}\left(\frac{1}{x}\right)\right]=0
$$

All that's left is to solve:

$$
\begin{equation*}
x T^{\prime}=0 \tag{6.19}
\end{equation*}
$$

with $T^{\prime}=T-\mathcal{P}(1 / x)$. We will now see that the general solution of ($\overline{6.1 \mathrm{I}) \text { is }}$ $T=c \delta$, for some constant c. This leads to:

$$
T^{\prime}=T-\mathcal{P}\left(\frac{1}{x}\right)=c \delta \Rightarrow T=\mathcal{P}\left(\frac{1}{x}\right)+c \delta
$$

which indeed confirms (6.J3).
So, let's see why $T^{\prime}=c \delta$. In the following, we drop the ' for simplicity.
First, we note that any test function $\varphi(x)$ can be written as:

$$
\varphi(x)=\varphi(0)+x \psi(x)
$$

for some $\psi(x) \in \mathcal{S}(\mathbb{R})$. Explicitly:

$$
\begin{align*}
\varphi(x) & =\varphi(0)+\int_{0}^{x} \varphi^{\prime}(t) \mathrm{d} t \underset{u=\frac{t}{x}}{ } \varphi(0)+\int_{0}^{1} x \varphi^{\prime}(x u) \mathrm{d} u= \\
& =\varphi(0)+x \underbrace{\int_{0}^{1} \varphi^{\prime}(x u) \mathrm{d} u}_{\psi(x)}=\varphi(0)+x \psi(x) \tag{6.20}
\end{align*}
$$

Note that if $\varphi(0)=0$, then $\varphi(x)=x \psi(x)$.
Now, $x T=0$ means that:

$$
\begin{equation*}
\langle x T, \varphi\rangle=0 \quad \forall \varphi \in \mathcal{S}(\mathbb{R}) \tag{6.21}
\end{equation*}
$$

To see what T is, we evaluate it on a test function $\varphi(x)$. The idea is to write $\varphi(x)$ as a sum of two test functions $a(x)$ and $b(x)$, choosing $b(x)$ so that it vanishes at 0 , meaning that we can factor a x from it (6.20 I$)$, and then use $\langle T, x b\rangle=\langle x T, b\rangle=0$ ($\cdot 2 \mathbb{R})$.
Note that we can't just directly use (6.20 I$)$, because while $x \psi(x)$ is indeed a test function, $\varphi(0) \notin \mathcal{S}(\mathbb{R})$ (it is a constant value, so it doesn't vanish for $x \rightarrow \infty$). So, the following is ill-defined:

$$
\langle T, \varphi\rangle=\underbrace{\langle T, \varphi(0)\rangle}_{?}+\underbrace{\langle T, x \psi(x)\rangle}_{0}
$$

as $\langle T, \varphi(0)\rangle$ can't be done, because distributions act only on elements of $\mathcal{S}(\mathbb{R})$. The idea is to convert $\varphi(0)$ to a test function by multiplying it with another test function $\chi(x) \in \mathcal{S}(\mathbb{R})$, that we choose (for simplicity) so that $\chi(0)=1$. Then we write $\varphi(x)$ as:

$$
\begin{aligned}
\varphi(x) & =\varphi(x)+\varphi(0) \chi(x)-\varphi(0) \chi(x)= \\
& =\underbrace{\varphi(0) \chi(x)}_{a(x)}+\underbrace{[\varphi(x)-\varphi(0) \chi(x)]}_{b(x)}
\end{aligned}
$$

Note that now $a(x) \in \mathcal{S}(\mathbb{R})$, meaning that $\langle T, a\rangle$ is properly defined. Moreover, as we chose $\chi(0)=1, b(x)$ is a test function that vanishes at 0 :

$$
b(0)=\varphi(0)-\varphi(0) \chi(0)=\varphi(0)-\varphi(0)=0
$$

And so we can use ($[.20 \pi)$ to write $b(x)=x \psi(x)$ for some $\psi(x) \in \mathcal{S}(\mathbb{R})$. Finally, we are able to apply T to $\varphi(x)$:

$$
\begin{aligned}
\langle T, \varphi\rangle & =\langle T, \varphi(0) \chi+x \psi\rangle= \\
& =\varphi(0) \underbrace{\langle T, \chi\rangle}_{c}+\underbrace{\langle x T, \psi\rangle}_{0}= \\
& =c \varphi(0)=\langle c \delta, \varphi\rangle
\end{aligned}
$$

where we denoted with c the result of $\langle T, \chi\rangle$. This proves that the general solution is indeed $T=c \delta$.

Some references on these derivations can be found in:

- https://see.stanford.edu/materials/lsoftaee261/book-fall-07.pdf
https://math.stackexchange.com/questions/678457//
distribution-solution-to-xt-0-in-schwartz-space
https://math.stackexchange.com/questions/2962209/solve-
- the-distribution-equation-xt-1

Explicit computation. It is also possible to compute $\tilde{\theta}$ directly, at the cost of a longer derivation. The idea is to use a limit representation $\theta_{\epsilon}(x)$ for $\theta(x)$, so that $\theta_{\epsilon}(x)$ has the same discontinuity of $\theta(x)$ at $x=0$, and $\lim _{\epsilon \rightarrow 0^{+}} \theta_{\epsilon}(x)=$ $\theta(x)$. One possible choice is:

$$
\theta_{\epsilon}(x)= \begin{cases}e^{-\epsilon x} & x>0 \\ 0 & x<0\end{cases}
$$

When $\epsilon \rightarrow 0^{+}, e^{-\epsilon x} \rightarrow 1$, reconstructing the Heaviside function. So:

$$
\begin{aligned}
\tilde{\theta}(k) & =\int_{\mathbb{R}} \theta(x) e^{-i k x} \mathrm{~d} x=\lim _{\epsilon \rightarrow 0^{+}} \int_{0}^{+\infty} e^{-\epsilon x} e^{-i k x} \mathrm{~d} x=\lim _{\epsilon \rightarrow 0^{+}}-\frac{1}{\epsilon+i k}\left[e^{-\infty}-1\right]= \\
& =\lim _{\epsilon \rightarrow 0^{+}} \frac{1}{\epsilon+i k} \frac{-i^{2}}{-i^{2}}=\lim _{\epsilon \rightarrow 0^{+}} \frac{-i}{k-i \epsilon}
\end{aligned}
$$

To manipulate this expression we need to treat it in the context of distributions, meaning that we need to apply it to a test function $\varphi(x)$ and see what happens:

$$
\begin{aligned}
\langle\tilde{\theta}, \varphi\rangle & =\int_{\mathbb{R}} \tilde{\theta}(k) \varphi(k) \mathrm{d} k=\lim _{\epsilon \rightarrow 0^{+}} \int_{\mathbb{R}} \frac{-i}{k-i \epsilon} \frac{k+i \epsilon}{k+i \epsilon} \varphi(k) \mathrm{d} k= \\
& =-i \lim _{\epsilon \rightarrow 0^{+}} \int_{\mathbb{R}} \frac{k+i \epsilon}{k^{2}+\epsilon^{2}} \varphi(k) \mathrm{d} k=
\end{aligned}
$$

$$
\overline{(a)}-i[\lim _{\epsilon \rightarrow 0^{+}} \underbrace{\int_{\mathbb{R}} \frac{k}{k^{2}+\epsilon^{2}} \varphi(k) \mathrm{d} k}_{A(\epsilon)}+i \lim _{\epsilon \rightarrow 0^{+}} \underbrace{\int_{\mathbb{R}} \frac{\epsilon}{k^{2}+\epsilon^{2}} \varphi(k) \mathrm{d} k}_{B(\epsilon)}]
$$

where in (a) we split the real and imaginary part. We then examine each of them separately:

$$
\begin{aligned}
& A(\epsilon)=\int_{\mathbb{R}} \frac{k}{k^{2}+\epsilon^{2}} \varphi(k) \mathrm{d} k=\int_{\mathbb{R}}\left(\frac{\mathrm{d}}{\mathrm{~d} k} \frac{1}{2} \ln \left(k^{2}+\epsilon^{2}\right)\right) \varphi(k) \mathrm{d} k= \\
& \left.\underset{(b)}{=} \operatorname{ay}\right|_{\mathbb{R}}-\frac{1}{2} \int_{\mathbb{R}} \ln \left(k^{2}+\epsilon^{2}\right) \varphi^{\prime}(k) \mathrm{d} k \\
& \underset{\epsilon \rightarrow 0^{+}}{\longrightarrow}-\frac{1}{2} \int_{\mathbb{R}} \underbrace{\ln \left(k^{2}\right)}_{2 \ln |k|} \varphi^{\prime}(k) \mathrm{d} k=-\int_{\mathbb{R}} \ln |k| \varphi^{\prime}(k) \mathrm{d} k \\
& B(\epsilon)=\int_{\mathbb{R}} \frac{\epsilon}{k^{2}+\epsilon^{2}} \varphi(k) \mathrm{d} k=\int_{\mathbb{R}} \frac{1}{\epsilon} \frac{1}{1+\frac{k^{2}}{\epsilon^{2}}} \varphi(k) \mathrm{d} k= \\
& =\int_{\mathbb{R}}\left[\frac{\mathrm{d}}{\mathrm{~d} k} \arctan \left(\frac{k}{\epsilon}\right)\right] \varphi(k) \mathrm{d} k= \\
& \left.\underset{(c)}{=} b \varphi\right|_{\mathbb{R}}-\int_{\mathbb{R}} \arctan \left(\frac{k}{\epsilon}\right) \varphi^{\prime}(k) \mathrm{d} k \\
& \xrightarrow[\epsilon \rightarrow 0^{+}]{ }-\int_{0}^{+\infty} \frac{\pi}{2} \varphi^{\prime}(k) \mathrm{d} k-\int_{-\infty}^{0}\left(-\frac{\pi}{2}\right) \varphi^{\prime}(k) \mathrm{d} k= \\
& =-\frac{\pi}{2} \int_{\mathbb{R}} \operatorname{sgn}(k) \varphi^{\prime}(k) \mathrm{d} k=\frac{\pi}{(d)} \frac{\pi}{\mathscr{2}} \int_{\mathbb{R}} \underbrace{\operatorname{sgn}^{\prime}(k)}_{\not 2 \delta(k)} \varphi(k) \mathrm{d} k
\end{aligned}
$$

where in (b), (c) and (d) we performed integrations by parts. Then we note that:

$$
\begin{aligned}
\lim _{\epsilon \rightarrow 0^{+}}\langle B(\epsilon), \varphi\rangle & =\pi\langle\delta, \varphi\rangle \\
\lim _{\epsilon \rightarrow 0^{+}} A(\epsilon) & =-\int_{\mathbb{R}} \ln |k| \varphi^{\prime}(k) \mathrm{d} k \underset{(e)}{=} \mathcal{P} \int_{\mathbb{R}} \frac{1}{k} \varphi(k) \mathrm{d} k
\end{aligned}
$$

with a final integration by parts in (e). Putting it all together we arrive at the desired result:

$$
\tilde{\theta}(k)=-i \mathcal{P}\left(\frac{1}{k}\right)+\pi \delta(k)=\mathcal{P}\left(\frac{1}{i k}\right)+\pi \delta(k)
$$

Reference: https://math.stackexchange.com/questions/269809/heaviside-step-function-fourier-transtorm-and-principal-values

6.2 Fresnel integral

An important complex integral, appearing for example in the Schrödinger equation, is the Fresnel integral:

$$
I(a, b) \equiv \int_{-\infty}^{+\infty} \frac{\mathrm{d} k}{2 \pi} \exp \left(-i a k^{2}-i b k\right)=\frac{1}{\sqrt{4 \pi a i}} \exp \left(\frac{i b^{2}}{4 a}\right)
$$

It is similar to a Gaussian integral, but with complex mean and variance.
To compute it, the idea is to rotate it so that it is not entirely along the imaginary axis. Explicitly, we rewrite the i multiplying the a in the exponential argument as:

$$
i=\exp \left(i \frac{\pi}{2}\right)
$$

And then we subtract an angle ϵ, and consider the limit $\epsilon \rightarrow 0^{+}$:

$$
i=\lim _{\epsilon \rightarrow 0^{+}} \exp \left[i\left(\frac{\pi}{2}-\epsilon\right)\right]
$$

Then, we evaluate the integral over one segment $[-R, R]$ of the real line, and take the limit $R \rightarrow \infty$:

$$
\begin{aligned}
I(a, b) & =\lim _{\epsilon \rightarrow 0^{+}} I_{\epsilon}(a, b) \\
I_{\epsilon}(a, b) & =\lim _{R \rightarrow \infty} \int_{-R}^{+R} \frac{\mathrm{~d} k}{2 \pi} \exp (-a \underbrace{k^{2} \exp \left[i\left(\frac{\pi}{2}-\epsilon\right)\right]}_{z^{2}}-i b k) \quad a, b \in \mathbb{R}
\end{aligned}
$$

1. Change of variables

And $\mathrm{d} k=\mathrm{d} z e^{-i \phi_{\epsilon}}$. Note that:

$$
\begin{equation*}
\phi_{\epsilon}<\frac{\pi}{4} \tag{6.22}
\end{equation*}
$$

definitely when $\epsilon \rightarrow 0^{+}$.
This change of variables has removed the i multiplying the z^{2}, meaning that now we have a "standard" Gaussian integral. However, the integration path is now $\gamma_{R}=\left\{|z| \leq R, \arg z=\phi_{\epsilon}\right\}$, i.e. a segment of length $2 R$, centred at the origin and forming an angle ϕ_{ϵ} with the real line. So the integral becomes:

$$
\begin{aligned}
I_{\epsilon}(a, b) & =\lim _{R \rightarrow \infty} \int_{\gamma_{R}} \frac{\mathrm{~d} z}{2 \pi} e^{-i \phi_{\epsilon}} \exp (-a z^{2}-i z \underbrace{b e^{-i \phi_{\epsilon}}}_{b^{\prime}}) \quad b^{\prime}=b e^{-i \phi_{\epsilon}} \\
& =\lim _{R \rightarrow \infty} \int_{\gamma_{R}} \frac{\mathrm{~d} z}{2 \pi} e^{-i \phi_{\epsilon}} \exp \left(-a z^{2}-i b^{\prime} z\right)
\end{aligned}
$$

Figure (6.1) - Integration path for the Fresnel integral

We want to relate this integral to its version on the real line, that we know how to compute. To do this, as always, we close the path of integration and use the Cauchy integral theorem, following the schema in fig. ㄷ..l.
Explicitly, consider the closed curve Γ_{R} defined by:

$$
\Gamma_{R}=\gamma_{R}+\gamma_{+}+\bar{\gamma}_{R}+\gamma_{-}
$$

2. Contour integration
where:

$$
\begin{aligned}
& \gamma_{+}=\left\{z=R e^{i \theta}: \theta \in\left[0, \phi_{\epsilon}\right]\right\} \\
& \gamma_{-}=\left\{z=R e^{i \theta}: \theta \in\left[\pi, \pi+\phi_{\epsilon}\right]\right\} \\
& \gamma_{R}=\left\{|z| \leq R, \arg z=\phi_{\epsilon}\right\} \\
& \bar{\gamma}_{R}=[-R, R]
\end{aligned}
$$

As the integrand has no poles inside Γ_{R}, we have:

$$
\lim _{R \rightarrow \infty} \int_{\Gamma_{R}} \frac{\mathrm{~d} z}{2 \pi} e^{-i \phi_{\epsilon}} \exp \left(-a z^{2}-i b^{\prime} z\right)=0
$$

Moreover, the integral over γ_{+}and γ_{-}vanish. We show this explicitly only for the γ_{+}case:

$$
\begin{equation*}
\left|\int_{\gamma_{+}} \frac{\mathrm{d} z}{2 \pi} e^{-i \phi_{\epsilon}} \exp \left(-a z^{2}-i b z e^{-i \phi_{\epsilon}}\right)\right| \tag{6.23}
\end{equation*}
$$

We use the parameterization of γ_{+}to change variables:

$$
z=R e^{i \theta} \Rightarrow \mathrm{~d} z=i R e^{i \theta} \mathrm{~d} \theta
$$

leading to:

$$
(\boxed{6.2 .3)})=\left|\int_{0}^{\phi_{\epsilon}} \frac{\mathrm{d} \theta}{2 \pi} i R e^{i \theta} e^{-i \phi_{\epsilon}} \exp \left(-a R^{2} e^{2 i \theta}-i b R e^{i \theta} e^{-i \phi_{\epsilon}}\right)\right|=
$$

3. Integrals over $\gamma_{ \pm}$vanish

$$
\begin{aligned}
& =\underbrace{\left|\frac{i R}{2 \pi} e^{-i \phi_{\epsilon}}\right|}_{R /(2 \pi)}\left|\int_{0}^{\phi_{\epsilon}} \mathrm{d} \theta e^{i \theta} \exp \left(-a R^{2} e^{2 i \theta}-i b R e^{i\left(\theta-\phi_{\epsilon}\right)}\right)\right| \leq \\
& \leq \frac{R}{2 \pi} \int_{0}^{\phi_{\epsilon}} \mathrm{d} \theta\left|\exp \left(i \theta-a R^{2} e^{2 i \theta}-i b R e^{i\left(\theta-\phi_{\epsilon}\right)}\right)\right|= \\
& =\frac{R}{2 \pi} \int_{0}^{\phi_{\epsilon}} \mathrm{d} \theta \underbrace{\left|e^{i \theta}\right|}_{1}\left|e^{-a R^{2}(\cos 2 \theta+i \sin 2 \theta)}\right|\left|e^{-i b R\left(\cos \left(\theta-\phi_{\epsilon}\right)+i \sin \left(\theta-\phi_{\epsilon}\right)\right)}\right|= \\
& =\frac{R}{2 \pi} \int_{0}^{\phi_{\epsilon}} \mathrm{d} \theta e^{-a R^{2} \cos 2 \theta+R b \sin \left(\theta-\phi_{\epsilon}\right)} \underset{R \rightarrow \infty}{\longrightarrow} 0
\end{aligned}
$$

As the integral is over θ in $\left[0, \phi_{\epsilon}\right]$, we have:

$$
0<\theta<\phi_{\epsilon} \underbrace{<}_{([.22])} \frac{\pi}{4} \Rightarrow 0<2 \theta<\frac{\pi}{2} \Rightarrow \cos (2 \theta)>0
$$

So, as we assumed $a>0$, the integrand decays exponentially fast when $R \rightarrow \infty$, making the integral vanish.
Finally, as the integral over γ_{+}and γ_{-}vanish, then:

$$
I_{\gamma_{R}}+I_{\bar{\gamma}_{R}}=0 \Rightarrow I_{\gamma_{R}}=-I_{\bar{\gamma}_{R}}
$$

where $I_{\bar{\gamma}_{R}}$ is the integral over the real line, that we can compute:

$$
\begin{aligned}
I_{\gamma_{R}} & =-\int_{-R}^{R} \frac{\mathrm{~d} z}{2 \pi} e^{-i \phi_{\epsilon}} \exp \left(-a z^{2}-i b^{\prime} z\right) \xrightarrow[R \rightarrow \infty]{\longrightarrow} \frac{e^{-i \phi_{\epsilon}}}{2 \pi} \sqrt{\frac{\pi}{a}} \exp \left(-\frac{\left(b^{\prime}\right)^{2}}{4 a}\right)= \\
& =\frac{1}{\sqrt{4 \pi a}} e^{-i \phi_{\epsilon}} \exp \left(-\frac{\left(b^{\prime}\right)^{2}}{4 a}\right)
\end{aligned}
$$

Inserting back $b^{\prime}=b e^{-i \phi_{\epsilon}}$, and taking the limit $\epsilon \rightarrow 0^{+}$, we have:

$$
\phi_{\epsilon} \underset{\epsilon \rightarrow 0^{+}}{\longrightarrow} \frac{\pi}{4} \Rightarrow e^{-i \phi_{\epsilon}} \underset{\epsilon \rightarrow 0^{+}}{\longrightarrow} \frac{1}{\sqrt{i}} \Rightarrow b^{\prime} \underset{\epsilon \rightarrow 0^{+}}{\longrightarrow} \frac{b}{\sqrt{i}}
$$

and $\left(b^{\prime}\right)^{2} \rightarrow-i b^{2}$, so that:

$$
I(a, b)=\frac{1}{\sqrt{4 \pi a i}} \exp \left(\frac{i b^{2}}{4 a}\right)
$$

which is the desired result.
For $a<0$, observe that $I(a, b)=I^{*}(-a,-b)$, with $-i a=(i a)^{*}$ and $b^{2}=\left(b^{2}\right)^{*}$, and the same result follows.

6.2.1 Schrödinger Equation

A possible application of the Fresnel integration is solving the Schrödinger equation for a free particle:

$$
\begin{equation*}
i \hbar \partial_{t} \psi(x, t)=-\frac{\hbar^{2}}{2 m} \partial_{x}^{2} \psi(x, t) \tag{6.24}
\end{equation*}
$$

Example of application
4. Integral over the real line

In the following, we will take $\hbar=1$ for simplicity. Note that ($\kappa .24)$ is very similar to the diffusion equation, and in fact we can solve it in the same way, by applying a Fourier transform to both sides:

$$
\begin{aligned}
i \partial_{t} \tilde{\psi}(p, t) & =-\frac{1}{(a)} \int_{\mathbb{R}} \mathrm{d} x \partial_{x}^{2} \psi(x, t) e^{-i x p}= \\
& =\frac{p^{2}}{2 m} \underbrace{\int_{\mathbb{R}} \mathrm{d} x \psi(x, t) e^{-i p x}}_{\tilde{\psi}(p, t)}=\frac{p^{2}}{2 m} \tilde{\psi}(p, t)
\end{aligned}
$$

where in (a) we performed two integrations by parts, using the fact that $\psi(x, t)$ vanishes at infinity to remove the boundary terms.
We are left with a first order ODE that can be solved by separation of variables:
$i \partial_{t} \tilde{\psi}=\frac{p^{2}}{2 m} \tilde{\psi} \Rightarrow \frac{\mathrm{~d} \tilde{\psi}}{\tilde{\psi}}=-i^{2} \frac{p^{2}}{2 m i} \mathrm{~d} t=-\frac{i p^{2}}{2 m} \mathrm{~d} t \Rightarrow \tilde{\psi}(p, t)=\tilde{\psi}(p, 0) \exp \left(-\frac{i p^{2} t}{2 m}\right)$
If we assume the particle to be initially localized at $x=0$, meaning that $\psi(x, 0)=\delta(x)$, we have $\tilde{\psi}(p, 0)=1$, and so:

$$
\tilde{\psi}(p, t)=\exp \left(-i \frac{p^{2} t}{2 m}\right)
$$

All that's left is to "go back to position space" with an inverse Fourier transform, which involves a Fresnel integral:

$$
\psi(x, t)=\frac{1}{2 \pi} \int_{\mathbb{R}} \mathrm{d} p \exp \left(-\frac{i p^{2} t}{2 m}\right) e^{i p x}=\frac{1}{\sqrt{4 \pi a i}} \exp \left(\frac{i b^{2}}{4 a}\right)
$$

with $a=t /(2 m)$ and $b=-x$, leading to:

$$
\psi(x, t)=\sqrt{\frac{m}{2 \pi i t}} \exp \left(-\frac{m x^{2}}{2 i t}\right)
$$

To reinsert \hbar we substitute $t \rightarrow t \hbar$:

$$
\psi(x, t)=\sqrt{\frac{m}{2 \pi \hbar i t}} \exp \left(-\frac{m x^{2}}{2 \hbar i t}\right)
$$

This is the Schrödinger propagator for a one-dimensional free particle.

6.3 Indented Integrals

Sometimes it is needed to compute integrals with singularities on the path of integration. Note that this integrals do not exist, meaning that there is not a unique way to compute them. Nonetheless, there are several rules (or prescriptions) that can be used to assign some result (possibly of physical significance) to these integrals.

Compute integrals that do not exist

Consider, for example, an analytic function $f(z)$, and the following integral:

$$
I=\int_{\mathbb{R}} \mathrm{d} x \frac{f(x)}{x-x_{0}}
$$

The integrand has a pole at x_{0}, which lies in the path of integration. So I does not exist. However, we could integrate "symmetrically", hoping that the diverging term from one side "cancels" with the one from the other. This is the gist of the Cauchy Principal Value:

$$
\mathcal{P} \int_{\mathbb{R}} \mathrm{d} x \frac{f(x)}{x-x_{0}}=\lim _{\delta \rightarrow 0}\left[\int_{-\infty}^{x_{0}-\delta} \frac{f(x)}{x-x_{0}} \mathrm{~d} x+\int_{x_{0}+\delta}^{\infty} \frac{f(x)}{x-x_{0}} \mathrm{~d} x\right]
$$

1. Symmetrical integration

Cauchy Principal Value

For example, this works for $f(x)=1 / x^{2}$ and $x_{0}=0$:

$$
\mathcal{P} \int_{\mathbb{R}} \frac{1}{x^{3}} \mathrm{~d} x=\lim _{\delta \rightarrow 0}\left[\int_{-\infty}^{-\delta} \frac{1}{x^{3}}+\int_{\delta}^{\infty} \frac{1}{x^{3}}\right]=\lim _{(a)} 0=0
$$

where in (a) we used the symmetry of $1 / x^{3}$ to cancel the two integrals.

Figure (6.2) - Integration path for an indented integral
Another possibility is to deform the integration path from the real line to a curve γ_{ϵ} that avoids the singularity, as can be seen in the bottom half of fig. 6.2.].
2. Path deformation Doing so produces a different result from the one of the Cauchy Principal Value, because now we are accounting for half a small circle $C_{\epsilon}=\left\{z=x_{0}+\epsilon e^{i \theta}: \theta \in\right.$ $[-\pi, 0]\}$ around the singularity:

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} \int_{\gamma_{\epsilon}} \frac{f(x)}{x-x_{0}} \mathrm{~d} x=\mathcal{P} \int_{\mathbb{R}} \frac{f(x)}{x-x_{0}} \mathrm{~d} x+\lim _{\epsilon \rightarrow 0} \int_{C_{\epsilon}} \frac{f(x)}{x-x_{0}} \mathrm{~d} x \tag{6.25}
\end{equation*}
$$

And the difference amounts to:
$\lim _{\epsilon \rightarrow 0} \int_{C_{\epsilon}} \mathrm{d} z \frac{f(z)}{z-a}=\lim _{\epsilon \rightarrow 0} \int_{-\pi}^{0} \mathrm{~d} \theta\left(i \epsilon e^{i \theta}\right) \frac{f\left(x_{0}+\epsilon e^{i \theta}\right)}{\epsilon e^{i \theta}}=i \lim _{\epsilon \rightarrow 0} \mathrm{~d} \theta f\left(x_{0}+\epsilon e^{i \theta}\right)=i \pi f\left(x_{0}\right)$
where in (a) we changed variables using the parameterization of C_{ϵ}.
Integrating over γ_{ϵ} that passes to the right of the singularity is equivalent to not deforming at all the integration path and moving the singularity "up" instead,
3. Moving the singularity as can be seen in fig. [6.2. This is the idea of the prescription $\pm \boldsymbol{i \epsilon}$:

$$
\int_{\mathbb{R}} \mathrm{d} x \frac{f(x)}{x-\left(x_{0}+i \epsilon\right)}=\int_{\gamma_{\epsilon}} \mathrm{d} x \frac{f(x)}{x-x_{0}}=\mathcal{P} \int_{\mathbb{R}} \frac{f(x)}{x-x_{0}} \mathrm{~d} x+i \pi f\left(x_{0}\right)
$$

Equivalently, it is possible to show that integrating over a path γ_{ϵ}^{-}that passes to the left of the singularity equates to moving the singularity "down":

$$
\int_{\mathbb{R}} \mathrm{d} x \frac{f(x)}{x-\left(x_{0}-i \epsilon\right)}=\int_{\gamma_{\epsilon}^{-}} \mathrm{d} x \frac{f(x)}{x-x_{0}}=\mathcal{P} \int_{\mathbb{R}} \frac{f(x)}{x-x_{0}} \mathrm{~d} x-i \pi f\left(x_{0}\right)
$$

We can summarize these facts as an equation between operators:

$$
\lim _{\epsilon \rightarrow 0} \frac{1}{x-x_{0} \mp i \epsilon}=\mathcal{P} \frac{1}{x-x_{0}} \mp i \pi \delta\left(x-x_{0}\right)
$$

Limit Distributions

In our previous discussion of Brownian motion, we concluded that the sum of many independent gaussian increments converges, in distribution, to a gaussian.
But what would happen if we consider increments that are still independent and identically distributed, but not gaussian? How would the distribution for their sum change, in the limit of many steps? Does it even have a unique form?

In this lesson, we will see that the sum of a general class of i.i.d. random variables - the ones for which it makes sense to compute mean and variance -, after some proper normalization, tends to a normal distribution. This is the gist of the Central Limit Theorem (CLT).
Moreover, even the distributions without finite mean or variance, for which the CLT does not apply, can still produce sums that converge to some distribution (not gaussian), which we call a stable distribution. This observation will allow us to study generalizations of Brownian motion, and in particular the phenomena of subdiffusion and superdiffusion, which have interesting physical applications.

So, we will start by proving the CLT, and then generalize the diffusion equation and study it in some particular cases.

7.1 Characteristic functions

To prove the CLT, we first need a way to efficiently compute the pdf of a sum of i.i.d. random variables.
Let's start with the case of just two independent variables X^{\prime} and $X^{\prime \prime}$, with distributions $p_{1}\left(x^{\prime}\right)$ and $p_{2}\left(x^{\prime \prime}\right)$. Let $X=X^{\prime}+X^{\prime \prime}=f\left(X, X^{\prime}\right)$ be their sum, with distribution $p(x)$.
Applying the rule for a change of random variables, we get:

$$
\begin{equation*}
p(x)=\left\langle\delta\left(x-f\left(x^{\prime}, x^{\prime \prime}\right)\right)\right\rangle_{p_{1}, p_{2}}=\int_{\mathbb{R}} \mathrm{d} x^{\prime} \int_{\mathbb{R}} \mathrm{d} x^{\prime \prime} p_{1}\left(x^{\prime}\right) p_{2}\left(x^{\prime \prime}\right) \delta\left(x-x^{\prime}-x^{\prime \prime}\right) \tag{7.1}
\end{equation*}
$$

Sum of 2
independent
random variables
where we used the independence of X^{\prime} and $X^{\prime \prime}$ to factorize their joint pdf. By symmetry, $\delta\left(x-x^{\prime}-x^{\prime \prime}\right)=\delta\left(x^{\prime}+x^{\prime \prime}-x\right)=\delta\left(x^{\prime \prime}-\left(x-x^{\prime}\right)\right)$. Then, integrating over $x^{\prime \prime}$ to remove the δ, we get:

$$
=\int_{\mathbb{R}} \mathrm{d} x^{\prime} \int_{\mathbb{R}} \mathrm{d} x^{\prime \prime} p_{1}\left(x^{\prime}\right) p_{2}\left(x^{\prime \prime}\right) \delta\left(x^{\prime \prime}-\left(x-x^{\prime}\right)\right)=\int_{\mathbb{R}} \mathrm{d} x^{\prime} p_{1}\left(x^{\prime}\right) p_{2}\left(x-x^{\prime}\right)
$$

which is the convolution of the distributions p_{1} and p_{2}.
Convolutions are best computed in the Fourier domain, where they reduce to multiplications:

$$
\begin{equation*}
\mathcal{F}\left[\int_{\mathbb{R}} \mathrm{d} x^{\prime} p_{1}\left(x^{\prime}\right) p_{2}\left(x-x^{\prime}\right)\right](k)=\mathcal{F}\left[p_{1}\right](k) \cdot \mathcal{F}\left[p_{2}\right](k) \tag{7.2}
\end{equation*}
$$

The Fourier transform ${ }^{\mathbb{W}}$ of a pdf $p(x)$ is called the characteristic function of the corresponding random variable X, and denoted with $\varphi(k)$:

$$
\varphi(k) \equiv \mathcal{F}[p(x)](k)=\int_{\mathbb{R}} \mathrm{d} x e^{i k x} p(x)=\left\langle e^{i k x}\right\rangle_{p(x)}
$$

Note that $\varphi(k)$ is the moment-generating function M_{X} of X, evaluated at a complex argument:

$$
M_{X}(k)=\left\langle e^{k x}\right\rangle \Rightarrow \varphi(k)=M_{X}(i k)
$$

This means that we can use $\varphi(k)$ to compute moments of X. Note that:

$$
e^{i k x}=1+i k x-\frac{1}{2} k^{2} x^{2}+\cdots=\sum_{n=0}^{+\infty} \frac{(i k x)^{n}}{n!}
$$

Characteristic function

Moments from characteristic functions

And so:

$$
\begin{equation*}
\varphi(k)=\left\langle e^{i k x}\right\rangle=\sum_{n=0}^{\infty} \frac{i^{n} k^{n}}{n!}\left\langle x^{n}\right\rangle \tag{7.3}
\end{equation*}
$$

Then, by differentiating n times and evaluating at 0 , all terms of order $\neq n$ vanish, leaving only a multiple of $\left\langle x^{n}\right\rangle$:

$$
\begin{aligned}
\frac{\partial \varphi(k)}{\partial k^{n}}=\underbrace{0}_{\text {First n terms }}+i^{n} \frac{n!}{n!}\left\langle x^{n}\right\rangle+\sum_{j=n+1}^{+\infty} \frac{n!}{j!} i^{j} k^{j-n}\left\langle x^{j}\right\rangle= \\
\left.\frac{\partial \varphi(k)}{\partial k^{n}}\right|_{k=0}=i^{n}\left\langle x^{n}\right\rangle \Rightarrow\left\langle x^{n}\right\rangle=\left.\frac{1}{i^{n}}\left(-i^{2}\right)^{n} \frac{\partial}{\partial k^{n}} \varphi(k)\right|_{k=0}=\left.(-i)^{n} \frac{\partial}{\partial k^{n}} \varphi(k)\right|_{k=0}
\end{aligned}
$$

Proof of convolution property. Start from the left side of ([27). By repeating backwards the steps from ($\mathbb{\pi}$) we have:

$$
\begin{aligned}
& \mathcal{F}\left[\int_{\mathbb{R}} \mathrm{d} x^{\prime} p_{1}\left(x^{\prime}\right) p_{2}\left(x-x^{\prime}\right)\right](k)=\mathcal{F}\left[\int_{\mathbb{R}} \mathrm{d} x^{\prime} \int_{\mathbb{R}} \mathrm{d} x^{\prime \prime} \delta\left(x-x^{\prime}-x^{\prime \prime}\right)\right](k)= \\
& =\int_{\mathbb{R}} \mathrm{d} x e^{i k x} \int_{\mathbb{R}} \mathrm{d} x^{\prime} \int_{\mathbb{R}} \mathrm{d} x^{\prime \prime} p_{1}\left(x^{\prime}\right) p_{2}\left(x^{\prime \prime}\right) \delta\left(x-x^{\prime}-x^{\prime \prime}\right)=
\end{aligned}
$$

[^7]\[

$$
\begin{aligned}
& =\int_{\mathbb{R}} \mathrm{d} x^{\prime} \int_{\mathbb{R}} \mathrm{d} x^{\prime \prime} e^{i k\left(x^{\prime}+x^{\prime \prime}\right)} p_{1}\left(x^{\prime}\right) p_{2}\left(x^{\prime \prime}\right)=\int_{\mathbb{R}} \mathrm{d} x^{\prime} e^{i k x^{\prime}} \int_{\mathbb{R}} \mathrm{d} x^{\prime \prime} e^{i k x^{\prime \prime}}= \\
& =\mathcal{F}\left[p_{1}\right](k) \cdot \mathcal{F}\left[p_{2}\right](k)
\end{aligned}
$$
\]

7.2 Central Limit Theorem

We are finally ready to prove the full Central Limit Theorem.
Consider a set of n independent and identically distributed (i.i.d.) random variables $\boldsymbol{X}=\left\{X_{1}, \ldots, X_{n}\right\}$, each according to a distribution $f(x)$ with finite mean μ and variance σ^{2}. We want to prove that their sum $S_{n}=\sum_{i=1}^{n} x_{i}$, when properly translated/scaled, converges in distribution to a gaussian.

More precisely, the "proper translation/scaling" means considering the random variable Y_{n} defined by:

$$
\begin{equation*}
Y_{n} \equiv \frac{S_{n}-n \mu}{\sqrt{n} \sigma} \tag{7.4}
\end{equation*}
$$

Note that, by additivity of mean and variance:

$$
\begin{aligned}
\left\langle S_{n}\right\rangle & =\left\langle x_{1}\right\rangle+\cdots+\left\langle x_{n}\right\rangle=n \mu \\
\operatorname{Var}\left(S_{n}\right) & =\operatorname{Var}\left(x_{1}\right)+\cdots+\operatorname{Var}\left(x_{n}\right)=n \sigma^{2}
\end{aligned}
$$

And so:

$$
\left\langle Y_{n}\right\rangle=\frac{\left\langle S_{n}\right\rangle-n \mu}{\sqrt{n} \sigma}=0 \quad \operatorname{Var}\left(Y_{n}\right)=\frac{\operatorname{Var}\left(S_{n}\right)}{n \sigma^{2}}=\frac{n \sigma^{2}}{n \sigma^{2}}=1
$$

where we used $\operatorname{Var}(x+a)=\operatorname{Var}(x)$ and $\operatorname{Var}(b x)=b^{2} \operatorname{Var}(x)$ where $b \in \mathbb{R}$ is a constant. So, we expect Y_{n} to converge in distribution to a standard gaussian (0 mean and unit variance).
To compute the distribution of Y_{n} we apply the rule for changing random variables:
$Y_{n} \sim g(y)=\mathbb{P}\left(Y_{n}(\boldsymbol{x})=y \mid x_{i} \sim f(x) \forall i\right)=\left\langle\delta\left(y-Y_{n}(x)\right)\right\rangle_{\boldsymbol{x} \sim[f(x)]^{n}}=$
We rewrite the δ as a Fourier transform $\delta(x)=\mathcal{F}^{-1}[1]=(2 \pi)^{-1} \int_{\mathbb{R}} \mathrm{d} k e^{-i k x}$, and then insert the definition for Y_{n} :

$$
=\left\langle\frac{1}{2 \pi} \int_{\mathbb{R}} \mathrm{d} \alpha e^{-i \alpha\left(y-Y_{n}(\boldsymbol{x})\right)}\right\rangle \underset{(\mathbb{K} \mathbb{L})}{=}\left\langle\frac{1}{2 \pi} \int_{\mathbb{R}} \mathrm{d} \alpha \exp \left[-i \alpha y+i \alpha\left(\frac{\sum_{i=1}^{n} x_{i}-n \mu}{\sqrt{n} \sigma}\right)\right]\right\rangle=
$$

By linearity we can bring the average inside the integral, which is then factorized as the X_{i} are independent:

$$
=\frac{1}{2 \pi} \int_{\mathbb{R}} \mathrm{d} \alpha \exp (-i \alpha y) \prod_{i=1}^{n}\left\langle\exp \left(\frac{i \alpha x_{i}}{\sqrt{n} \sigma}\right)\right\rangle \exp \left(-\frac{i \alpha n \mu}{\sqrt{n} \sigma}\right)=
$$

Finally we write explicitly the average:

$$
=\frac{1}{2 \pi} \int_{\mathbb{R}} \mathrm{d} \alpha \exp \left(-i \alpha\left[y+\frac{n \mu}{\sqrt{n} \sigma}\right]\right) \prod_{i=1}^{n} \int_{\mathbb{R}} \mathrm{d} x_{i} \exp \left(\frac{i \alpha x_{i}}{\sqrt{n} \sigma}\right) p\left(x_{i}\right)=
$$

And then, as the X_{i} are identically distributed, the product becomes the power of the characteristic function of any of the n variables:

$$
\begin{equation*}
=\frac{1}{2 \pi} \int_{\mathbb{R}} \mathrm{d} \alpha \exp \left(-i \alpha\left[y+\frac{n \mu}{\sqrt{n} \sigma}\right]\right)[\underbrace{\int_{\mathbb{R}} \mathrm{d} x_{1} p\left(x_{1}\right) \exp \left(\frac{i \alpha x_{1}}{\sqrt{n} \sigma}\right)}_{\varphi_{1}\left(\frac{\alpha}{\sqrt{n} \sigma}\right)}]^{n} \tag{7.5}
\end{equation*}
$$

As all the n variables are effectively the same, we will drop the subscript in the following steps.

The idea is now to expand φ as in (\$.3), bring all the terms inside the same exponential, and show that it reduces to a gaussian after integration. So:

$$
\varphi\left(k=\frac{\alpha}{\sqrt{n} \sigma}\right)=1+i \underbrace{\langle x\rangle}_{\mu} \frac{\alpha}{\sqrt{n} \sigma}-\left\langle x^{2}\right\rangle \frac{\alpha^{2}}{2 n \sigma^{2}}+o\left(n^{-3 / 2}\right)
$$

This expansion only makes sense if μ and σ are finite. Actually, we need to require only σ to be finite, as then μ is finite by consequence of the Cauchy Schwarz Inequality. To proceed, recall that $\sigma^{2}=\left\langle x^{2}\right\rangle-\langle x\rangle^{2}=\left\langle x^{2}\right\rangle-\mu^{2} \Rightarrow$ $\left\langle x^{2}\right\rangle=\sigma^{2}+\mu^{2}$. Substituting in the previous expression:

$$
\begin{equation*}
=1+i \mu \frac{\alpha}{\sqrt{n} \sigma}-\frac{\alpha^{2}}{2 n}-\frac{\alpha^{2} \mu^{2}}{2 n \sigma^{2}}+o\left(n^{-3 / 2}\right)= \tag{7.6}
\end{equation*}
$$

If we ignore all the higher order terms (as in the limit $n \rightarrow \infty$), (世.6) is the expansion of the following exponential, as the only non-negligible terms are the three highlighted above:

$$
\begin{equation*}
=\exp \left(\frac{i \alpha \mu}{\sqrt{n} \sigma}-\frac{\alpha^{2}}{2 n}+o\left(n^{-3 / 2}\right)\right) \tag{7.7}
\end{equation*}
$$

We then substitute ($\mathbb{L D}$) in ($\mathbb{L T}$) and compute the n-th power:

$$
\begin{aligned}
\mathbb{P}\left(Y_{n}(\boldsymbol{x})=y\right) & =\frac{1}{2 \pi} \int_{\mathbb{R}} \mathrm{d} \alpha \exp \left(-i \alpha\left[y+\frac{n \mu}{\sqrt{n} \sigma}\right]\right) \exp \left(\frac{i \alpha \mu n}{\sqrt{n} \sigma}-\frac{\alpha^{2} n}{2 n}+o\left(n^{-1 / 2}\right)\right)= \\
& =\frac{1}{2 \pi} \int_{\mathbb{R}} \mathrm{d} \alpha \exp \left(-i \alpha y-\frac{i \alpha n \not \mu}{\sqrt{n} \sigma}+\frac{i \alpha \mu \nsim}{\sqrt{n} \sigma}-\frac{\alpha^{2}}{2}+o\left(n^{-1 / 2}\right)\right)= \\
& =\frac{1}{2 \pi} \int_{\mathbb{R}} \mathrm{d} \alpha \exp \left(-\frac{\alpha^{2}}{2}-i \alpha y+o\left(n^{-1 / 2}\right)\right)=
\end{aligned}
$$

This is a gaussian integral, which evaluates, in the large n limit, to:

$$
\underset{n \rightarrow \infty}{=} \frac{1}{2 \pi} \sqrt{\frac{\pi}{a}} \exp \left(\frac{b^{2}}{4 a}\right)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{y^{2}}{2}\right)
$$

with $a=1 / 2$ and $b=-i y$. The final result is the standard gaussian, as desired.
So, we showed that if $X_{i} \sim p(x)$ with finite variance σ, then the sum of n i.i.d. random variables X_{i} converges in distribution to a gaussian:

$$
\lim _{n \rightarrow \infty} Y_{n} \sim \mathcal{N}(0,1)
$$

By undoing the normalization, we have:

$$
\lim _{n \rightarrow \infty} S_{n} \sim \mathcal{N}\left(n \mu, n \sigma^{2}\right)
$$

In particular, the sample mean distributes normally around the distribution mean μ :

$$
\lim _{n \rightarrow \infty} \frac{1}{n} S_{n} \mathcal{N}\left(\mu, \frac{\sigma^{2}}{n}\right)
$$

7.3 Subdiffusion and superdiffusion

Recall that, for Brownian motion, the final distribution for a particle starting in $x_{0}=0$ at $t_{0}=0$ is:

$$
W(x, t)=\frac{1}{\sqrt{4 \pi D t}} \exp \left(-\frac{x^{2}}{4 D t}\right)
$$

Its variance, which physically represents how quickly the initial distribution "spreads", is linear in time:

$$
\left\langle x^{2}(t)\right\rangle=2 D t
$$

This is indeed a good model for many physical phenomena. However, there are cases of anomalous diffusion, in which the "spreading velocity" scales differently - as can be seen in fig. [.]. For example:

- Subdiffusion. Sometimes particles tend to persist in the same state for extended periods of time - meaning that the waiting time between jumps has a distribution with a "long tail", such as $t^{-1-\alpha}$ with $\alpha \in$ $(0,1)$. This happens, for example, in the transport of charge carriers in semiconductors, and monomers in polymer diffusion. Their paths satisfy:

$$
\left\langle x^{2}(t)\right\rangle=2 D_{\zeta} t^{\zeta} \quad 0<\zeta<1
$$

- Superdiffusion. Here particles make jumps of large size with nonnegligible frequency, meaning that the distribution of displacements Δx has a "long tail", proportional to $|\Delta x|^{-1-\mu}$ for Δx sufficiently large, with $\mu \in(0,2)$. If large jumps happen almost instantaneously, we talk about "flights", while if they happen with a fixed maximum velocity, they are "walks". In this case we have:

$$
\left\langle x^{2}(t)\right\rangle=2 D_{\zeta} t^{\zeta} \quad \zeta>1
$$

7.4 Levy Flights

Anomalous diffusion can be even more complicated, involving memory and long-range correlations. In our discussion, we will limit ourselves to a case of

(a) - Brownian motion.

(b) - Levy flight (superdiffusion). Note how jumps are frequently of very large size.

Figure (7.1) - Comparison between normal diffusion (a) and anomalous diffusion (b).
superdiffusion - the Levy flights - that can be described with a generalized diffusion equation:

$$
\begin{cases}\partial_{t} W(x, t)=D_{\mu} \frac{\partial}{\partial|x|^{\mu}} W(x, t) & 0<\mu<2 \\ W(x, 0)=\rho(x) & \end{cases}
$$

The meaning of the fractional derivative can be understood in Fourier space, as a generalization of the transform for a derivative:

$$
\left.\partial_{t} \tilde{W}(k, t)\right)=-D_{\mu}|k|^{\mu} \tilde{W}(k, t)
$$

Note that this is equivalent to:

Meaning that the function $\tilde{f}(k)$ is constant in time. Rearranging:

$$
\tilde{f}(k) \equiv \exp \left(D_{\mu}|k|^{\mu} t\right) \tilde{W}(k, t) \Rightarrow \tilde{W}(k, t)=\tilde{f}(k) e^{-D_{\mu}|k|^{\mu} t}
$$

As $\tilde{f}(k)$ does not depend on time, we can compute it at any instant, for example at $t=0$, where $\tilde{f}(k)=\tilde{W}(k, 0)=\tilde{\rho}(k)$, and so:

$$
\tilde{W}(k, t)=\tilde{\rho}(k) \underbrace{e^{-D_{\mu}|k|^{\mu} t}}_{\tilde{W}\left(k, t \mid k_{0}, 0\right)}
$$

We interpret the exponential as the Fourier transform of a propagator. Multiplication in the Fourier domain corresponds to convolution in the space domain, and so we recover the usual form for the solution of the diffusion problem:

$$
W(x, t)=\rho\left(x_{0}\right) * W\left(x, t \mid x_{0}, 0\right)
$$

And for $\mu=2$ we know that:

$$
W(x, t)=\int_{\mathbb{R}} \mathrm{d} x_{0} \rho\left(x_{0}\right) \underbrace{\frac{1}{4 D t} \exp \left(-\frac{\left(x-x_{0}\right)^{2}}{4 D t}\right)}_{W\left(x, t \mid x_{0}, 0\right)}
$$

For a general $\mu \in(0,2)$, however, it is difficult to find analytically $W\left(x, t \mid x_{0}, 0\right)$, except for a few cases. One of them is for $\mu=1$, where $W(x, t)$ becomes a Cauchy distribution, and we talk about Cauchy random flights:

$$
\begin{aligned}
\tilde{W}_{C}(k, t)=\tilde{\rho}(k) e^{-D_{1}|k| t} \Rightarrow W_{C}(x, t \mid 0,0) & =\frac{1}{2 \pi} \int_{\mathbb{R}} \mathrm{d} k \exp \left(-x^{*}(t)|k|+i k x\right)= \\
& =\frac{1}{\pi} \int_{0}^{\infty} \mathrm{d} k e^{-x^{*}(t) k} \cos (k x)= \\
& =\frac{1}{\pi x^{*}(t)} \frac{1}{1+\left(\frac{x}{x^{*}(t)}\right)^{2}}
\end{aligned}
$$

where we set $\rho(x)=\delta(x)$, and $x^{*}(t)=D_{1} t$, representing the typical length scale. See the exercises for a full derivation.

Note that, in the case of Levy flights, the displacements do not follow a distribution with finite variance, as it has a "long tail". Thus, the CLT theorem does not apply, and in fact the sum of many displacements is not normally distributed - for example, in the $\mu=1$ case it is a Cauchy pdf.

However, the Cauchy pdf has a key property in common with the gaussian: it is a stable distribution. This means that a sum of two Cauchy random variables follows again a Cauchy pdf, up to scaling and translation.

We argue (omitting the proof) that this property holds for all the distributions in the general case $\mu \in(0,2)$, which are called Lévy alpha-stable distributions. In particular, these stable distributions behave like "attractors" for the sums of i.i.d. random variables with certain distributions, exactly like the gaussian behaves for all random variables with finite variance. This leads to a generalization of the central limit theorem, for which the sum of a number of random variables with symmetric distributions having power-law tails (Paretian tails), decreasing as $|x|^{-\alpha-1}$ for large x, with $\alpha \in(0,2]$ (and therefore with infinite variance), will tend to a Lévy stable distribution as the number of summands grows ${ }^{\text {D }}$.

[^8]
Part III

Gradenigo's Lectures

Analytical index

B		Probability	[4]
Brownian motion	\square		
		H	
C		Heaviside function	[32]
Cauchy Principal Value	14.3		
Correlator	27	1	
D		Integral	
		Fresnel	[3.9]
Diffusion solution on \mathbb{R}	[23]		
Dirac Delta	153	M	
E		Markov's Processes	13
Equation		Method	
Continuity	回	Gelfand-Yoglom	47
Diffusion	[10]		
Fokker-Planck	60	0	
Langevin	61	Overdamped limit	62
ESCK	[2]	P	
F		Prescription $i \epsilon$	[144
Fick's Law	[1]	Probability space	32
Flux	51	Propagator	[6]
Fourier integral transform	[2]	Schrodinger equation	[4]
Function			
Characteristic	446	T	
		Translational invariance	[2]
G			
Generating function		W	
Moment	[1]	Wiener measure	[3]

[^0]: ${ }^{1}$ هNot to be confused with the moment generating function of a real-valued random variable X (i.e., not discrete), which is defined as $\mathbb{E}\left(e^{t X}\right)$, with $t \in \mathbb{R}$

[^1]: ${ }^{2} \boxtimes$ Almost: here we deal with the probability distribution, while in (几.6) we have a physical density ρ_{n}. Effectively the two differ only by a normalization factor, as previously noted

[^2]: ${ }^{1} \boxtimes \mathrm{~A} \sigma$-algebra on a set X is a collection Σ of subsets of X that includes X itself, is closed under complement, and is closed under countable unions

[^3]: ${ }^{2} \boxtimes$ The same result can be proved without this assumption, but with a much more heavy notation.

[^4]: ${ }^{1} \Delta$ This is a stronger requirement than the Markovian property. In fact, independent increments imply a Markov process, but the converse is not true. See http://statweb. stanford.edu/~adembo/math-136/Markov_note.pdf

[^5]: ${ }^{2}$ ■See WWW2.math.uconn.edu/~gordina/NelsonAaronHonorsThesis2012.pdf for a refresher

[^6]: ${ }^{1}$ هMore precisely, the Fourier transform is an automorphism of \mathcal{S}, i.e. it is linear and invertible

[^7]: ${ }^{1}$ 四Here we are using a slightly different convention for the Fourier transform compared to sec. [.], where both the $-\operatorname{sign}$ and $(2 \pi)^{-1}$ normalization factor are contained in the inverse transform.

[^8]: ${ }^{2}$ هB.V. Gnedenko, A.N. Kolmogorov. Limit distributions for sums of independent random variables, Cambridge, Addison-Wesley 1954 https://books.google.com/books/ about/Limit_distributions_for_sums_of_independ.html?id=rYsZAQAAIAAJ\&redir_ esc-y
 See Theorem 5 in Chapter 7, Section 35, page 181.

