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Chapter 1

The Diffusion problem

(Lesson 1 of
3/10/2019)
Compiled: October
13, 2020

1.1 Introduction
In classical mechanics, if we know all forces F that act on a certain particle,
along with its initial condition (e.g. position x(t = 0) and velocity v(t = 0)),
we can compute its trajectory x(t) ∀t by integrating the equations of motion.
This is indeed true even for ensembles of particles - but it becomes very imprac-
tical for macroscopic objects. For example, a drop of water contains something
in the order of 1023 molecules, and so to completely describe its motion it is
needed to integrate six times that many equations (3 for position, 3 for velocity
for each single particle). Even if we had the computational capacity to do so, it
would not be possible to know the necessary initial conditions with the required
precision.
On the other hand, it is not very interesting to solve this kind of problem, The goal of

statistical
mechanics

because one could not possibly understand the intricacy of this motion, and so
the task doesn’t give much insight in the relevant physics. In fact, often we are
most interested in the macroscopic properties of the object. That is the aim of
statistical mechanics.

1.2 Diffusion: a macroscopic approach
In this course, we will examine one of the most important problems in statistical
mechanics: the diffusion problem. Take a drop of ink immersed in water and The diffusion

problemit will mix over time, apply heat to the edge of a bar and it will propagate to
the entire thing. Spray a bit of perfume and it will spread over the entire
room, place a sugar cube in a cub of tea and it will dissolve without the need
of stirring it. The diffusion mechanism is key to many aspects of everyday
life, and it is yet one of the most striking direct consequences of the invisible
microscopical motion of molecules. Thus, studying diffusion can provide a link
between these two very different worlds.
The first advances in the analysis of the diffusion motion were made in the 19th
century, and were all based on a macroscopic approach. For example Fick’s Law,
that roughly motivates diffusion as the motion of fluids from regions of high
concentrations to regions of low concentration, dates back to 1856.
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The link with the microscopical world, however, was made only in 1905, in a
groundbreaking article on Brownian motion published by Einstein - which also
served as a striking proof of the atomic nature of matter.
Brownian motion is the erratic motion exhibited by granules of fine powder Brownian motion
when suspended in still water. It was already known that this was due to
physical reasons, as repeated experiments ruled out every possible explanation
requiring living organism.
Einstein proposed a solution based on molecules, and statistics. If we assume
that water is composed of particles, the single grains of powder behave like large
objects hit by smaller particles. The number of hits on each side is almost the
same, so the total force which acts on the large object is almost 0. However,
if the grains are sufficiently small, the slight unbalance in the number of colli-
sions can produce a significant acceleration, leading to a kind of random motion.

For example, let’s consider a spherical grain submerged in the liquid. Let’s call Motion due to
statistical
fluctuations

U the upper hemisphere, and L the lower one. Denote with N̄c the average
number of collisions per second per surface unit. Then the number of hits on
U is almost the same to that of L, up to a certain (binomial) error:

N̄c ·U = N̄c ·L±
»
N̄c

Thus, the relative error is given by:√
N̄c
N̄c

=
1√
N̄c

Note that if the grains are small, N̄c will be small too, and so the relative error
will be high.

1.2.1 The diffusion equation
Let’s try to give a quantitative description of this kind of motion. We start
by specifying the initial conditions as a starting distribution, i.e. a function
ρ : R

3 × R → R such that ρ(r, t) is the probability to find a particle in position
r at the instant t. Starting

distribution
1. For a discrete, point particle we have ρ(r, 0) = δ3(r − r0), i.e. the particle

is at the starting position with certainty.

2. For some quantity of matter (for example a droplet of ink), we have some
uniform initial density, such as:

ρ(r, 0) = ρ0(r) =

ρ̄0 |r | < R

0 otherwise

Note that ρ(r, t) is a probability density, and not a usual density of matter.
The difference is merely of normalization. If N is the total number of particles
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in ink, then Nρ(r, t) is the density of ink particles at the specific position r

and time t, which will be denoted with ρn(r, t):

1 =
∫
V

d3r ρ(r, t)

N =
∫
V

d3r Nρ(r, t)︸ ︷︷ ︸
density at r

The meaning of a point-wise density can be understood as a limit: Point-wise density

Nρ(r, t) = density at r, time t = lim
∆V ↓0

∆N
∆V

Consider a patch of liquid of volume ∆V , that contains a number ∆N of ink
particles. By letting it shrink “enough”, ∆N/∆V reaches a constant value -
that is the density in a macroscopically small patch of liquid. Of course, ∆V
cannot reach 0, because in that case ∆N = 0. So, the limit is to be interpreted
in a macroscopical sense (∆V is macroscopically vanishing, ∆V ↓ 0) and not in
a mathematical sense (∆V → 0).

Figure (1.1) – Density (ratio ∆N/∆V )
as function of patch size ∆V for a region
centered around the ink distribution ρ0
(|r| < R at t = 0). If ∆V is sufficiently
large, the patch comprises also some
space without ink, and so the density is
lower.

Figure (1.2) – Density for a patch
centered on a point |r| > R. Here the
density is higher for high ∆V , as in these
cases the patch comprises also the ink’s
initial distribution (ρ0).

We now want to compute ρ(r, t) for t > 0, given ρ(r, 0).
We start by considering the continuity equation. The idea is that particles do Continuity

equationnot move by “jumping” between far positions, but travel in a continuous way.

Consider a box of volume V , that contains a fixed number N of particles, with
(matter) density:

Nρ(r, t) ≡ ρn(r, t)

Let A be a patch of V , with boundary ∂A. The number of particles inside A
at time t is given by the integral of the density:∫

A
d3r ρn(r, t) = NA(t) (1.1)
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And at a later time t+ ∆t:∫
A

d3r ρn(r, t+ ∆t) = NA(t+ ∆t) (1.2)

Let’s introduce a new quantity, the current j(r, t) at position r and time t.
Consider a small area dS centered on a point r, with n̂(r) ⊥ dS. The number
of particles flowing through dS during an interval ∆t is defined as:

∆tj(r, t) · n̂(r) dS

and this can be used to compute j.
For example, for a uniform flow of particles with density ρn and velocity v, the
current is j = ρnv.

Returning to the problem, we note that the change of NA over time is explained
by the flux of particles through the closed boundary ∂A, i.e. the surface
integral of the current j:

NA(t+ ∆t) −NA(t) = −
∫
∂A

dS n̂ · j(r, t)∆t (1.3)

Here we define, by convention, the sign of j(r, t) to be positive if the current
is outward, that is from A to V \A. So, a positive current means that particles
are leaving A, and this explains the − in (1.3).

Substituting (1.1) and (1.2) in (1.3) we arrive at:∫
A

d3r
1

∆t
[ρn(r, t+ ∆t) − ρn(r, t)] = −

∫
∂A

dS (r)j(r, t) · n̂(r)��∆t

Taking the limit ∆t → 0:∫
A

d3r
∂

∂t
ρn(r, t) = −

∫
∂A

dS n̂ · j(r, t) =
(a)

−
∫
A

d3r∇ · j(r, t)

where in (a) we applied the Gauss divergence theorem.
Rearranging: ∫

A
d3r[ρ̇n(r, t) + ∇ · j(r, t)] = 0

This is the continuity equation in integral form. Note that it holds for any Integral form
choice of volume A ⊆ R

3. So, knowing that j and ρ̇ are continuous functions,
by the fundamental theorem of calculus we know that the same relation must
hold everywhere for the integrand, meaning that:

ρ̇n(r, t) + ∇ · j(r, t) = 0 ∀r, ∀t (1.4)

That is the continuity equation in differential form . Differential form

Now we need a formula to compute the current j(r, t) produced by the diffusion
motion. If there are no other fields (EM, gravity, etc.), but we still observe a
non-zero j, where could it possibly be from?
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The only other relevant physical vector in this situation, i.e. not depending on
an arbitrary choice of reference frame, is the “spatial” rate of change of density,
i.e. its gradient ∇ρn. In fact, it is observed that particles tend to move opposite
to that gradient - from regions where there are more particles to regions where
there are less. This can be summarized by Fick’s Law: Fick’s Law

j(r, t) = −D∇ρn(r, t) (1.5)

Of course, there could be some other terms in this expression:

j(r, t) = −D∇ρn(r, t) +C∇(∇ρn) + . . .

However, by dimensional analysis, ∂kxρn ∼ ρn/L
k, where L is the macroscopic

dimension of the container. So, the higher order terms can be considered
negligible.
Substituting (1.5) in (1.4) we arrive finally at the diffusion equation: Diffusion Equation

ρ̇n(r, t) = ∇(D · ∇ρn(r, t)) (1.6)

Knowing the initial density ρn(r, 0) and some macroscopical details for the
fluids (all contained in the diffusion parameter D), we can now compute the
density after a small interval ∆t. For example, we can start by expanding
ρn(r, ∆t) around ∆t = 0:

ρn(r, ∆t) = ρn(r, 0) + ∆tρ̇n(r, 0) +O(∆t2)

Ignoring the higher order terms, we can use (1.6) and compute ρn(r, ∆t). This
is the gist of the Euler algorithm for numerically approximating differential
equations.

This may be more or less doable depending on the form of D, that can depend
on both r and t. The r-dependence is characteristic of problems that are not
translational invariant (e.g. a crystal). In fact, if D does not depend on r, Translational

invariancethe diffusion equation becomes:

ρ̇n(r, t) = D∇2ρn(r, t) (1.7)

Because the only spatial derivatives are of second order, then if ρ(r, t) is a
solution, also ρ(r + R, t) is a solution, for any choice of R.

Note that (1.7) is quite similar to the Schrödinger equation for a free particle: Quantum
correspondence

−i ∂tψ = +
h̄

2m
∇2 ψ

The yellow term is analogous to D, and the only difference is given by the green
term. This can be resolved by a substitution τ = it (passing to “imaginary
time”).
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�� ��Example 1 (Particle diffusing in d = 1):

Consider the simplest case of a single particle moving in one dimension,
with D constant. Let ρ(x, 0) = δ(x), that is consider the particle as being
perfectly localized in x = 0 at the start.
The diffusion equation in d = 1 is:

ρ̇(x, t) = Dρ′′(x, t) (1.8)

The macroscopic quantities of interest are the expected position and velocity,
defined as:

⟨x⟩t =
∫ +∞

−∞
ρ(x, t)x dx d⟨x⟩t

dt
=

∫ +∞

−∞
ρ̇(x, t)x dx

From the normalization condition:∫ +∞

−∞
ρ(x, t)dx = 1

we note that ρ(±∞, t) = 0, and also ρ′(x, t) → 0 for |x| → ∞ (otherwise,
the density would diverge).
These limits allow us to compute the velocity by repeated integration by
parts:

d⟨x⟩t
dt

=
d
dt

∫ +∞

−∞
ρ(x, t)x dx =

∫ +∞

−∞
ρ̇(x, t)x dx =

(1.8)
D

∫ +∞

−∞
ρ′′(x, t)x dx =

= xρ′(x, t)
∣∣∣x=+∞

x=−∞︸ ︷︷ ︸
=0

−
Ådx

dx

ã
ρ(x, t)

∣∣∣x=+∞

x=−∞︸ ︷︷ ︸
=0

+D
∫ +∞

−∞
ρ(x, t)

Ç
d2x

dx2

å
︸ ︷︷ ︸

=0

dx = 0

Note that a similar calculation can be done in the more general case of
computing the expected value of the time derivative of any function f(x):

d
dt

⟨f(x)⟩ = D
∫ ∞

−∞
ρ(x, t)

Ç
d2f(x)

dx2

å
dx (1.9)

We found that the mean velocity is 0, meaning that the mean position must
be constant:

⟨x⟩t = ⟨x⟩t=0 =
∫ +∞

−∞
dxxρ(x, 0) = 0

However, if we consider f(x) = x2, thanks to (1.9) we arrive at:

d
dt

⟨x2⟩t =
∫ +∞

−∞
ρ̇(x, t)x2 dx = D

∫ +∞

−∞
2ρ(x, t) dx

As ρ(x, 0) = δ(x), we have:

d
dt

⟨x2⟩0 = D
∫ +∞

−∞
2δ(x) dx = 2D
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And integrating with respect to t:

⟨x2⟩t = 2Dt+ ⟨x2⟩0 = 2Dt

This allows us to compute the variance of x:

Var(x)t = ⟨x2⟩t − ⟨x⟩2
t = 2Dt

So the width of the distribution of x, which is
√

Var(x), expands ∝
√
Dt.

The dependence on
√
t is a defining characteristic of the diffusion motion.

(Lesson 2 of
07/10/19)
Compiled: October
13, 20201.3 Microscopical approach

Let’s tackle the diffusion problem with a different approach, studying the mo-
tion of single particles rather than changes of densities in an ensemble. The
correspondence with the results obtained in the previous section will be key to
understand the link between the microscopic and the macroscopic - that is the
main goal of statistical mechanics.

Consider a particle moving in d = 1. To simplify the problem, we allow only
discrete steps, both in time and position: Discretization

xi ≡ i · l tn ≡ n · ε (1.10)

In other words, the particle may occupy only points in this defined lattice - and
nothing in between. We also look at the system evolution after discrete time
steps, each of length ϵ.

We already discussed how the diffusion process is intrinsically stochastic, mean-
ing that the motion of grains is given by collisions at the microscopical level,
which are essentially random.
So, suppose that the particle lies in a certain known position at t = 0. After an
instant, the particle may have moved to the right (with probability P+) or to
the left (P−), or have remained in the same position as before (P0). As these
cases cover all the possibilities, it holds:

P+ + P− + P0 = 1

Denote with wi(tn) the probability that the particle lies at position xi at time tn.
The probability for the next timestep is then given by the Master Equation:

Master Equation

wi(tn+1) = P0wi(tn) + P+wi−1(tn) + P−wi+1(tn) (1.11)

In fact, if the particle were at position i at time tn, then it will remain in the
same position with probability P0. Otherwise, it could have been one position
left and moved to the right (P+), or one position right and moved to the left
(P−).
Here we supposed that ε is sufficiently small, so that the particle will only take
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one step at a time.

Stochastic systems for which the state at a certain time depends only on the
state one instant before are called Markov’s Processes. Markov’s Processes

Note that, as the particle cannot “escape from the system”, its probability to Probability
conservationbe in any position is conserved at any given time:

∞∑
i=−∞

wi(tn+1) =
∞∑

i=−∞
wi(tn) = · · · =

∞∑
i=−∞

wi(0)

Suppose that the particle “always moves”, that is P0 = 0, and also that it does
so without any preferred direction (P+ = P− = 0.5). Then, the final position
i at time tn is given by the number of steps to the right n+ minus the number
of steps to the left n− ∈ N:

Z ∋ i = n+ − n−

This process can be simulated by flipping a coin at each timestep: if it lands
on heads the particle will move to the right, otherwise to the left. So, denoting
the total number of steps as n = n+ + n−, then the probability for the particle
to be in position xi is given by a binomial distribution:

wi(tn) =
Ç
n

n+

å
1

2n+
1

2n−
=

1
2n

Ç
n

n+

å
=

Ç
n

n−

å
1
2n

(1.12)

This can be generalized to the case where P+ ̸= P−:

wi(tn) =
Ç
n

n−

å
P
n+
+ P

n−
− (1.13)

Note that (1.12) satisfies the Master Equation (1.11), that is:

wi(tn+1) = 1
2

(wi+1(tn) +wi−1(tn))

We start by noting that if i = n+ − n− and n = n+ + n−, then:

n+ =
n+ i

2
n− =

n− i

2
(1.14)

And so:

1
2

(wi+1(tn) +wi−1(tn)) = 1
2n+1

ñÇ
n

n+i+1
2

å
+

Ç
n

n+i−1
2

åô
(1.15)

Recall now the recurrence relation for the binomial coefficient:Ç
n

k

å
=

Ç
n− 1
k

å
+

Ç
n− 1
k− 1

å
13



which leads to the desired result:

(1.15) = 1
2n+1

Ç
n+ 1
n+i+1

2

å
= wi(tn+1)

1.3.1 Probability Generating Functions
Let’s introduce a useful mathematical tool to deal with the binomial coefficient.
Let X be a discrete random variables taking values in the non-negative integers
(N). The probability generating function1 of X is defined as:

G(z) ≡ E[zX ] =
+∞∑
x=0

p(x)zx (1.16)

where p is the probability mass function of X, i.e. p(x) is the probability that
X = x (p(x) = P(X = x)).
G(z) is useful because we can retrieve p(k) for any k ∈ N by simply differenti-
ating k times G(z) with respect to z and setting z = 0. In fact, by expanding
the sum in the definition (1.16) and then differentiating: Probability

generation

G(z) = p(0) + p(1)z + p(2)z2 + · · · ⇒ dk

dzk
G(z)

∣∣∣
z=0

= p(k)

Note that G(1) = 1 because of the normalization:

G(1) =
+∞∑
x=0

p(x)1x =
+∞∑
x=0

p(x) = 1

This suggests a way to use G(z) to compute also the moments of X. In fact,
if we evaluate the first derivative for z = 1 we get:

G′(1) = p(1) + 2p(2)z + 3p(3)z2 + . . .
∣∣∣
z=1

=
+∞∑
x=1

p(x)xzx−1
∣∣∣
z=1

= (1.17)

=
+∞∑
x=1

xp(x) = (0 · p(0)) + 1 · p(1) + 2 · p(2) + · · · = E[X] (1.18)

However, the second derivative of G evaluated at z = 1 does not give the second
moment:

G′′(1) = 2 · 1p(2) + 3 · 2p(3)z + 4 · 3p(4)z2 + . . .
∣∣∣
z=1

=
+∞∑
x=2

x(x− 1)zx−2p(x)
∣∣∣
z=1

=

= E(X(X − 1))

More generally: Factorial moment
generation

G(k)(1) = E(X(X − 1) . . . (X − k+ 1)) = E

Å
X !

(X − k)!

ã
1∧Not to be confused with the moment generating function of a real-valued random

variable X (i.e., not discrete), which is defined as E(etX), with t ∈ R
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which is called the k-th factorial moment of X.
But how can we get the “usual” moments from G? One possibility is to “com-
pensate” the difference between a factorial moment and a usual one by adding
other terms. For example, note that:

G′′(1) = E(X(X − 1)) = E(X2) − E(X)

and so:

G′′(1) +G′(1) = (E(X2) − E(X)) + E(X) = E(X2)

A more clever way is to consider the operator θ(z) defined as:

θ(z) ≡ z
∂

∂z

on G. In fact:

θ(z)G(z) = z
∂

∂z

+∞∑
x=0

p(x)zx = z
+∞∑
x=1

xp(x)zx−1 =
+∞∑
x=1

xp(x)zx

And setting z = 1 leads back to the E[X]. If we apply θ(z) again, however,
something interesting happens:

θ(z)2G(z) =
Å
z
∂

∂z

ãÅ
z
∂

∂z

ã
G(z) = z

∂

∂z

+∞∑
x=1

xp(x)zx =
+∞∑
x=1

x2p(x)zx (1.19)

Now setting z = 1 leads to E[X2]. In general: Moment generation

θ(z)kG(z)
∣∣∣
z=1

= E[Xk]

Note how the exponent of z never changes, as it is lowered by 1 by the ∂z, and
then rised back by the z factor. So, every new application of the θ(z) operator
merely brings down another x factor, rising the x exponent inside the sum -
which is exactly what we want to compute moments.

1.3.2 Moments of the diffusion distribution
Let’s focus on our specific (discrete) case, with the particle moving on a dis-
cretized line. At any given time tn we can compute the mass probability func-
tion Wtn

: Z → R+, with Wtn
(xi) ≡ wi(tn). In other words, this is the function

that maps every position xi to the probability of containing a particle at time
tn (we focus on the spatial distribution at a fixed time rather than the temporal
distribution at a fixed position).
We are interested in knowing the shape of Wtn

, that is its moments:

⟨xq⟩tn =
+∞∑
i=−∞

Wtn
(xi)x

q
i =

(1.10)

+∞∑
i=−∞

wi(tn)(l · i)q q ∈ N

The first moment (q = 1) gives the average position: First moment of x

as function of ⟨n+⟩
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⟨x⟩tn = l ·
+∞∑
i=−∞

wi(tn)i =

= l
+∞∑
i=−∞

wi(tn)(2n+ − n) =

=
(a)

l
(
2⟨n+⟩tn − n

)
(1.20)

where in (a) we used the normalization condition (∀n ∈ N, ∑
iwi(tn) = 1).

Thus, we found that the average position ⟨x⟩t of the particle at time tn is re-
lated to the value of n+.

So, let n+ be the random variable of interest. Recall that n+ is sampled
from a binomial distribution (1.13), and that n+ = (n+ i)/2 (1.14) and so
i = 2n+ − n.
Then, the probability generating function of n+ is given by:

W̃ (z,n) ≡
(1.16)

n∑
n+=0

zn+wi(tn)
∣∣
i=2n+−n =

(1.13)

n∑
n+=0

zn+

Ç
n

n+

å
P
n+
+ P

n−n+
− =

=
(a)

(P+z + P−)n

where in (a) we used the binomial theorem.

We can now use the property (1.18) of the probability generating function to
compute ⟨n+⟩: First moment of

n+

⟨n+⟩ = ∂

∂z
W̃ (z,n)

∣∣∣
z=1

= n(P+z + P−)n−1P+

∣∣∣
z=1

= n (P+ + P−)︸ ︷︷ ︸
=1

P+ = nP+

(1.21)

For computing the second moment, we apply the θ(z) operator, as seen in
(1.19): Second moment of

n+

⟨n2
+⟩ =

Å
z
∂

∂z

ã2
W̃ (z,n)

∣∣∣
z=1

= z
∂

∂z
zn(P+z + P−)n−1P+

∣∣∣
z=1

=

= z(n(P+z + P−)n−1P+ + znP 2
+(n− 1)(P+z + P−)n−2)

∣∣∣
z=1

=

= nP+(1 + (n− 1)P+) (1.22)

We can now compute Var(n+) recalling that:

Var[X] = E[X2] − (E[X])2

Thus:

Var[n+] = ⟨n2
+⟩ − ⟨n+⟩2 = nP+(1 − P+) (1.23)

We now go back to ⟨x⟩tn , recalling the relation (1.20): Moments of x

⟨x⟩tn = l(2⟨n+⟩tn − n) =
(1.21)

nl(2P+ − 1) =
(a)

nl(P+ − P−)
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where in (a) we used P+ + P− = 1.
For the variance, recall that:

Var[aX + b] = a2 Var[X]

and so, starting again from (1.20):

Var[x]tn = 4l2 Var[n+] =
(1.23)

4nl2P+(1 − P+) = 4nl2P+P−

Note that the variance is always proportional to time (n), even if P+ ̸= P−.
However, if we go back and compute the ⟨x2⟩tn , we will note that it is not linear
in time:

⟨x2⟩tn = Var[x]tn + ⟨x⟩2
tn

= 4nl2P+(1 − P+) + (nl(P+ − P−))2 =

= nl2(4P+P− + n(P+ − P−)2)

Let’s evaluate the previous quantities for the simple symmetrical case, where
P+ = P− = 1/2:

⟨n+⟩ = n

2
⟨n2

+⟩ = n

4
(n+ 1) Var[n+] = 3

4
n

⟨x⟩tn = 0 ⟨x2⟩tn = nl2 Var(x)tn = nl2

As expected, the average number of steps to the right is half the total steps (as
P+ = 1/2), and the average position is 0.

Alternative derivation for the x moments. These last results can be also
obtained in a simpler way.
The idea is to represent the final state of the random walk at time tn as the
sum of n steps:

x(tn) = u1 + u2 + · · · + un

Each step can be on the right or on the left according to some probability
distribution. In other words, ui is a random variable. If we suppose steps of
unit length symmetrically distributed (i.e. P+ = P− = 1/2) we get:

un =

+1 p = 1/2

−1 p = 1/2

We can now compute the average position (first moment):

⟨x(tn)⟩ = n⟨u⟩ = 0

⟨u⟩ = 1
2

(+1) + 1
2

(−1) = 0

And the second moment:

⟨x2(tn)⟩ = ⟨(u1 + · · · + un)2⟩ = n · ⟨u2⟩︸︷︷︸
1

+
∑
i̸=j

⟨ui · uj⟩︸ ︷︷ ︸
⟨ui⟩⟨uj⟩=0

= n
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⟨u2⟩ = 1
2

(+1)2 +
1
2

(−1)2 = 1

Note that ⟨ui · uj⟩ = ⟨ui⟩⟨uj⟩ because ui and uj are statistically independent.
So we showed that ⟨x2⟩tn is linear in the number of time steps (n). Here, the
l2 factor from (1.24) is missing because the spatial step size is set to 1.

1.3.3 Continuum Limit
Recall that tn = nε. Inserting this relation in the results we got for the x

moments in the previous section (for the symmetrical case P+ = P−) we get:

⟨x⟩tn = 0; ⟨x2⟩tn = l2n =
l2

ε
tn (1.24)

The analysis of the diffusion equation in d = 1 showed that, for a particle
starting at x(t = 0) = 0:

⟨x2⟩t = 2Dt (1.25)

The correct continuum limit should reproduce the result of (1.25) from (1.24).
Notice that if we simply let ε → 0 and l → 0, ⟨x2⟩ becomes undefined. There-
fore, we need to fix the ratio l2ε−1 during the limit. If we define this ratio Correct continuum

limitas:

l2

ε
≡ 2D

then the limit of (1.24) leads to (1.25) as desired:

⟨x2⟩tn =
l2

ε
tn

l
2
/ε=2D−−−−−→
l,ε→0

2Dt = ⟨x2⟩t

Note that [D] = m2 s−1, and so the previous expression is dimensionally correct.

We now know the basic shape that the distribution must have in the continuum
limit - but we still don’t know its explicit form. So, let’s start by considering
the spatial distribution at a fixed time tn:

Wtn
(xi) ≡ wi(tn) = n!(

n+i
2
)
!
(
n−i

2
)
!

1
2n

(1.26)

For n = 0 (starting time), all the particles are at x0. Then, after each timestep
the probability distribution “expands”, meaning that more and more positions
have a non-zero probability of being explored.

In particular, recall that: i and n have the
same parity

i = 2n+ − n

Note how i and n must have the same parity, as 2n+ is always even. So the
particle will always be at an even position (xi with i even) after an even number
n of time steps, and at an odd xi after an odd time tn.
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To proceed, we note that in the continuum limit, as the timestep ϵ vanishes,
every finite time t will be reached after a really big number of steps. So, we
want to examine the asymptotic behaviour of (1.26) as n → ∞. We start
by computing its logarithm:

lnwi(tn) = −n ln 2 + lnn! − ln
Å
n+ i

2

ã
! − ln

Å
n− i

2

ã
!

In this way, we can use the Stirling approximation:

ln k! = ln k+ ln(k− 1) + · · · + ln 2 + ln 1 =

≈ k ln k− k+
1
2

ln(2πk)

Thus arriving at a complicated expression:

lnwi(tn) ≈
n≫1

−n ln 2 + n lnn−�n+
1
2

ln(2πn)

− n+ i

2
ln
Å
n+ i

2

ã
+

�
�
��n+ i

2
− 1

2
ln
Å

2πn+ i

2

ã
− n− i

2
ln
Å
n− i

2

ã
+

�
�
�n− i

2
− 1

2
ln
Å

2πn− i

2

ã
Let’s gradually simplify it. We start by collecting all the n:

n

Å
− ln 2 + lnn− 1

2
ln
Å
n+ i

2

ã
− 1

2
ln
Å
n− i

2

ãã
=

= n ln

Ñ
n

2
»

n+i
2

»
n−i

2

é
= n ln

Ç
n√

n2 − i2

å
= n ln

Ñ
1»

1 − i2/n2

é
=

=
(a)

n ln
Ç

1 + 1
2
i2

n2 +O

Ç
i4

n4

åå
=
(b)

n

2
i2

n2 +O

Ç
i4

n4

å
≈ i2

2n
(1.27)

where in (a) and in (b) we used respectively the following Taylor expansions
(as n → ∞ and so 1/n → 0):

(1 ± x)n = 1 ± nx+O(x2) ln(1 + x) = x+O(x2) (1.28)

Then we collect the i/2:

− i

2

ï
ln
Å
n+ i

2

ã
− ln
Å
n− i

2

ãò
= − i

2
ln
Å
n+ i

n− i

ã
=

= − i

2
ln
Å1 + i/n

1 − i/n

ã
=
(a)

− i

2
ln
ÇÅ

1 + i

n

ãÇ
1 + i

n
+O

Ç
i2

n2

ååå
=

= − i

2
ln
Ç

1 + 2i
n
+O

Ç
i2

n2

åå
=
(b)

− i

2

Ç
2i
n
+O

Ç
i2

n2

åå
≈ − i2

n
(1.29)

And finally we consider the remaining terms:

1
2

ï
ln(2πn) − 1

2
ln
Å

2πn+ i

2

ã
− ln
Å

2πn− i

2

ãò
=
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=
1
2

ln
Ç

2πn
2πn+i2 2πn−i

2

å
=

1
2

ln
Ç

2n
π(n2 − i2)

å
=

1
2

ln

Ñ
2
πn

1
1 − i

2

n
2

é
=

=
1
2

ln
Ç

2
πn

+O

Ç
i2

n2

åå
≈ 1

2
ln
Å 2
πn

ã
(1.30)

Putting it all back together:

lnwi(tn) ≈
n≫1

(1.27) + (1.29) + (1.30) = 1
2

ln
Å 2
πn

ã
− i2

2n

And by exponentiating we get:

wi(tn) ≈
n≫1

…
2
πn

exp
Ç

− i2

2n

å
(1.31)

We now want to obtain a continuous pdf from the mass probability wi(tn).
Note that if we regard wi(tn) as a function of position at a fixed time Wtn

(xi),
and extend the domain to all R we get a really “bumpy” function, as it is
non-zero only on xi = l · i with i ∈ Z. However, if we integrate over every
small patch of Wtn

(xi), we can “smooth” all the “bumpyness”, and get a nice
pdf - especially in the continuum limit.
Let’s formalize that more carefully. Starting from Wtn

(xi), we can compute
the probability to find a particle in an interval I ⊆ R by simply summing the
mass probabilities wj(tn) for all the xj ∈ I.
The idea is now to define a continuous pdf W (x, t) as follows:

W (x, tn)∆x = P

Å
x ∈
ï
x− ∆x

2
;x+ ∆x

2

ò
, tn
ã

l ≪ ∆x ≪ 1

That is, W (x, tn)∆x is the probability that a particle lies “near” a certain posi-
tion x ∈ R at an instant tn (i.e. within an interval I centered on x with width
∆x sufficiently small, but large with respect to the discretization). We will
then “cure” the discreteness of time by considering the asymptotic behaviour
for t → ∞.
By expanding the previous expression we get:

P

Å
x ∈
ï
x− ∆x

2
,x+ ∆x

2

òã
≈
(a)

P

Å
i ∈
ï
i0 − ∆x

2l
; i0 +

∆x
2l

òã
=

i0+∆x/(2l)∑
j=i0−∆x/(2l)

wj(tn)

(1.32)

where in (a) i0 is such that xi0 is closest to xi, that is i0 = ⌊x/l⌉ (recall that
xi = il ⇒ i = xi/l).
Note that this specific choice of I contains ∆x/l points (supposing ∆x ≫ l).
However, depending on the parity of n (fixed by the choice of the instant
tn), only half of the positions xj can be explored, as n and j must have the
same parity. This means that half of the wj(tn) with xj inside the interval,
wj(tn) = 0. For the other half, we suppose that wj(tn) does not vary much
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inside the small interval, and so we approximate their value with the center
point j = i0, i.e. wj(tn) ≈ wi0(tn). So, averaging over these two halves:

(1.32) ≈ ∆x
l

Å1
2

· 0 + 1
2
wi0(tn)

ã
=

∆x
2l
wi0(tn) (1.33)

We have now an expression for W (x, tn), which is continuous with respect to
x:

W (x, tn)��∆x =
��∆x
2l
wi(tn) (1.34)

If we now take the limit n → ∞ we can substitute (1.31) in (1.34), leading to: Continuous
distribution

W (x, t) = 1
2l

…
2
πn

exp
Ç

− i2

2n

å
Substituting x = il and t = nε we get:

W (x, t) =
…

2ε
4l2πt

exp

(
− x2

2 l
2

ε t

)
(1.35)

As l2ε−1 = 2D:

W (x, t) = 1√
4πDt

exp
Ç

− x2

4Dt

å
(1.36)

We can now compute the first two moments of x:

⟨x⟩t =
∫

R
W (x, t)x dx = 0

⟨x2⟩t =
∫

R
W (x, t)x2 dx = 2Dt

This last integral can be done in many ways. For example, recall the gaussian
integral:

I =

…
π

µ
=

∫ ∞

−∞
e−µy2

dy

Differentiating (according to Leibniz integral rule) with respect to µ:

∂I

∂µ
= −

∫
R
e−µy2

y2 dy = −1
2

…
π

µ3 (1.37)

and so:

⟨x2⟩t =
1√

4πDt

∫ +∞

−∞
x2 exp

Ç
− x2

4Dt

å
dx =

=
1√

4πDt

∫ +∞

−∞
e−µx2

x2 dx
∣∣∣
µ=(4Dt)−1 =

(1.37)

1√
4πDt

1
2

»
π(4Dt)3 = 2Dt

(Lesson 4 of
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1.4 The Link between Macroscopic
and Microscopic

We will now show that the continuum limit of the Master Equation (1.11) pro-
duces the diffusion equation (1.6), in the case of constant D, thus establishing
a link between the interpretation in terms of densities and that in term of paths
of random motion.
Then, we will show that (1.36) is the solution of that equation for a starting
distribution of δx (particle initially at 0), and derive the general solution for
any initial condition.

So, we start by recalling that, for a fine discretization, wi(tn) is approximately
equal to the probability of being around a generic (x, t) (i.e. W (x, t)∆x), up
to a normalization constant:

W (x0, tn)∆x = P(x ∈ [x0 − ∆x/2,x0 + ∆x/2]) ≈ ∆x
2l
wi0(tn) i0 = ⌊∆x/l⌉

And so, with a slight abuse of notation:

wi(tn) ≈ 2lW (x, t) i = ⌊x/l⌉,n = ⌊t/ϵ⌉

Substituting in the Master Equation (1.11) leads to:

��2lW (x, t+ ϵ) =��2l
1
2

(W (x− l, t) +W (x+ l, t)) (1.38)

which means that an analogous Master Equation holds even for W (x, t), which
is a continuous pdf, and thus can be differentiated.
The idea is now to use Taylor expansions to express everything in terms of the
derivatives of W evaluated at the same point (x, t). So, we compute W (x, t+ ϵ)
in terms of W (x, t) (and derivatives) by expanding around ϵ = 0:

W (x, t+ ϵ) = W (x, t) + ϵ
∂

∂τ
W (χ, τ)

∣∣∣
(x,t)

+
ϵ2

2
∂2

∂τ2W (χ, τ)
∣∣∣
(x,t)

+O(ϵ3)

(1.39)

The same is done for W (x± l, t) by expanding around l = 0:

W (x± l, t) = W (x, t) ± l
∂

∂χ
W (χ, τ)

∣∣∣
(x,t)

+
l2

2
∂2

∂χ2W (χ, τ)
∣∣∣
(x,t)

+O(l3)

(1.40)

We then introduce the following notation for the space and time derivatives:

Ẇ (x, t) = ∂

∂τ
W (χ, τ)

∣∣∣
(x,t)

W ′(x, t) = ∂

∂χ
W (χ, τ)

∣∣∣
(x,t)

so that a space derivative is denoted with a′ (a′′ for the second derivative), and
a time derivative with ȧ (ä for the second derivative).
We can now substitute everything back in (1.38). We start with the right side:

W (x+ l, t) +W (x− l, t) = 2W (x, t) + l2W ′′(x, t) +O(l4)
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where the O(l4) is given by the cancellation of the odd powers (including l3).
Equating to the left side of (1.38) leads to:

�����W (x, t) + ϵẆ (x, t) + ϵ2

2
Ẅ (x, t) =�����W (x, t) + l2

2
W ′′(x, t) +O(l4)

Dividing by ϵ:

Ẇ (x, t) + ϵ

2
Ẅ (x, t) = l2

2ϵ︸︷︷︸
D

W ′′(x, t) +O

Ç
l4

ϵ

å
= DW ′′(x, t) +O(4ϵD2)

If we now take the continuum limit, then ϵ, l → 0 with the ratio D = l2/(2ϵ)
fixed, both Ẅ (x, t) and the error term vanish, leading to the diffusion equa-
tion:

Ẇ (x, t) = DW ′′(x, t) (1.41)

Which is indeed the same2 of (1.6) with D constant.

1.5 Solution of the Diffusion Equation
We want now to solve (1.41), and show that the solution will be the same we
previously derived in (1.36).
So, we start from:

∂tW (x, t) = D∂2
xW (x, t)

This is a second order partial differential equation. To be able to solve it, we
must first define its boundary conditions. In this case, we suppose that the
particle is unconstrained, and so the spatial domain coincides with R.
As W (x, t) is a pdf, the following conditions must hold:

W (x, t) ≥ 0 ∀(x, t)
∫

R
W (x, t) = 1

From the normalization, it follows that W (x, t) - and its spatial derivative
W ′(x, t) - must vanish as |x| → ∞, so that the integral does not diverge:

lim
|x|→∞

W (x, t) = 0 lim
|x|→∞

W ′(x, t) = 0 (1.42)

However, it is not obvious that W (x, t) ≥ 0 will always hold, assuming we
choose an initial condition W (x, t0) ≥ 0. This will be obvious a posteriori -
and in fact can justified by the peculiar properties of this differential equation.

To solve (1.41), as the spatial domain is all R, one standard technique is that
of the Fourier integral transform, which allows us to “remove” derivatives by
replacing ∂xψ → ikψ, ∂xx → −k2ψ. Thus, if we can “remove” the second-order
space derivative, we will be left with a much more simpler first order differential
equation in the time variable.

2∧Almost: here we deal with the probability distribution, while in (1.6) we have a physical
density ρn. Effectively the two differ only by a normalization factor, as previously noted
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Translational invariance. This approach is suggested by the translational
invariance of solutions of (1.41). In fact, if W (x, t) is a solution, then also
W̃ (x, t) = W (x− a, t) is a solution.
The generator of the translations is the momentum, and its eigenfunctions are
the plane waves, i.e. the Fourier basis. So, by expressing a function in this
base, we will harness the equation’s symmetry - simplifying the problem.
In other words, the Fourier basis diagonalizes the Laplacian operator which
appears in (1.41):

∂2
xφk(x) = λkφk(x) λk ≡ −k2 φk(x) = Ake

±ikx, k ∈ R

In a general case, the Fourier integral trick can be tried for every variable,
starting from the one with the higher order derivative, and then the case which
leads to the most simplification can be pursued.

We start by rewriting W (x, t) as a (infinite) linear combination of vectors of
the Fourier basis:

W (x, t) =
∫

R

dk
2π
eikxck(t) (1.43)

where the 2π factor is just a normalization convention.
Let φk(x) = eikx. Then, as the Fourier basis is orthonormal, the following
holds (recalling the Fourier transform of the δ function):

⟨φk,φk′⟩ =
∫

R
dxφ∗

k(x)φk′(x) =
∫

R
dx ei(k

′−k)x = 2πδ(k− k′) (1.44)

⟨φ̃x, φ̃x′⟩ =
∫

R
dk φ∗

k(x)φk(x′) = 2πδ(x− x′)

We then apply a Fourier transform to both members of (1.43), by multiplying
by e−ik′

x and integrating over x:∫
R
W (x, t)e−ik′

x dx =
∫

R

dk
2π

∫
R

dx ei(k−k′)xck(t)

If we now apply the ON relation (1.44) we can solve the integral in the right
side: ∫

R
W (x, t)e−ik′

x dx =
∫

R
dk δ(k− k′)ck(t) = ck′(t)

And substituting k′ → k we arrive at an expression for ck(t):

ck(t) =
∫

R
dx e−ikxW (x, t) (1.45)

Starting from (1.41) we can write a corresponding differential equation for the
coefficients ck(t) in the Fourier basis, and then solve it.

Braket notation. Let the solution be |W (t)⟩, so that ⟨x|W (t)⟩ = W (x, t).
Then in (1.43) we just did a change of basis (by using Dirac completeness):

|W (t)⟩ = I |W (t)⟩ =
∫
k

|k⟩ ⟨k|W (t)⟩︸ ︷︷ ︸
ck(t)
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where |k⟩ are elements of the Fourier basis (⟨x|k⟩ = eikx) and so:

ck(t) = ⟨k|W (t)⟩ =
∫
x

⟨k|x⟩ ⟨x|W (t)⟩ =
∫

R
dx e−ikxW (x, t)

So the initial differential equation (1.41) is expressed in the position basis, while
the following equation involving ck(t) is expressed in the Fourier basis.

So, we start by differentiating (1.45) with respect to t:

ċk(t) =
∫

R
dx e−ikxẆ (x, t) =

(a)
D

∫ ∞

−∞
e−ikxW ′′(x, t) dx =

=
(b)

((((((((
DW ′(x, t)e−ikx∣∣∞

−∞ −D
∫ ∞

−∞
∂x(e−ikx)W ′(x, t) dx =

=
(c)

−D (∂xe−ikx)︸ ︷︷ ︸
−ike−ikx

�����W (x, t)
∣∣∞
−∞ +D

∫
R
∂2
x(e−ikx)︸ ︷︷ ︸
−k2

e
−ikx

W (x, t) dx =

= −Dk2
∫ +∞

−∞
dx e−ikxW (x, t)︸ ︷︷ ︸

ck(t)

= −Dk2ck(t)

where in (a) we substituted (1.41), and in (b) and (c) we performed two inte-
grations by parts. Note that the W (x, t) and W ′(x, t) terms vanish because of
the boundary conditions (1.42).
Summarizing:

ċk(t) =
∫

R
dx e−ikxẆ (x, t) = −Dk2ck(t)

This is a first-order ordinary differential equation, which can be solved by sep-
aration of variables:

d
dt
ck(t) = −Dk2ck(t) ⇒

∫ dck(t)
ck(t)

=
∫

−Dk2 dt ⇒ ln ck(t) = −Dk2t+C

And rearranging:

ck(t) = Ae−Dk2
t (1.46)

To find the integration constant A we impose the initial conditions, i.e. that
ck(t) be equal to a known ck(t0) at time t0:

ck(t0) !
= Ae−Dk2

t0 ⇒ A = ck(t0)eDk
2
t0 (1.47)

And substituting (1.47) back in (1.46) we arrive at the general integral:

ck(t) = ck(t0)e−Dk2(t−t0) (1.48)

We can now go back to W (x, t) by plugging (1.48) into (1.43):

W (x, t) =
∫

R

dk
2π
eikxck(t) =

∫
R

dk
2π
eikx−Dk2(t−t0)ck(t0) =
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=
(1.45)

∫
R

dk
2π
eikx−Dk2(t−t0)

∫
R

dy e−ikyW (y, t0) =

=
∫

R
dyW (y, t0)

∫
R

dk
2π

exp
Ä
−Dk2(t− t0) + ik(x− y)

ä
(1.49)

Recall that: ∫ +∞

−∞

dk
2π
e−iak2−ibk =

1√
4πai

exp
Ç
ib2

4a

å
and so with ia = D(t− t0) and b = −(x− y) we arrive at:

∫
R

dk
2π

exp
Ä
−Dk2(t− t0) + ik(x− y)

ä
=

1√
4πD(t− t0)

exp
Ç

− (x− y)2

4D(t− t0)

å
Substituting back in (1.49):

W (x, t) = 1√
4πD(t− t0)

∫
R

dyW (y, t0) exp
Ç

− (x− y)2

4D(t− t0)

å
(1.50)

Note that with t0 = 0 and W (y, t0) = δ(y) we retrieve the solution (1.36) that
we already found.

1.5.1 Propagators
Suppose we know with certainty that the particle is in y = x0 at time t = t0,
that is:

W (y, t0) = δ(y − x0)

Then, substituting in (1.50) leads to:

W (x, t|x0, t0) ≡ 1√
4πD(t− t0)

exp
Ç

− (x− x0)2

4D(t− t0)

å
(1.51)

where with W (x, t|x0, t0) we denote the probability that the particle will be
around position x at time t, given it was certainly in x0 at time t0. W (x, t|x0, t0)
is also called propagator, as it “propagates” the particle from (x0, t0) to (x, t)
as a sort of continuous transition probability. This is much more evident if we
rewrite (1.50) as follows (with y → x0 for simplicity):

W (x, t) =
∫

R
dx0W (x, t|x0, t0)W (x0, t0) (1.52)

Let’s explorer some properties of (1.52).

1. ESCK property. Let’s propagate a particle from a starting point ESCK property
(x0, t0) to two different end points (x1, t1) and (x2, t2):

W (x1, t1) =
∫

R
dx0W (x1, t1|x0, t0)W (x0, t0) (1.53)
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W (x2, t2) =
∫

R
dx0W (x2, t2|x0, t0)W (x0, t0) (1.54)

We can also propagate to (x2, t2) starting from (x1, t1):

W (x2, t2) =
∫

R
dx1W (x2, t2|x1, t1)W (x1, t1) (1.55)

Now, if we substitute (1.53) in (1.55) we get:

W (x2, t2) =
∫∫

R
2 dx1 dx0W (x2, t2|x1, t1)W (x1, t1|x0, t0)W (x0, t0)

By comparing this expression with (1.54), we find that:

W (x2, t2|x0, t0) =
∫

R
dx1W (x2, t2|x1, t1)W (x1, t1|x0, t0)

That is, the propagator between two points A and B can be obtained by
multiplying the propagators between A → C and C → B and summing
over all possible choices of C. This property is the Einstein-Smoluchowski-
Kolmogorov-Chapman relation (ESCK).

2. Correlator. Consider two instants t1 ̸= t2, and suppose we want to Two-point
correlatorcompute ⟨x(t2)x(t1)⟩, supposing that the particle started in x = 0 at

t = 0. Applying the definition of an expected value:

⟨x(t2)x(t1)⟩ =
∫∫

R
2 dx1 dx2 P(x2, t2;x1, t1|0, 0)x2x1

where P(x2, t2;x1, t1|0, 0) is the joint pdf of a particle being around x1
at t1 and around x2 at t2, given the initial position in x = 0 at t = 0.
Recall from probability theory that:

P(x2, t2;x1, t1; 0, 0) = P(x2, t2;x1, t1|0, 0)P(0, 0)

⇒ P(x2, t2;x1, t1|0, 0) = P(x2, t2;x1, t1; 0, 0)
P(0, 0)

=

=
W (x2, t2|x1, t1)W (x1, t1|0, 0)�����W (0, 0)

�����W (0, 0)
=

= W (x2, t2|x1, t1)W (x1, t1|0, 0)

Recalling the result in (1.51) we can now compute:

⟨x(t2)x(t1)⟩ =
∫∫

R
2 dx1 dx2 x1x2

exp
(

− (x2−x1)2

4D(t2−t1)

)
√

4πD(t2 − t1)

exp
(

− x
2
1

4Dt1

)
√

4πDt1

By changing variables (x1 = y1, x2 − x1 = y2) we arrive at:

=
1√

4πD(t2 − t1)
1√

4πDt1

∫∫
R

2 dy1 dy2 y1(y1 + y2)·

· exp
Ç

− y2
2

4D(t2 − t1)
− y2

1
4Dt1

å
=
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=
(a)

1√
4πD(t2 − t1)

1√
4πDt1

∫
R

dy1 y
2
1 exp

Ç
− y2

1
4Dt1

å
·

·
∫

R
dy2 exp

Ç
− y2

2
4D(t2 − t1)

å
=

=
(b)

1√hhhhhhh4πD(t2 − t1)
1√

����4πDt1
(
2Dt1�����√

4πDt1
) Ä√hhhhhhh4πD(t2 − t1)

ä
= 2Dt1

In (a) we note that by expanding y1(y1 + y2), the term with y1y2 is an odd
function integrated over a symmetric domain, that results in 0. So, only
the term with y2

1 remains, allowing the integral’s factorization. Then,
in (b), we compute the Gaussian integrals, supposing t1 < t2 (so that
t2 − t1 > 0) and recalling:

∫ +∞

−∞
exp
Å

−1
2
ax2
ã

dx =

…
2π
a∫ +∞

−∞
x2 exp

Å
−1

2
ax2
ã
= −2 d

da

∫ +∞

−∞
exp
Å

−1
2
ax2
ã

dx =

…
2π
a

1
a

The case when t1 > t2 leads to a similar result, with t1 ↔ t2. Thus, in
general:

⟨x(t1)x(t2)⟩ = 2Dmin(t1, t2)

By using the propagator we can compute the probability of passing through a
set of points xi at instants ti: Probability of a

discrete path
P(xi, ti; i = 0, . . . ,n) = P(xn, tn;xn−1, tn−1; . . . ;x1, t1;x0, t0) =

=
n∏
i=1

W (xi, ti|xi−1, ti−1)W (x0, t0)

This is the joint probability for a discrete trajectory, meaning that we care only
about what happens at certain discrete times.
This formula is useful to compute the average value of a generic function f of
the trajectory points:

⟨f(x(tn),x(tn−1), . . . ,x(t0))⟩ =
∫

R
n+1

Ç
n∏
i=0

dxiW (xi, ti|xi−1, ti−1

å
f(xn,xn−1, . . . ,x0)

The need to extend this formula to an infinite number of intermediate points
- that is for a path in the continuum will lead to the notion of path integral,
that will be explored in detail in the next chapter.
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Chapter 2

The Wiener Path Integral

(Lesson 4 of
24/10/19)
Compiled: October
13, 2020

2.1 Average over paths
Consider an unconstrained Brownian particle, moving on the real line, starting
in x0 at t0. By solving the diffusion equation we found that the probability of
finding the particle in [x,x+ dx] at time t > t0 is given by the propagator:

P{x(t) ∈ [x,x+ dx]|x(t0) = x0} = W (x, t|x0, t0) dx =

=
1√

4πD(t− t0)
exp
Ç

− (x− x0)2

4D(t− t0)

å
dx

(2.1)

By integrating (2.1) we can then find the probability of finding the particle
inside an interval [A,B] at time t:

P{x(t) ∈ [A,B]|x(t0) = x0} =
∫ B

A
dxW (x, t|x0, t0) t > t0

We are now interested in computing the expected value ⟨f⟩ of functionals f
of the trajectory, i.e. of quantities depending on several (or all) points of the
trajectory x(τ) of a Brownian particle.

• The simplest example is the correlation function, which is defined as
the product of the particle’s position at two different times t1 < t2:

f({x(t1),x(t2)}) = x(t1)x(t2) t1 < t2

• A more general (and difficult) case is given by a function of the entire
trajectory, such as:

f({x(τ) : 0 < τ ≤ t}) = g

Å∫ t

0
x(τ)a(τ) dτ

ã
a, g : R → R

In other words, we want to compute the average of a function f over an ensemble
of random paths. Every point of the path that is needed to compute f is a
dimension of the integral for the average. So, if we need the entire path, we
will need infinite points, leading to an integral over infinite dimensions - the
path integral. We will now formalize it one step at a time.
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2.1.1 Functions of a discrete number of points
Let’s start from the simplest case, and consider the correlation function:

f({x(t1),x(t2)}) = x(t1)x(t2) t1 < t2

To compute ⟨f⟩ we will need the joint probability distribution g(x1,x2) that
gives the probability of x(t1) being “close to” x1 and x(t2) “close to” x2 for
the same trajectory. Let us denote the three events of interest:

A : Particle starts in x0 at t0
B : Particle is close to x1 at t1 (x(t1) ∈ [x1,x1 + dx1])
C : Particle is close to x2 at t2 (x(t2) ∈ [x2,x2 + dx2])

We are interested in the joint probability P(C,B|A) (the order is defined by
t2 > t1 > t0). From probability theory:

P(C,B|A) = P(C|B,A)P(B|A)

We already know how to compute probabilities like P(B|A), but not like
P(C|B,A). Fortunately, that is not needed.
Recall, in fact, that Brownian motion is a Markovian process, meaning that
the future depends only on the present state, i.e. the particle has no memory.
So, subsequent displacements are independent: the probability of the
particle going from x1 to x2 is the same whether it has started at x0 or at any
other point x̃0. In other words, if we take the present state as the particle being
in x1 at t1, the future (position at t2 > t1) depends only on that, and not on
the past (position at t0). So:

P(C|B,A) = P(C|B)

leading to:

P(C,B|A) = P(C|B)P(B|A)

Inserting the propagators (2.1):

dPt1,t2 (x1,x2|x0, t0) ≡ W (x2, t2|x1, t1)W (x1, t1|x0, t0) dx1 dx2

This is the joint probability we need to compute ⟨f⟩. Of course, nothing stops
us from considering N “jumps” instead of only 2:

dPt1,...,tn (x1, . . . ,xn|x0, t0) ≡ W (xn, tn|xn−1, tn−1) · · ·W (x1, t1|x0, t0) dx1 dx2 . . . dxn =

= exp
Ç

−
n∑
i=1

(xi − xi−1)2

4D∆ti

å
n∏
i=1

dxi√
4πD∆ti

(2.2)

Then, the average of a generic function f(x(t1), . . . ,x(tn)) of the positions of
the particle at times t1 < t2 < · · · < tn is defined as:

⟨f(x(t1), . . . ,x(tn))⟩W =
∫

R
n
f(x1, . . . ,xn) dPt1,...,tn (x1, . . . ,xn|x0, t0)
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2.1.2 Functionals of the whole trajectory
The quantity in (2.2) can be interpreted as the infinitesimal volume element
spanned by all the trajectories passing through a set of tiny gates, as represented
in figure 2.1.
The underlying idea is that probabilities satisfy the axioms of measures, that
is functions that assign a measure, i.e. a generalization of “size”, to all sets
included in a specific collection.

Figure (2.1) – All trajectories that pass through the set of gates [xi, xi + dxi] at times ti

(such as the x(t) here represented) contribute to the volume dPt1,...,tn
(x1, . . . , xN )

.

We now try to formalize this idea in order to extend the results of the previous Path integral
formalizationsection to the case of functions depending on a infinite number of trajectory

points.

1. Space definition. Let T ⊂ R (index set), denote with R
T the set of

all functions (stochastic processes) k : T → R. The idea is that an
element of R

T is a collection of random variables indexed by T .
In our case T is a collection of time instants (e.g. T = [0,+∞)) and a
generic element of R

T is made of all the traversed points of a trajectory
at times T :

{x(t) : t ∈ T} ∈ R
T

2. Probability measure on finite points. The expression in (2.2), as ob-
served, allows us to measure the volumes spanned by trajectories travers-
ing a set of gates. Let’s formalize this idea. Consider a finite set of times
T = {ti}i=1,...,n with n ∈ N, ti ∈ R and t1 < t2 < . . . tn, each associated
to a gate Hi = [ai, bi], with ai, bi ∈ R and ai < bi. All the trajectories
R
T traversing each Hi at a time ti ∈ T span a cylindrical set A of the

form:

A = {x(t) : x(t1) ∈ H1, . . . ,x(tn) ∈ Hn} ⊂ R
T
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Using (2.2) and integrating over the gates we can define the measure of
A-like sets as:

PW (A) ≡
∫

R
n

dPt1,...,tn (x1, . . . ,xn|x0, t0)IH1(x1) . . . IHn
(xn)

where IHi
(xi) are characteristic functions of the gates:

IHi
(x) =

1 x ∈ Hi

0 otherwise

In our case Hi are just intervals, and so:

PW (A) ≡ Pt1,...,tn(A) =
(2.2)

∫
H1

dx1

∫
H2

dx2 · · ·
∫
Hn

dxn

Ç
n∏
i=1

1√
4πD∆ti

å
·

(2.3)

· exp
Ç

−(xi − xi−1)2

4D∆ti

å
with ∆ti = ti − ti−1.

3. Generalization on infinite points. Note that (2.3) holds for any n.
So, using A-like sets, we can construct a σ-algebra1 F of R

T . Then, by
applying Kolmogorov extension theorem we can extend the measure
PW we just found to the entire F .

4. Probability space. We now have a set of all possible outcomes R
T (in

our case, all the possible trajectories that can be produced by a Brownian
motion). We also have the collection of all events F , that is subsets of R

T

for which is meaningful to assign a probability measure PW : F → [0, 1].
The triad (RT , F ,PW ) forms a probability space, that gives a rigorous
meaning to the concept of “computing the probability of a trajectory”.

The measure so obtained is called Wiener measure, and denoted as the Wiener measure
following:

PW (A) ≡
∫
A

dW x(τ)

Then we can compute expected values. For example, if f({x(τ) : τ ∈ T}) is a
function depending on the points traversed at times in a set T , then:

⟨f⟩W ≡
∫

R
T
f(x(τ)) dW x(τ) T = [0, ∞)

Note that the Weiner measure exists and it’s well defined (Kolmogorov’s theo- Main technique to
compute path
integrals

rem), but we know it explicitly only in specific finite cases. So, to compute the
expected value of functionals F ({x(t)}) over continuous trajectories we first
discretize the trajectory, and then take a continuum limit.

1∧A σ-algebra on a set X is a collection Σ of subsets of X that includes X itself, is closed
under complement, and is closed under countable unions
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1. Suppose we have a functional F ({x(τ) : 0 < τ < t}), and we want to
compute ⟨F ⟩.

2. We discretize the problem by arbitrarily subdividing the time interval
[0, t] in n parts 0 = t0 < t1 < t2 < · · · < tn = t. Then we consider
an approximated functional FN ({x(t0), . . . ,x(tn)}) (for example approx-
imating the path x(τ) with a piecewise linear function, depending only
on x(t0), . . . ,x(tn)), so that:

F = “ lim
N→∞

”FN

where N → ∞ means that max ∆ti → 0, with ∆ti = ti − ti−1. This limit
needs to be properly defined (by using the Weiner measure to define a
norm in a space of integrable functionals, etc.), but we will not do that
here.

3. Then the Weiner path integral is defined as:

⟨F ⟩W =
∫

R
T

dW x(τ)F ({x(τ) : 0 < τ < t}) ≡ “ lim
N→∞

”⟨FN ⟩W =

= “ lim
n→∞ ”

∫
R

n
dPt1,...,tn (x1, . . . ,xn|x0, t0)FN (x(t0), . . . ,x(tn))

Geometrically, we are evaluating F for every possible Brownian path x(τ),
and then averaging all these results, each weighted by the probability of
the corresponding path.�� ��Example 2 (Correlation function and ESCK property):

As expected, the more general definition of the Weiner measure - involving
the continuum limit N → ∞ - reduces to (2.2) when evaluated for a function
depending only on a finite set of particle’s positions.
For example, consider the expected value of the correlation function (assume
the particle starting in 0 at time 0 for simplicity):

⟨x(t′1)x(t′2)⟩ =
∫

R
T

dWxx1(t′1)x2(t′2) = T = [0, t], t′1 < t′2 < t

= “ lim
N→∞

”
∫

R
N

dPt1,...,tN (x1, . . . ,xN |0, 0)x(tk)x(tn) =

where we chose the discretization so that tk = t′1 and tn = t′2. Then, by
expanding the measure and applying the ESCK property we get (omitting
the limit):

=
∫

R
N

dx1 . . . dxN W (xN , tN |xN−1, tN−1) . . .W (x1, t1|0, 0)xkxn =

=
(a)

∫
R

2 dxk dxnW (xn, tn|xk, tk)W (xk, tk|0, 0)xkxn

where in (a) we used the ESCK property to compute all the integrals on dxi
with i ̸= n, k, which evaluate all to 1.
We note that the same result can be obtained by direct application of (2.2):

⟨x(t′1)x(t′2)⟩ =
∫

dx′
1 dx′

2W (x′
2, t′2|x′

1, t′1)W (x′
1, t′1|0, 0)x′

1x
′
2
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2.1.3 Change of random variables
In practice, to compute path integrals it will be useful to perform change of
random variables. The idea is that we know the pdf for an increment ∆xi, and
so we can compute - when needed - the pdf of functions of ∆xi.

So, consider a random variable X ∼ q(x), with q(x) being a generic distribution
(e.g. q(x) = µe−µx). Now consider a function y(x), e.g. y(x) = x2. Y is then
a new random variable, with a certain distribution p(y). We now want to
compute p(y) starting from q(x) and y(x).
Suppose that y(x) is invertible. Then, if we extract a value from X, it will
be inside [x,x+ dx] with a probability q(x) dx. Knowing X, we can use the
relation y(x) to uniquely determine Y , that will be in [y, y+ dy] with the same
probability. So, the following holds:

q(x) dx = p(y) dy (2.4)

We can compute dy by nudging y(x), and expanding in Taylor series:

y(x+ dx) ≡ y+ dy+O(dy2) = y(x) + dx y′(x)︸ ︷︷ ︸
dy

+O(dx2)

and so dy = dx y′(x). Substituting in (2.4) we get:

q(x) dx = p(y) dy = p(y(x))y′(x) dx ⇒ p(y) = q(x(y))dx
dy

(2.5)

Consider now a more general change of variables y = y(x) (not necessarily
invertible), with x ∼ q(x). We start from the expected value of a function f in
terms of q(x):

⟨f(y)⟩ =
∫

R
dx f(y(x))q(x) =

=
∫

R
dx f(y(x))q(x)

∫
R

dz δ(z − y(x))︸ ︷︷ ︸
=1

=

=
(a)

∫
R

dz f(z)
∫

R
dx q(x)δ(z − y(x))︸ ︷︷ ︸

⟨δ(z−y(x))⟩q(x)

(2.6)

where in (a) we used the fact that δ(z − y(x)) = 1 only when z = y(x), and
it’s 0 otherwise, and so:

f(y(x)) =
∫

R
dz f(z)δ(z − y(x))

Of course we can rewrite ⟨f⟩ directly in terms of p(y):

⟨f(y)⟩ =
∫

R
dy f(y)p(y) (2.7)

Comparing (2.6) with (2.7) and renaming y → z leads to:

p(z) =
∫

R
dx q(x)δ(z − y(x)) = ⟨δ(z − y(x))⟩q(x) (2.8)
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which, in general, is not the same as the previously obtained result:

p(z) ̸= q(x(z))dx(z)
dz

To retrieve this special case we must assume y(x) to be invertible, with inverse
x(y). This means that sgn y′(x) = A, with A ∈ R \ {0} constant.
We want now to compute δ(z − y(x)) in this case. Recall that δ ◦ g, if g is a
continuously differentiable function with g(x0) = 0 and g′(x) ̸= 0 ∀x is:

δ(g(x)) = δ(x− x0)
|g′(x0)|

So, if we let g(x) = z − y(x), the only zero is at x = x(z), as then y(x(z)) = z.
So:

δ(z − y(x)) = δ(x− x(z))
|y′(x(z))|

Substituting back in (2.8):

p(z) = ⟨δ(x− x(z))
|y′(x(z))|

⟩q(x) =
∫

R
dx q(x)δ(x− x(z))

|y′(x(z))|
= q(x(z))|y′(x(z))|−1 =

= q(x(z))dx(y)
dy

∣∣∣
y=x(z)

(2.9)

which is the same rule found in (2.5).

2.2 Examples of path integrals
We now see some examples of explicit calculation of Wiener path integrals, that
will be useful for the upcoming applications.

2.2.1 Transition probabilities
Thanks to the Wiener measure we have a way to assign probabilities to paths
x(τ). We can recover from this the transition probabilities we started from, by
considering the functional that evaluates a path at an instant t: x(τ) 7→ x(t) ≡
xt. Then, by applying (2.8) we can compute the distribution followed by xt: Path with a

constrained
end-pointp(xt) = W (xt, t|0, 0) = ⟨δ(xt − x(τ))⟩W =

∫
R

T
dWx(τ) δ(xt − x(τ)) (2.10)

(The starting condition x(0) = 0 is contained in the definition of the measure
dW x(τ)).

So we can now write:
Path integral for a
transition
probability

W (x, t|0, 0) =
∫

R
T

dWx δ(x(t) − x) =

= “ lim
N→∞

”
∫

R
N+1

N+1∏
i=1

dxi√
4πD∆ti

exp
Ç

−
N+1∑
i=1

(xi − xi−1)2

4D∆ti

å
δ(xN+1 − x)
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where tn = t, x(tn) = xN+1.

We already computed this result. In fact, recall that:

W (xt, t|0, 0) = 1√
4πDt

exp
Ç

− x2
t

4Dt

å
If we set xt = 0 (for simplicity), we get:

W (0, t|0, 0) = 1√
4πDt

(2.11)

As an exercise to get some familiarity with Wiener integrals, we will now re-
derive this result, by evaluating the Weiner path integral in (2.10), with xt = 0:

W (0, t|0, 0) = ⟨δ(0 − x(τ))⟩W =
∫

R
T

dWx(τ) δ(x(τ)) ≡ I1 (2.12)

First, it is convenient to establish some additional notation.
Let T = [0, ∞). We denote with C{0, 0; t′} the subset of trajectories in R

T Notation for path
ensemblesstarting from x = 0 at t = 0, and lasting a time span t′. Then, C{0, 0; x′, t′} is

the subset of C{0, 0; t′} when even the end-point is fixed to be x(t′) = x′. The
following normalization property holds:

⟨1⟩W =
∫

C{0,0;t}
1 · dWx(τ) = 1

We can then rewrite (2.12) as:

I1 =
∫

C{0,0;0,t}
dWx(τ)

Geometrically, W (0, t|0, 0) = I1 is the probability that a Brownian particle
starting at the origin returns in it after a finite amount of time t.

The standard way to compute a Wiener integral is to discretize it, and then take Discretization
a continuum limit. So, consider for simplicity a uniform time discretization
{ti}i=1,...,N+1, with instants ϵ-apart from each other, so that:

ti − ti−1 ≡ ϵ =
t

N + 1
∀i = 1, . . . ,N + 1

Note that the end-points are x0 = xN+1 = 0.

We can rewrite (2.12) as the continuum limit of its discretization: 1. Discretized path
integral

I1 ≡ lim
ϵ→0
N→∞

I
(N)
1 (2.13)

I
(N)
1 ≡ 1

(
√

4πDϵ)N+1

∫ +∞

−∞
dx1

∫ +∞

−∞
dx2 · · ·

∫ +∞

−∞
dxN exp

Ç
− 1

4Dϵ

N∑
i=0

(xi+1 − xi)2
å

(2.14)

where we already computed the integral over dxN+1 involving the δ, by just
setting xN+1 ≡ 0.
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Let’s focus on the summation in the exponential: 2. Matrix form

N∑
i=0

(xi+1 − xi)2 = x2
1 +��x0

2 − 2x0x1 + x2
2 + x2

1 − 2x1x2 + · · · +���xN+1
2 + x2

N −������2xNxN+1 =

= 2(x2
1 + · · · + x2

N ) − 2(x1x2 + x2x3 + · · · + xN−1xN ) =

= 2
Ç

N∑
i=1

x2
i

å
− 2
Ç
N−1∑
i=1

xixi+1

å
This is a quadratic form, i.e. a polynomial with all terms of order 2. So, it can
be written in matrix form:

=
N∑

k,l=1
xkAklxl = xTANx

for an appropriate choice of entries Akl of the N ×N matrix AN :

Akk = 2; Akl = −(δk, l+ 1 + δk+1,l) ⇒ AN =



2 −1 0 · · · 0

−1 2 −1
. . .

...

0
. . .

. . .
. . . 0

...
. . . −1 2 −1

0 · · · 0 −1 2


Substituting back in (2.14):

I
(N)
1 =

1
(
√

4πDϵ)N+1

∫ +∞

−∞
dx1 · · ·

∫ +∞

−∞
dxN exp

Ç
−xTANx

4Dϵ

å
Recall the multivariate Gaussian integral: 3. Multivariate

Gaussian∫ +∞

−∞
dx1 · · · dxN exp

(
−

N∑
ij

Bijxixj

)
=

(
√
π)N√

detB

with B = AN/(4Dϵ), leading to:

I
(N)
1 =

(a)

1
(
√

4πDϵ)N+1

Ã
πN

det(AN )
[ 1

4Dϵ
]N =

1
(
√

4πDϵ)N+1

√
4πDϵN√
detAN

=

=
1√

4πDϵ
1√

detAN
(2.15)

where in (a) we used the property of the determinant det(cA) = cn det(A) ∀c ∈
R.
Now, all that’s left is to compute the determinant of AN . Fortunately, as AN 4. Determinant of

a tri-diagonal
matrix

is a tri-diagonal matrix, there is a recurrence relation in terms of the leading
principal minors of AN , which turns out to be multiples of the determinants of
AN−1 and AN−2.
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Explicitly, consider AN :

detAN ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 −1 0 · · · 0

−1 2 −1
. . .

...

0
. . .

. . .
. . . 0

...
. . . −1 2 −1

0 · · · 0 −1 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
N×N

and start computing the determinant following the last column. The only non-
zero contributions are:

detAN = (−1)(N−1)+N (−1)︸ ︷︷ ︸
+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 −1 0 · · · 0

−1 2 −1
. . .

...

0
. . .

. . .
. . . 0

...
. . . −1 2 −1

0 · · · 0 0 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(N−1)×(N−1)

+ (−1)2N (2) detAN−1 =

= (−1)2(N−1)(−1) detAN−2 + 2 detAN−1 = 2 detAN−1 − detAN−2
(2.16)

where the terms in blue are just the alternating signs from the determinant
expansion, and the other colours identify the matrix entries that are being
used.
Then, it is just a matter of computing the first two terms of the succession
(|AN | = detAN for brevity):

|A1| = 2 |A2| =
∣∣∣∣∣ 2 −1

−1 2

∣∣∣∣∣ = 4 − 1 = 3

And now we can use (2.16) to iteratively compute all |AN |, e.g. |A3| = 2 · 3 −
2 = 4. To find |AN | for a generic N , we need to make an hypothesis, and then
verify that it is compatible with (2.16). In this case, note that |AN | = N + 1
(∗) for all the examples we explicitly computed. Then, by induction:

|AN+1| =
(2.16)

2 · |AN | − |AN−1| =
(∗)

2 · (N + 1) − (N − 1 + 1) = 2N + 2 −N = (N + 1) + 1

which is indeed compatible with (∗). So, substituting back in (2.15) we get:

I
(N)
1 =

1√
4πDϵ

1√
N + 1

=
(a)

1√
4πDt

where in (a) we used ϵ = t/(N + 1) ⇒ N + 1 = t/ϵ from the discretization.
Note that this result is constant with respect to ϵ or N (recall that t is fixed
beforehand) and so taking the continuum limit leads immediately to I1 (2.13):

I1 ≡ lim
ϵ→0
N→∞

1√
4πDt

=
1√

4πDt

which is coherent with the result we previously computed (2.11).
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2.2.2 Integral functional
(Lesson 6 of
28/10/19)
Compiled: October
13, 2020

Consider a Brownian trajectory x(τ) (from now on, we will assume that all
trajectories start in x = 0 at t = 0), and a functional that weights every
traversed point x(τ) with a function a : R → R, and then applies another
function F : R → R to the total integral:

F [x(τ)] = F

Å∫ t

0
a(τ)x(τ) dτ

ã
For simplicity, we set D = 1/4, so that:

dPt1,...,tn (x1, . . . ,xn|0, 0) = exp
Ç

−
n∑
i=1

(xi − xi−1)2

∆ti

å
n∏
i=1

dxi√
π∆ti

This is equivalent to a time rescaling t → τ = 4Dt.
We want now to compute ⟨F ⟩:

I3 ≡ ⟨F [x(τ)]⟩w =
∫

C{0,0;t}
dWx(τ)F [x(τ)]

Note: the next computations will follow the book. Prof. Maritan’s method
for evaluating I3 is quicker, but more advanced, and will be presented at the
end.

Then we start by discretizing, by choosing a time grid 0 = t0 < t1 < · · · <
tN = t:

1. Discretized path
integral

I3 = lim
N→∞

I
(N)
3

I
(N)
3 =

∫ +∞

−∞

dx1√
π∆t1

· · ·
∫ +∞

−∞

dxN√
π∆tN

F

Ç
N∑
i=1

aixi∆ti

å
exp

(
−

N∑
i=1

( xi − xi−1 )2

∆ti

)
ai ≡ a(ti)
xi ≡ x(ti)

This integral can be evaluated by transforming it to a gaussian integral that
we already know. So we start by changing variables:

2. Change of
variablesxi − xi−1 = yi i = 1, . . . ,N (2.17)

Note that:
i∑

j=1
yj =��x1 − x0︸︷︷︸

=0

+x2 −��x1 + · · · + xi −XXXxi−1 = xi 1 ≤ i ≤ N

So, when we compute the transformation of the volume element:

det
∣∣∣∣∣∂{xi}
∂{yj}

∣∣∣∣∣ = det

∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0
1 1 0 0
...

...
. . . 0

1 1 · · · 1

∣∣∣∣∣∣∣∣∣∣∣
N×N

= 1
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as the determinant of a lower triangular matrix is equal to the product of the
diagonal entries.
All that’s left is to transform the argument of F . Let’s start by writing the
first terms of the sum and apply the change of variables:

N∑
i=1

aixi∆ti = a1x1∆t1 + a2x2∆t2 + · · · =

= a1(y1)∆t1 + a2(y1 + y2)∆t2 + · · · =

= y1

(
N∑
j=1

aj∆tj

)
+ y2

(
N∑
j=2

aj∆tj

)
+ · · · + yNaN∆tN =

=
N∑
i=1

yi

(
N∑
j=i

aj∆tj

)
︸ ︷︷ ︸

Ai

≡
N∑
i=1

Aiyi (2.18)

Substituting everything back:

I
(N)
3 =

∫ +∞

−∞

dy1√
π∆t1

· · ·
∫ +∞

−∞

dyN√
π∆tN

F

Ç
N∑
i=1

Aiyi

å
exp
Ç

−
N∑
i=1

y2
i

∆ti

å
Ai =

N∑
j=i

aj∆tj

We can simplify this integral a bit more by rescaling the yi:

zi = Aiyi dyi =
dzi
Ai

As each yi is transformed independently, the jacobian is diagonal.

I
(N)
3 =

∫ +∞

−∞

dz1»
πA2

1∆t1
· · ·

∫ +∞

−∞

dzN»
πA2

N∆tN
F (z1 + · · · + zN ) exp

Ç
−

N∑
i=1

z2
i

A2
i∆ti

å
This is the expected value of a function of the sum of N normally distributed
random variables {zi}. The idea is now to isolate one of them from the argu-
ment of F , integrate over it, and reiterate. This is done by changing variables
yet again:

3. Second change
of variables

η = z1 + z2

ξ = z2

⇒

z1 = η − ξ

z2 = ξ
⇒ det

∣∣∣∣∂{z1, z2}
∂{η, ξ}

∣∣∣∣ =
∣∣∣∣∣ 1 −1

0 1

∣∣∣∣∣ = 1

leading to:

I
(N)
3 =

∫ +∞

−∞

dη»
πA2

1∆t1

∫ +∞

−∞

dξ»
πA2

2∆t2

∫ +∞

−∞

dz3»
πA2

3∆t3
· · ·

∫ +∞

−∞

dzN»
πA2

N∆tN
·

· F (η+ z3 + · · · + zN ) exp
Ç

−(η − ξ)2

A2
1∆t1

− ξ2

A2
2∆t2

−
N∑
i=3

z2
i

A2
i∆ti

å
Note how ξ does not enter in the F argument, and so we can integrate over it:

Iξ =
∫ +∞

−∞
dξ 1»

πA2
1∆t1
»
πA2

2∆t1
exp
Ç

−(η − ξ)2

A2
1∆t1

− ξ2

A2
2∆t2

å
=
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=
∫ +∞

−∞
dξ (· · · ) exp

Ñ
−
ξ2(A2

1∆t1 +A2
2∆t2) − ξ(2ηA2

2∆t2) − (−η2A2
2∆t2)

A2
1A

2
2∆t1∆t2

é
Recall the gaussian integral formula:

4. Gaussian
integral

∫ +∞

−∞
exp
Ä
− a x2 + b x+ c

ä
dx =

…
π

a
exp
Ç
b2

4a
+ c

å
(2.19)

which evaluates to:

Iξ =
1»

π(A2
1∆t1 +A2

2∆t2)
exp
Ç

− η2

A2
1∆t1 +A2

2∆t2

å
and substituting back in I

(N)
3 :

I
(N)
3 =

∫ +∞

−∞

dη»
πA2

1∆t1 + πA2
2∆t2

∫ +∞

−∞

dz3»
πA2

3∆t3
· · ·

∫ +∞

−∞

dzN»
πA2

N∆tN
·

· F (η+ z3 + · · · + zN ) exp
Ç

− η2

A2
1∆t1 +A2

2∆t2
−

N∑
i=3

z2
i

A2
1∆ti

å
We can now reiterate this procedure until only one integration is left:

I
(N)
3 =

∫ +∞

−∞

dz»
π

∑N
i=1A

2
i∆ti

F (z) exp
Ç

− z2∑N
i=1A

2
i∆ti

å
We are now finally ready to take the continuum limit ∆ti → 0, N → ∞. Note
that: 5. Continuum limit

lim
∆ti→0

Ai =
∫ t

τ
a(s) ds = A(τ) (2.20)

as the discrete sum goes from ti = τ to tN = t. Then:

R ≡ lim
∆t→0

N∑
i=1

A2
i∆ti =

∫ t

0
dτ
Å∫ t

τ
ds a(s)

ã2

and so:

I3 = lim
N→∞

I
(N)
3 =

∫ +∞

−∞
dz F (z)√

πR
exp
Ç

−z2

R

å
And to recover D we can just substitute R → 4DR.

Alternative method

We consider now a different (quicker) technique to compute I3. We start again
from:

I3 ≡ ⟨F [x(τ)]⟩w =
∫
C{0,0;t}

dWx(τ)F
Å∫ t

0
a(τ)x(τ) dτ

ã
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It is convenient to apply the change of variables we did in (2.18). We can do
before discretizing, by defining A(τ) as in (2.20): 1. Auxiliary

function A(τ)

A(τ) ≡
∫ t

τ
a(s) ds (2.21)

Note that Ȧ(τ) = −a(τ), and so the argument of F becomes:∫ t

0
a(τ)x(τ) dτ = −

∫ t

0
∂τA(τ)x(τ) dτ

Integrating by parts, noting that A(t) = 0 and x(0) = 0 leads to:

= −������[x(τ)A(τ)]τ=tτ=0 +
∫ t

0
A(τ)ẋ(τ) dτ

And now we discretize the path over the instants 0 = t0 < t1 < · · · < tN , so
that:

2. Path integral
discretization

∫ t

0
A(τ)ẋ(τ) dτ = lim

∆ti→0

N∑
i=1

A(ti)
x(ti) − x(ti−1)

∆ti
∆ti =

= lim
N→∞

N∑
i=1

Ai(xi − xi−1) = lim
N→∞

N∑
i=1

Ai∆xi
xi ≡ x(ti)
Ai ≡ A(ti)

Substituting back (here D = 1/4 for simplicity):

I3 = lim
N→∞

I
(N)
3

I
(N)
3 =

∫
R

N

Ç
N∏
i=1

dxi√
π∆ti

å
exp
Ç

−
N∑
i=1

(∆xi)2

∆ti

å
F

Ç
N∑
i=1

Ai∆xi

å
The idea is now to apply a change of random variable, rewriting the average
⟨F [x(τ)]⟩w (according to the distribution of paths) as the average ⟨F (z)⟩p(z),
where p(z) is the distribution followed by the argument of F :

N∑
i=1

Ai∆xi

So, we begin by inserting the appropriate δ: 3. Change of
random variables

I
(N)
3 =

∫
R

N

Ç
N∏
i=1

dxi√
π∆ti

å
exp
Ç

−
N∑
i=1

(∆xi)2

∆ti

å
F

Ç
N∑
i=1

Ai∆xi

å ∫
R

dz δ
Ç
z −

N∑
i=1

Ai∆xi

å
︸ ︷︷ ︸

=1

Exchanging the integrals leads to:

⟨F
Ç

N∑
i=1

Ai∆xi

å
⟩w = ⟨F (z)⟩p(z) =

=
∫

R
dz F (z)

∫
R

N

Ç
N∏
i=1

dxi√
π∆ti

å
δ

Ç
z −

N∑
i=1

Ai∆xi

å
exp
Ç

−
N∑
i=1

(∆xi)2

∆ti

å
︸ ︷︷ ︸

p(z)
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We can evaluate I(N)
3 by transforming it to a gaussian integral. First, we remove

the δ with a Fourier transform:
4. Fourier
transform2πδ(x) =

∫
R
eiαx dα

which, in this case, leads to:

δ

Ç
z −

N∑
i=1

Ai∆xi

å
=

∫
R

dα
2π

exp
Ç
iα

Ç
z −

N∑
i=1

Ai∆xi

åå
Substituting back:

I
(N)
3 =

∫
R

dα
2π

∫
R

dz F (z)eiαz
∫

R
N

Ç
N∏
i=1

dxi√
π∆ti

å
exp
Ç

−
N∑
i=1

∆x2
i

∆ti
− iα

N∑
i=1

Ai∆xi

å
We see that the last term is similar to a multivariate gaussian with a imaginary
term, that we know how to integrate. We just need to remove the differences
in the exponential with a change of variables (as in (2.17)):

5. Change of
variablesy1 = ∆x1 = x1 −

=0︷︸︸︷
x0 = x1

y2 = ∆x2 = x2 − x1
...

yN = ∆xN = xN − xN−1

The volume element will be transformed by the determinant of the Jacobian:

J = det ∂(x1 . . . xN )
∂(y1 . . . yN )

=

ï
det ∂(y1 . . . yN )

∂(x1 . . . xN )

ò−1
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 . . . 0
−1 1 0 . . . 0

0 −1 1 0
...

...
. . .

. . .
. . .

...

0 0 0 . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1

= 1

where we used the fact that detA−1 = (detA)−1, and that the determinant of
a lower triangular matrix is just the product of the diagonal entries.
The integral then becomes:

I
(N)
3 =

∫
R

dα
2π

∫
R

dz F (z)eiαz
∫

R
N

Ç
N∏
i=1

dyi√
π∆ti

å
exp
Ç

−
N∑
i=1

y2
i

∆ti
− iα

N∑
i=1

Aiyi

å
=

=
∫

R

dα
2π

∫
R

dz F (z)eiαz
ñ
N∏
i=1

∫
R

dyi√
π∆ti

exp
Ç

− y2
i

∆ti
− iαAiyi

åô
The terms in the product are all independent gaussian integrals. Recall that:

6. Gaussian
integral

∫
R

dk e−iak2−ibk =

…
π

ia
exp
Ç
ib2

4a

å
(2.22)
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So, with ia = 1/∆ti and b = αAi we get:

∫
R

dyi√
π∆ti

exp
Ç

− y2
i

∆ti
− iαAiyi

å
= exp

Ç
−α2A2

i∆ti
4

å
and substituting back in the integral leads to:

I
(N)
3 =

∫
R

dα
2π

∫
R

dz F (z)eiαz
ñ
N∏
i=1

exp
Ç

−α2A2
i∆ti
4

åô
=

=
∫

R

dα
2π

∫
R

dz F (z)eiαz exp
Ç

−α2

4

N∑
i=1

A2
i∆ti

å
Applying the continuum limit (N → ∞, ∆ti → 0), the exponential argument
becomes the limit of a Riemann sum, i.e. a integral:

7. Continuum limit
N∑
i=1

A(ti)2∆ti −−−−→
N→∞

∫ t

0
A2(τ) dτ =

(2.21)

∫ t

0
dτ
Å∫ t

τ
ds a(s)

ã2
≡ R(t)

Substituting back:

I3 ≡ ⟨F
Å∫ t

0
a(τ)x(τ)

ã
⟩ = lim

N→∞
I

(N)
3 =

∫
R

dz F (z)
∫
R

dα
2π

exp
Ç

−α2

4
R(t) + iαz

å
All that’s left is to evaluate the last gaussian integral thanks to (2.22) with
ia = R(t)/4 and b = −z, leading to:

I3 =
∫

R
dz F (z) 1

2π

 
4π
R(t)

exp
Ç

− z2

R(t)

å
=

1√
πR(t)

∫
R

dz F (z) exp
Ç

− z2

R(t)

å
So, we showed that:

⟨F
Å∫ t

0
a(τ)x(τ) dτ

ã
⟩w =

 
1

πR(t)

∫
R

dz F (z) exp
Ç

− z2

R(t)

å
; R(t) ≡

∫ t

0
dτ
Å∫ t

τ
a(s) ds

ã2

(2.23)
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�� ��Example 3 (Generating function):

Let F (z) = ehz. Inserting in (2.23) results in:

⟨exp
Å
h

∫ t

0
a(τ)x(τ) dτ

ã
⟩w =

1√
πR

∫
R

dz exp
Ç

−z2

R
+ hz

å
=
(a)

exp
Ç
h2R

4

å
≡ G(h)

(2.24)

where in (a) we used formula (2.19) with a = 1/R and b = h.
Note that G(h) is the moment generating function (see (5.1) at pag.
118) of the integral:

I =
∫ t

0
a(τ)x(τ) dτ

We can then retrieve the n-th moment of I by computing the n-th derivative
of G(h):

dn

dhn
G(h)

∣∣∣
h=0

= ⟨In⟩w

We can see this by differentiating the left side of (2.24):

G′(h) = ⟨
∫ t

0
a(τ)x(τ) dτ exp

(
h

∫ τ

0
ax dτ

)
⟩w

and then setting h = 0:

G′(0) = ⟨
∫ t

0
a(τ)x(τ) dτ⟩w = ⟨I⟩w

Then, differentiating the right side of (2.24) we have immediately the result:

⟨I⟩w = G′(h)
∣∣∣
h=0

=
h

2
R exp

Ç
h2R

4

å ∣∣∣
h=0

= 0

If we differentiate again we get the second moment:

G′′(h) = R

2
exp
Ç
h2R

4

å
+
h2

4
R2 exp

Ç
h2R

4

å
⇒ G′′(0) = ⟨I2⟩w =

R

2

Consider now a generic odd moment:

⟨
Å∫ t

0
a(τ)x(τ) dτ

ã2k+1
⟩w = 0 ∀k ∈ N

In fact, if we expand G(h), we get:

G(h) =
∞∑
n=0

Å
R

4

ãn 1
n!
h2n

Since all the powers are even, if we differentiate an odd number of times
and set h = 0 we are “selecting” an odd power - which just is not there -
and so the result will be 0.
On the other hand, an even moment leads to:

⟨
Å∫ t

0
a(τ)x(τ) dτ

ã2k
⟩w =

Å
R

2

ãk (2k)!
2kk!

(computations omitted).
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2.2.3 Potential-like functional
We consider now the following functional:

F [x(τ)] = exp
Å

−
∫ t

0
dτ P (τ)x2(τ)

ã
As before, we wish to compute ⟨F ⟩w. We start by discretizing the path over a
uniform2 grid 0 = t0 < t1 < · · · < tN = t so that ∆ti = ti − ti−1 ≡ ϵ = t/N .

1. Discretized path
integralI4 ≡

∫
C{0,0;t}

dWx(τ) exp
Å

−
∫ t

0
dτ P (τ)x2(τ)

ã
= lim

N→∞
I

(N)
4

I
(N)
4 =

∫ +∞

−∞

dx1√
πϵ

· · ·
∫ +∞

−∞

dxN√
πϵ

exp
Ç

−
N∑
i=1

Pix
2
i ϵ−

N∑
i=1

(xi − xi−1)2

ϵ

å
xi ≡ x(ti)
Pi ≡ P (ti)

(2.25)
The exponential argument is a quadratic form: 2. Rewrite the

exponential in
matrix form− ϵ(P1x

2
1 + · · · + PNx

2
N ) − 1

ϵ
[��x

2
0 + x2

1 −���2x0x1 + x2
1 + x2

2 − 2x1x2 + · · ·+

+ . . . x2
N−1 + x2

N − 2xN−1xN ] =

= −ϵ
N∑
i=1

Pix
2
i − 1

ϵ

ñ
2
N−1∑
i=1

x2
i + x2

N − 2
N∑
i=1

xi−1xi

ô
=

= −
ñ
x2

1

Ç
ϵP1 +

2
ϵ

å
+ · · · + x2

N−1

Ç
ϵPN−1 +

2
ϵ

å
+ x2

N

Ç
ϵPN +

1
ϵ

å
− 2

ϵ

N∑
i=1

xixi−1

ô
=

= −
N∑

i,j=1
Aijxixj

where Aij are matrix elements of a matrix AN :

Aij = δijai − 1
ϵ

(δi,j−1 + δi−1,j) ai = Piϵ+
1
ϵ
(2 −δiN )

AN =



a1 −ϵ−1 0 . . . 0

−ϵ−1 a2 −ϵ−1 0
...

0
. . .

. . .
. . . 0

0 0 −ϵ−1 aN−1 −ϵ−1

0 0 0 −ϵ−1 aN


Note how we “split in half” the green term, making AN a symmetric matrix.

We can now rewrite I(N)
4 as:

I
(N)
4 =

∫
R

N

Ç
N∏
i=1

dxi√
πϵ

å
e−x

T
AN x xT = (x1, . . . ,xN )

This is the integral of a multivariate gaussian, and evaluates to:

I
(N)
4 =

1
ϵN/2(detAN )1/2 =

1
(det(ϵAN ))1/2

as for a N ×N matrix we have det(ϵAN ) = ϵN detAN . This has the advantage (Scaling the matrix
to remove
denominators)

2∧The same result can be proved without this assumption, but with a much more heavy
notation.
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of removing all denominators in AN .

To compute this determinant we use a method suggested by Gelfand and Ya-
glom (1960). We start by denoting with D

(N)
k the determinant of the matrix 3. Gelfand-

Yoglom methodobtained by removing the first k− 1 rows and columns from ϵAN :

D
(N)
k ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϵak −1 0 . . . 0

−1 ϵak+1 −1 0
...

0
. . .

. . .
. . . 0

...
. . . −1 aN−1 −1

0 . . . 0 −1 ϵaN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
So that D(N)

1 = det ϵAN is the determinant we want to compute (because here
we remove 1 − 1 = 0 rows).

Expanding D(N)
k from the first row we get:

D
(N)
k = ϵak Dk+1 − ( −1 )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 −1 0 . . . 0

0 ϵak+2 −1
. . .

...

0
. . .

. . .
. . . 0

...
. . . −1 aN−1 −1

0 0 0 −1 ϵaN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

=
(a)

ϵakD
(N)
k+1 + ( −1 )D(N)

k+2 = ϵ

Å
ϵPk +

2
ϵ

ã
D

(N)
k+1 −D

(N)
k+2 =

= (ϵ2Pk + 2)D(N)
k+1 −D

(N)
k+2

where in (a) we expanded the last determinant following the first column.
Rearranging:

D
(N)
k − 2D(N)

k+1 +D
(N)
k+2

ϵ2
= PkD

(N)
k+1 (2.26)

We introduce now the variable τ = (k − 1)t/N , representing the fraction of
removed rows/columns in each determinant, rescaled to the final time t. Per-
forming a continuum limit N → ∞ we can then map D(N)

k −−−−→
N→∞

D(s). Then,
the relation (2.26) becomes a differential equation:

A determinant as a
differential
equation

d2D(τ)
dτ2 = P (τ)D(τ) (2.27)

In fact, note that the first term of (2.26) is a second derivative in the finite
difference approximation. This can be shown by Taylor expanding a generic
function f(x) to get the points immediately before and after:

f(x+ ∆x) = f(x) + f ′(x)∆x+
1
2
f ′′(x)(∆x)2 +O((∆x)3)
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f(x− ∆x) = f(x) − f ′(x)∆x+
1
2
f ′′(x)(∆x)2 +O((∆x)3)

Summing side by side, and denoting f(x) ≡ fi, f(x− ∆x) ≡ fi−1 and f(x+
∆x) = fi+1:

fi+1 + fi−1 = 2fi + f ′′
i (∆x)2 +O((∆x)3)

Rearranging, shifting i → i+ 1 and ignoring the higher order terms leads to:

fi+2 − 2fi+1 + fi

(∆x)2 = f ′′
i+1

Analogously, this can be seen by computing the second derivative as the deriva-
tive of the first derivative in terms of incremental ratios:

f ′′(x) = lim
∆x→0

1
∆x

Å
f(x+ ∆x) − f(x)

∆x
− f(x) − f(x− ∆x)

∆x

ã
=

= lim
∆x→0

f(x+ ∆x) − 2f(x) + f(x− ∆x)
(∆x)2

Returning to the problem, we note that the determinant of the full matrix, in
the continuum limit, is given by:

det(ϵAN ) = D
(N)
1 −−−−→

N→∞
D(0)

(as τ = (k − 1)t/N
∣∣∣
k=1

≡ 0). So, we just need to solve (2.27) and evaluate it
at τ = 0.
To do this, we first need two boundary conditions, as (2.27) is a second order
differential equation.
Noting that D(N)

N is just the last diagonal entry, we have:

D
(N)
N = ϵaN = ϵ2pN + 1 −−−−→

N→∞
ϵ→0

1

As τ = (k− 1)t/N
∣∣
k=N

= t for N → ∞, this means that:

D(t) = 1

For the second boundary condition, we search a relation for the first derivative
at τ = t:

dD(τ)
dτ

∣∣∣
τ=t

= lim
N→∞

D
(N)
N −D

(N)
N−1

ϵ

D
(N)
N−1 can be computed directly:

D
(N)
N−1 =

∣∣∣∣∣ PN−1ϵ
2 + 2 −1

−1 PN ϵ
2 + 1

∣∣∣∣∣ = PN−1PN ϵ
4 + ϵ2(PN−1 + 2PN ) + 1
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leading to:

dD(τ)
dτ

∣∣∣
τ=t

= lim
ϵ→0

ϵ2PN + 1 − PN−1PN ϵ
4 − ϵ2(PN−1 + 2PN ) − 1
ϵ

= 0

Summarizing, we found that:

I4 ≡ ⟨exp
Å

−
∫ t

0
dτ P (τ)x2(τ)

ã
⟩w =

1√
D(0)

where D(τ) is the solution of the differential equation:

d2D(τ)
dτ2 = P (τ)D(τ)

with the following boundary conditions:D(t) = 1

Ḋ(t) = dD(τ)
dτ

∣∣∣
τ=t

= 0

�
�

�
�Example 4 (P (τ ) = k2, free end-point):

Let’s compute I4 with the choice of P (τ) = k2. The differential equation
becomes:

d2D(τ)
dτ2 = k2D(τ)

which is that of a harmonic repulsor. The solution is a linear combination
of exponentials:

D(τ) = Aekτ +Be−kτ (2.28)

Differentiating:

Ḋ(τ) = k(Aekτ −Be−kτ )

We can now impose the boundary conditions:D(t) !
= 1 = Aekt +Be−kt (a)

Ḋ(t) !
= 0 = ��k(Aekt −Be−kt) (b)

leading to:

(a) + (b) : 2Aekt = 1 ⇒ A =
1
2
e−kt

(a) − (b) : 2Be−kt = 1 ⇒ B =
1
2
ekt

So the solution is:

D(τ) = 1
2
î
ek(t−τ) + e−k(t−τ)ó = cosh(k(t− τ)) (2.29)

from which:

I4 =
(N)
lim
N→∞

=
1√
D(0)

=
1√

cosh(kt)
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Fixed end-point

We consider now a small variation of I4, where we integrate instead on paths
with a fixed end-point x(t) ≡ xt:

Î4 = ⟨exp
Å

−
∫ t

0
P (τ)x2(τ) dτ

ã
δ( x −x(t) ⟩w =

∫
C{0,0;xt,t}

exp
Å

−
∫ t

0
P (τ)x2(τ) dτ

ã
First, we rewrite the δ in terms of a Fourier transform:

1. Fourier
transform to
remove the
end-point δ

I ′
4 =

∫ +∞

−∞

dα
2π

eiαx ⟨exp
Å

−
∫ t

0
P (τ)x2(τ) dτ

ã
e−iαx(t) ⟩w

Then we discretize the path as before, with 0 = t0 < t1 < · · · < tN = t

uniformly distributed (∆ti = ti − ti−1 ≡ ϵ = t/N):
2. Discretized path
integralÎ4 = lim

N→∞
Î

(N)
4

Î
(N)
4 =

∫
R

dα
2π
eiαx

∫
R

N

Ç
N∏
i=1

dxi√
πϵ

å
exp
Ç

−
N∑
i=1

Pix
2
i ϵ−

N∑
i=1

(xi − xi−1)2

ϵ
−iαxN

å
where the red terms are the only differences from (2.25). We can rewrite the
quadratic form with the matrix AN as before:

3. Exponential
argument in matrix
form

Î
(N)
4 =

∫
R

dα
2π
eiαx

∫
R

N

Ç
N∏
i=1

dxi√
πϵ

å
exp
Ä
−xTANx − iαxN

ä
Also, we can express iαxN as a scalar product between x = (x1, . . . ,xN )T and
a certain vector h ∈ R

N with components hl given by:

iαxN = hTx hl = δlN (−iα)

So that we can now use the gaussian integral:
4. First N

gaussian integrals
∫

R
N

dNx exp
Å

−1
2

xTAx + b · x

ã
= exp

Å1
2

b ·A−1b

ã
(2π)N/2(detA)−1/2

with A = 2AN and b = h:

I ′ ≡ 1»
(πϵ)N

∫
R

N
dNx exp

Ä
−xTANx + hTx

ä
=

=
1»

(πϵ)N
exp
Å1

4
hTA−1

N h

ã
(�2π)N/2(��2N detAN )−1/2 =

=
1»

(�πϵ)N

√
�
�πN

detAN
exp
Å1

4
(−iα)2(A−1

N )NN
ã
=

 
1

ϵN detAN︸ ︷︷ ︸
I0

exp
Å

−1
4
α2(A−1

N )NN
ã

where (A−1
N )NN is the last diagonal element of the inverse matrix of AN . Sub-

stituting back:

Î
(N)
4 = I0

∫
R

dα
2π

exp
Å
iαx− 1

4
α2(A−1

N )NN
ã
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which is again a gaussian integral, and following formula (2.22) with a =
(A−1

N )NN/4 and b = −x leads to: 5. Last gaussian
integral

Î
(N)
4 =

I0
A2π

 
A4π

(A−1
N )NN

exp
Ç

− x2

(A−1
N )NN

å
=

I0»
π(A−1

N )NN
exp
Ç

− x2

(A−1
N )NN

å
(2.30)

All that’s left is to compute (A−1
N )NN and take the continuum limit. Recall

from linear algebra that:

A−1
ij =

1
detA

Cji

where Cij are the cofactors of A, i.e. the determinants of the matrices obtained
from A by removing the i-th row and j-th column. In our case:

(A−1
N )NN =

CNN
detAN

Before, we obtained detAN by means of D(N)
k , i.e. the determinants of the 6. Gelfand-Yoglom

method
(bottom-top
variant)

matrices obtained by removing the first k− 1 rows and columns, so that D(N)
1 =

ϵN detAN . This leads to:

(A−1
N )NN =

ϵN

D
(N)
1

CNN

For CNN we have to compute the determinant of the (N − 1) × (N − 1) matrix
A(N−1)

∗ , obtained by removing the last row and column from AN . Note that
A(N−1)

∗ ̸= A(N−1), as they differ for the last diagonal element which is:

(A(N−1)
∗ )N−1,N−1 = PN−1ϵ+

2
ϵ

̸= (A(N−1)
N−1,N−1) = PN−1ϵ+

1
ϵ

(2.31)

We proceed in a similar manner, defining D̂(N−1)
k to be the determinant of the

matrix obtained by removing the first k − 1 rows and columns from ϵA(N−1)
∗

(again, we multiply by ϵ to remove denominators):

D̂
(N−1)
k =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϵak −1 0 . . . 0

−1 ϵak−1 −1 0
...

0
. . .

. . .
. . .

...
...

. . . −1 ϵaN−2 −1
0 . . . . . . −1 ϵaN−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
So D̂(N−1)

1 = ϵN−1 detA(N−1)
∗ = ϵN−1CNN leading to:

(A−1
N )NN =

ϵN

D
(N)
1

1
ϵN−1 D̂

(N−1)
1 = ϵ

D̂
(N−1)
1

D
(N)
1
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For simplicity, it is convenient to define D̃(N−1)
1 ≡ ϵD̂

(N−1)
1 , so that:

(A−1
N )NN =

D̃
(N−1)
1

D
(N)
1

(2.32)

Repeating the steps for the continuum limit, we get the same differential equa-
tion for D̃(τ): Determinant as a

differential
equation∂2

τ D̃(τ) = P (τ)D̃(τ)

However, due to (2.31), the boundary conditions are now different:

D̃
(N−1)
N−1 = ϵ(ϵ2PN−1 + 2) = PN−1ϵ

3 + 2ϵ −−→
ϵ→0

0 = D̃(t)

D̃
(N−1)
N−2 = ϵ

∣∣∣∣∣ PN−2ϵ
2 + 2 −1

−1 PN−1ϵ
2 + 2

∣∣∣∣∣ = ϵ(PN−1PN−2ϵ
4 + 2(pN−1 + PN−2)ϵ2 + 3)

D̃
(N−1)
N−1 − D̃

(N−1)
N−2

ϵ
= −1 +O(ϵ2) −−→

ϵ→0
−1 =

dD̃(τ)
dτ

∣∣∣
τ=t

Then, substituting (2.32) in (2.30) we get:

Î
(N)
4 =

I0»
π(A−1

N )NN
exp

(
−x2 D

(N)
1

D̃
(N−1)
1

)
I0 =

1»
ϵN detAN

=
1»
D

(N)
1

I4 = lim
N→∞

Î
(N)
4 =

1»
πD̃(0)

exp
Å

−x2D(0)
D̃(0)

ã
(2.33)

Where D(τ) and D̃(τ) are solutions of the following differential equations with
the following boundary conditions:

D̃′′(τ) = P (τ)D̃(τ)

D̃(t) = 0
dD̃(τ)

dτ

∣∣∣
τ=t

= −1

D′′(τ) = P (τ)D(τ)

D(t) = 1
dD(τ)

dτ

∣∣∣
τ=t

= 0

�
�

�
�Example 5 (P (τ ) = k2 with fixed end-point):

Let P (τ) = k2, with k ∈ R constant. We already solved the equation for
D(τ) with the right boundary conditions in (2.29):

D(τ) = cosh(k(t− τ))

For D̃(τ) we start from the general integral (2.28) and impose the appropri-
ate boundary conditions:D̃(t) = Ãekt + B̃e−kt = 0 (a)

dD̃(τ)
dτ

∣∣∣
τ=t

= k(Ãekt − B̃e−kt) = −1 (b)
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so that:

k(a) + (b) : 2Ãkekt = −1 ⇒ Ã = − 1
2k
e−kt

k(a) − (b) : 2Bke−kt = 1 ⇒ B̃ =
1
2k
ekt

leading to the solution:

D̃(τ) = 1
2k

(ek(t−τ) − e−k(t−τ)) = 1
k

sinh(k(t− τ))

Finally, using the result we found in (2.33):

⟨exp
Å

−k2
∫ t

0
x2(τ) dτ δ(x− x(t))

ã
⟩w =

=
∫

C{0,0;xt,t}
exp
Å

−k2
∫ t

0
x2(τ) dτ

ã
dWx(τ) =

=

 
k

π sinh(kt)
exp
Ä
−kx2

t coth(kt)
ä

2.3 Properties of Brownian Paths
The Wiener measure allows us to compute the probabilities of paths produced
by the diffusion process, and also highlight some of their defining character-
istics. We now show that all Brownian paths with non-zero Wiener measure
(i.e. paths that “can happen”) are everywhere continuous, but nowhere
differentiable. (Lesson 6 of

04/11/19)
Compiled: October
13, 20202.3.1 Continuity

Consider a particle starting in x = 0 at t = 0, and traversing N points
{xi}i=1,...,N such that all increments ∆xi = xi − xi−1 are independent and
described by a gaussian pdf. The density function for such a trajectory {xi} is
the usual product of transition probabilities:

dPt1,...,tN (x1, . . . ,xN ) =
Ç

N∏
i=1

dxi√
4π∆tiD

å
exp
Ç

−
N∑
i=1

(∆xi)2

4D∆ti

å
∆ti=ti−ti−1

∆xi=xi−xi−1

(2.34)

We now show that, taking the continuum limit maxi ∆ti → 0 leads to paths
{x(τ)} that are almost surely continuous. In other words, for any interval
T ⊆ R, the subset N ⊂ R

T of functions that are discontinuous has 0 Wiener
measure.
Mathematically, we want to show that, as ∆ti → 0, the probability that ∆xi is
close to 0 approaches certainty:

lim
∆ti→0

P(|∆xi| < ϵ) = 1 ∀ϵ > 0

53



This is just the probability that, during time ∆ti, the particle makes a jump of
size lower than ϵ:

P(|∆xi| < ϵ) = P(xi−1 − ϵ < xi < xi−1 + ϵ|x(ti−1) = xi) =

=
∫ xi−1+ϵ

xi−1−ϵ

dxi√
4πD∆ti

exp
Ç

−(xi − xi−1)2

4D∆ti

å
=

=
(a)

∫ +ϵ

−ϵ

d∆xi√
4πD∆ti

exp
Ç

−(∆xi)2

4D∆ti

å
where in (a) we translated the variable of integration ∆xi = xi − xi−1.
With another change of variables:

(∆xi)2

∆ti
= z2 ⇒ z =

∆xi√
∆ti

⇒ d∆xi = dz
√

∆ti

we get:

P(|∆xi| < ϵ) =
∫

|z|<ϵ/
√

∆ti

dz���√
∆ti√

4πD�
�∆ti

exp
Ç

− z2

4D

å
And taking the continuum limit leads to:

lim
∆ti→0

P(|∆xi| < ϵ) =
∫ +∞

−∞

dz√
4πD

exp
Ç

− z2

4D

å
= 1

2.3.2 Differentiability
With a very similar calculation (here omitted) we can also show that:

lim
∆ti↓0

Å∣∣∣∣∆xi∆ti

∣∣∣∣ > k

ã
= 1 ∀k > 0

meaning that Brownian paths are almost surely everywhere non-differentiable.
Nonetheless, it is sometimes useful to consider “formal derivatives” of a Brow-
nian path, that acquire a definite meaning only when considering a finite dis-
cretization. For example, we can start from (2.34) and rewrite it as:

dPt1,...,tN (x1, . . . ,xN ) =
Ç

N∏
i=1

dxi√
4π∆ti

å
exp
Ç

− 1
4D

N∑
i=1

∆ti

Å
∆xi
∆ti

ã2å
Then, in the continuum limit ∆ti → 0, the sum in the exponential argument
becomes a Riemann integral:

N∑
i=1

∆ti

Å
∆xi
∆ti

ã2
−−−→
∆t→0

∫ t

0
dτ
Ådxi

dτ

ã2

︸ ︷︷ ︸
ẋ

2(τ)

t = tN

where t = tN . Substituting it back leads to:

dxw (τ) =
t∏

τ=0+

dx (τ)√
4πD dτ

exp
Å

− 1
4D

∫ t

0
ẋ2(τ) dτ

ã
This expression has no rigorous meaning in this form (ẋ(τ) does not exists!)
but can be formally manipulated into other expressions that have a definite
meaning, thus proving useful for the discussion.
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Chapter 3

Diffusion with Forces

We want now to generalize the framework we previously obtained to the case
of a diffusing particle subject to external forces, e.g. a drop of ink diffusing
through a water medium in the presence of gravity.
To do this, we first return to the beginning, deduce a Master Equation for
a more general evolution, and then choose the right probability distribution
reproducing the behaviour in presence of forces.

3.1 Fokker-Planck equation
So, let’s start by considering a particle moving on a uniform one-dimensional
lattice (xi = i · l, tn = n · ϵ), and satisfying the Markovian property, meaning
that the probability Wi(tn+1) of being at the position labelled by i at the
next time-step tn+1 depends only on the current state tn, that is on the current
probabilities Wj(tn) ∀j and on the current transition probabilities Wij(tn) from
j to i:

Wi(tn+1) =
+∞∑
j=−∞

Wij(tn)Wj(tn) (3.1)

Previously, we assumed that:

Wij(tn) = δj,i−1P+ + δj,i+1P−

Which means that the particle only jumps from adjacent positions, one step at
a time, and cannot remain at the same place. This Master Equation leads, in
d = 3 and in the continuum limit, to the usual Diffusion Equation:

∂

∂t
W (x, t|x0, t0) = ∇2W (x, t|x0, t0)

We now consider a more general case, where we drop the discretization of the
space domain, allowing jumps of any size in R. Then (3.1) becomes: Generalized Master

Equation (Jumps
of any size)

W (x, tn+1) dx =
∫ +∞

−∞
dz W (x, tn+1|x− z, tn)W (x− z, tn) (3.2)
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The integrand is the probability of the particle being in [x− z,x− z + dx] at
time tn and making a jump of size z to reach [x,x+ dx] at time tn+1. By
summing over all possible jump sizes we compute the total probability of the
particle being near the arrival position.
If we require jumps to be independent of each other1, as it is physically evident
by the problem’s symmetry, then the jump probabilities W (x, tn+1|x− z, tn)
depend only on the jump size z.
Assuming a isolate system, as the particle cannot escape, probability is con-
served:

Conservation of
probability

∫
R

dxW (x, tn+1) !
=

∫
R

dyW (y, tn)

=
(3.2)

∫
R

dz
∫

R
dxW (x, tn+1|x− z, tn)W (x− z, tn) =

=
(a)

∫
R

dz
∫

R
dyW (y+ z, tn+1|y, tn)W (y, tn) =

=
(b)

(∫
R

dz W (ȳ+ z, tn+1|ȳ, tn)
)(∫

R
dyW (y, tn)

)
∀ȳ ∈ R

where in (a) we changed variables x 7→ y = x − z, with dy = dx, and in
(b) we used the independent increments property (ȳ is a arbitrary constant).
Comparing the first and last lines leads to:∫

R
dz W (y+ z, tn+1|y, tn) = 1

Intuitively, if the particle cannot disappear, it must make a jump.
Here on, for notation simplicity, we denote:

W (y+ z, tn+1|y, tn) ≡ W (+z|y, tn)

Starting from (3.2) and taking the continuum limit in time we can write a more
general diffusion equation. We start by constructing the difference quotient: Generalized

diffusion equation
W (x, tn+1) −W (x, tn) =

∫
R

dz W (+z|x− z, tn)W (x− z, tn) −W (x, tn) =

=
∫

R
dz W (+z|x− z, tn)W (x− z, tn) −

∫
dz W (+z|x, tn)︸ ︷︷ ︸

=1

W (x, tn) =

=
∫

R
dz
[
W (+z|x− z, tn)W (x− z, tn)︸ ︷︷ ︸

Fz(x−z)

−W (+z|x, tn)W (x, tn)︸ ︷︷ ︸
Fz(x)

]
=

=
∫

R
dz [Fz(x− z) − Fz(x)] =

=
(a)

∫
R

dz
ñ
����Fz(x) − z

∂

∂x
Fz(x) + z2

2
∂2

∂x2 [Fz(x)] + · · · −����Fz(x)
ô
=

= −
∫

R
dz z ∂

∂x
[Fz(x)] + 1

2

∫
R

dz z2 ∂
2

∂x2 [Fz(x)] + · · · =

1∧This is a stronger requirement than the Markovian property. In fact, independent
increments imply a Markov process, but the converse is not true. See http://statweb.
stanford.edu/~adembo/math-136/Markov_note.pdf
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=
(b)

− ∂

∂x

[(∫
R

dz z W (+z|x, tn)
)

︸ ︷︷ ︸
µ1(x,tn)

W (x, tn)

]
+

+
1
2
∂2

∂x2

[(∫
R

dz z W (+z|x, tn)
)

︸ ︷︷ ︸
µ2(x,tn)

W (x, tn)

]
+ . . .

where Fz(x) is the probability of a jump of size z from the position x. In (a)
we expanded Fz about x, and in (b) we exchanged the order of integrals and
derivatives. Then we define the k-th moment of the jump pdf as follows:

µk(x, t) =
∫

R
dz zkW (+z|x, t)

This allows us to rewrite the above difference in a more compact form:

Flux

W (x, tn+1) −W (x, tn) =
+∞∑
k=1

(−1)k

k!
∂k

∂xk
(µk(x, tn)W (x, tn))

Physically, as probability is conserved, by the continuity equation, the change
in probability density equals the divergence of a flux, which is just the x

derivative in this one-dimensional case. So, if we extract a derivative, we can
write the flux explicitly:

=
∂

∂x

Ç
+∞∑
k=1

(−1)k

k!
∂k−1

∂xk−1 (µk(x, tn)W (x, tn))
å

≡ − ∂

∂x
J(x, tn)

where J(x, tn) is the outward flux at x, meaning that if J > 0, thenW (x, tn+1) <
W (x, tn) (the particle escapes from x to another place), and otherwise if J < 0
we have W (x, tn+1) > W (x, tn) (the particle is sucked in x).
If we integrate both sides over x and apply the probability conservation we get
the boundary conditions for the flux: Boundary

conditions for the
flux

∫
R

(W (x, tn+1) −W (x, tn)) dx =
∫

R
dx
Å

− ∂

∂x
J(x, tn)

ã
1 − 1 = −J(x, tn)

∣∣∣+∞

−∞
= J(−∞, tn) − J(+∞, tn)

This means that, in a isolate system, the flux at ±∞ must be the same.
Finally, normalizing by the time interval we get the complete difference quo-
tient, which will become a time derivative in the continuum limit.

W (x, tn+1) −W (x, tn)
tn+1 − tn

=
∂

∂x

® ∞∑
k=1

(−1)k

k!
∂k−1

∂xk−1
µk(x, tn)W (x, tn)

tn+1 − tn

´
(3.3)

Letting tn+1 − tn = ϵ, in the limit ϵ → 0 the left side will be Ẇ (x, t).
All that’s left is to find an explicit definition for the jump pdf W (+z|x, t).
Previously, we assumed a gaussian pdf for the displacements:

z ∼ 1√
4πDϵ

exp
Ç

−(∆x)2

4Dϵ

å
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With this choice, the first two moments become:

µ1 = 0 µ2 = 2Dϵ

And the variance:

Var(z) = µ2 − µ2
1 = 2Dϵ ∝ ϵ

However, for a particle subject to a force we would expect to have a preferred
jump direction, leading to a constant velocity motion in the direction of the
force. So we require a different µ1:

⟨z⟩ = µ1 =
∫

R
zW (+z|x, t) ∝ ϵf(x)

We still want to fix the variance to be proportional to ϵ, as it is expected in a
diffusion process.

An appropriate choice for such a distribution is given by:
Jump distribution

W (+z|x, t) = 1»
ϵD̂(x, t)

F

Ñ
z − ϵf(x, t)»
ϵD̂(x, t)

é
(3.4)

with F , D̂ : R → R functions, satisfying certain conditions, and with a physical
meaning that we will now see.

First of all, we check the normalization: 1. Correct
normalization

1 !
=

∫
R

dz W (+z|x, t) = 1»
ϵD̂(x, t)

∫
R

dz F

Ñ
z − ϵf(x, t)»
ϵD̂(x, t)

é
=
(a)

∫
R

dy F (y)

where in (a) we changed variables:

y =
z − ϵf(x, t)»
ϵD̂(x, t)

dz =
»
ϵD̂(x, t) dy (3.5)

Then we compute the first moment: 2. First moment ∝
force

⟨z⟩ = µ1(x, t) =
∫

R
dz z F

Ñ
z − ϵf(x, t)»
ϵD̂(x, t)

é
1»

ϵD̂(x, t)
=

=
(3.5)

∫
R

dy
(
ϵf(x, t) + y

»
ϵD̂(x, t)

)
F (y) =

= ϵf(x, t)
∫

R
F (y) dy︸ ︷︷ ︸
=1

+
»
ϵD̂(x, t)

∫
R
yF (y) !

= ϵf(x, t)

So, in order to have the right normalization and the desired ⟨z⟩ we need:
∫

R dy F (y) = 1∫
R dy yF (y) = 0
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Both conditions are satisfied, for example, by all even normalized functions.

For the second moment: 3. Variance ∝ time

µ2(x, t) = 1»
ϵD̂(x, t)

∫
R

dz z2F

Ñ
z − ϵf(x, t)»
ϵD̂(x, t)

é
=

=
(3.5)

∫
R

dy (ϵf(x, t) + y
»
ϵD̂(x, t))2F (y) =

=
∫

R
dy F (y)[ϵ2f2 + y2D̂ϵ+������2ϵ

√
ϵD̂fy] =

= ϵ2f2 + D̂ϵ
∫

R
dy y2F (y) = ϵ2f2 + D̂ϵ⟨y2⟩F (y)

And so the variance becomes:

Var(z) = µ2 − µ2
1 = ϵD̂⟨y2⟩F (y) ∝ ϵ

which is proportional to ϵ as desired. For notational simplicity, we introduce a
new function D : R → R such that:

Var(z) = ϵD̂⟨y2⟩F (y) ≡ 2D(x, t)ϵ ⇒ µ2(x, t) = ϵ2f2 + 2D(x, t)

We note that higher order moments are all of order O(ϵ3/2). For example, the 4. Vanishing
higher momentsthird moment is:

µ3(x, t) = 1»
ϵD̂(x, t)

dz
∫

R
z3F

Ñ
z − ϵf(x, t)»
ϵD̂(x, t)

é
=

=
(3.5)

∫
R

dy (ϵf(x, t) + y
»
ϵD̂(x, t))3F (y) =

=
∫

R
dy
(
ϵ3f3 + y3(ϵD̂)3/2 +�������

3ϵ2f2y
√
ϵD̂+ 3ϵ2fD̂y2

)
F (y) =

= ϵ3f3 + (ϵD̂)3/2 + 3ϵ2fD̂⟨y2⟩F (y) = O(ϵ3/2)

Substituting back (3.4) in (3.3) we arrive to:

W (x, tn+1) −W (x, tn)
ϵ

= − ∂

∂x

[
W (x, tn) µ1(x, tn)

ϵ︸ ︷︷ ︸
f(x,t)

]
+

1
2
∂2

∂x2

[
µ2(x, tn)

ϵ︸ ︷︷ ︸
ϵf

2+2D(x,t)

W (x, tn)

]
+

+
1
3!
∂3

∂x3

[
W (x, tn)µ3(x, tn)

ϵ

]
+ . . .︸ ︷︷ ︸

O(ϵ1/2)

Taking the limit ϵ → 0, we are left with:

Fokker-Planck
equation

∂W (x, t)
∂t

= − ∂

∂x
[f(x, t)W (x, t)] + 1

�2
∂2

∂x2 [�2D(x, t)W (x, t)] =

= − ∂

∂x

[
f(x, t)W (x, t) − ∂

∂x

(
D(x, t)W (x, t)

)]
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This is the Fokker-Planck equation, describing the diffusion process in the
presence of a force f(x, t), and a diffusion parameter D(x, t).
Note that, in absence of forces f(x, t) ≡ 0 and with a constant diffusion
D(x, t) ≡ D we retrieve the usual diffusion equation:

∂

∂t
W (x, t) = D

∂2

∂x2W (x, t)

3.2 Langevin equation
The Fokker-Planck equation involves probability distributions, meaning that it
describes the behaviour of ensembles of trajectories at once. However, we can
find an equivalent description by focusing on a single path.
We start with a Wiener process, that is a stochastic process with independent
and gaussian increments and continuous paths. Considering a time discretiza-
tion {ti}, the evolution of a single trajectory is described by:

x(ti+1) = x(ti) + ∆x(ti) (3.6)

where each increment ∆x(ti) is sampled from a gaussian pdf:

∆xi(ti) ∼ 1√
4πD∆ti

exp
Ç

− (∆x)2

4D∆ti

å
To simplify notation, we change variables, so that:

∆B2

2
=

∆x2

4D
⇒ ∆B =

∆x√
2D

If x ∼ p(x), and y = y(x) ∼ g(y), then by the rule for a change of random
variables we have:

g(y) = p(x(y))dx(y)
dy

In this case:
“Standard”
Brownian path∆B ∼ 1√

4πD∆ti
exp
Ç

−(∆B)2

2∆ti

å
d∆x
d∆B︸ ︷︷ ︸√

2D

=
1√

2π∆ti
exp
Ç

−(∆B)2

2∆ti

å
Note that now ⟨∆B2(ti)⟩ = ∆ti, leaving out the D - so, in a sense, it is the
“standard” Brownian path, and any specific Brownian motion can be obtained
by rescaling it.
Substituting in (3.6) and rearranging we get:

x(ti+1) − x(ti) =
√

2D∆B(ti) (3.7)

We want now to form a time derivative in the left side, in order to arrive a
(stochastic) differential equation for paths. To do this, we first extract a ∆ti
factor from ∆B(ti) by performing another change of variables:

∆B(ti) ≡ ∆tiξ(ti) (3.8)
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so that ∆xi =
√

2D∆tiξi, and all the randomness is now contained in the
random variable ξ, which is distributed according to:

White noise
ξ(ti) ∼ 1√

2π∆ti
exp
Ç

−∆t2i ξ
2
i

2∆ti

å
d∆Bi
dξ(ti)︸ ︷︷ ︸

∆ti

=

…
∆ti
2π

exp
Å

−∆ti
2
ξ2
i

ã
ξi ≡ ξ(ti)

Substituting back in (3.7) and dividing by ∆ti leads to:

x(ti+1) − x(ti)
∆ti

=
√

2Dξ(ti)

And by taking the continuum limit ∆ti → 0 we get the Langevin equation

Langevin equation

for a Brownian particle:

ẋ(t) =
√

2Dξ(t) (3.9)

We can see ξ(t) as a highly irregular, quickly varying function, which, in a
certain sense, expresses the result of Brownian collisions at a certain instant.
In particular, the following holds:

⟨ξ(t)⟩ = 0 ⟨ξ(t)ξ(t′)⟩ = δ(t− t′)

meaning that the values of ξ(t) at different instants are completely independent.

Note that, as we saw previously, Brownian paths are not differentiable - and so
ẋ(t) does not exist, and this is just a formal equation, with a definite meaning
only in a given discretization. Also, note that ξ(t) is a random variable, and so
this is an example of a stochastic differential equation. It is not clear how Stochastic

Differential
Equations

to find a solution to such an equation, or even how to define what a solution
should be - and this will be the main topic of the next section.
We can rewrite (3.9) in a more rigorous form by “multiplying by dt”, i.e.
performing the change of variables (3.8), which - in the continuum limit - is
dB = ξ dt, leading to:

dx(t) =
√

2D dB dB ∼ 1√
2π dt

exp
Ç

−dB2

2 dt

å
Before moving on, we want to generalize this equation to the presence of exter-
nal forces. As we saw previously, this just results in adding a constant velocity
motion to the particle, leading to the full Langevin equation:

ẋ(t) = f(x, t) +
√

2D(x, t)ξ(t)

dx(t) = f(x, t) dt+
√

2D(x, t) dB dB ∼ 1√
2π dt

exp
Ç

−dB2

2 dt

å
(3.10)

The physical meaning of f(x, t) and D(x, t) can be more clearly seen by com- Derivation from
physical argumentsparing (3.10) to the equation of motion of the Brownian particle.

Consider a particle of mass m immersed in a fluid, with a radius a that is much
larger than the surrounding molecules (typically ∼ 10−9 to 10−7 m). The forces
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acting on it will be that of viscous friction −γṙ, eventual external forces Fext
(e.g. gravity), and a rapidly varying and random term Fnoise, encompassing
the effect of the large number of collisions (∼ 1012/s) with the smaller fluid
particles:

mr̈(t) = −γṙ + Fext + Fnoise(t)

Dividing both sides by γ:

m

γ
r̈(t) = −ṙ +

Fext(r, t)
γ

+
Fnoise(t)

γ
(3.11)

Assuming a spherical particle, γ is given by Stokes law to be 6πaη, where η is
the viscosity of the surrounding fluid.
Note that, if we ignore the external force and the random term, the equation
becomes:

dṙ(t)
dt

= − γ

m
v(t)

which has solution:

ṙ(t) = exp
Å

− t

τB

ã
ṙ(0) τB =

m

γ

τB is in the scale of 10−3 s, and represents the timescale of reaching equilibrium,
i.e. 0 velocity. So, for Brownian motion to happen, Fnoise is necessary. Also,
if we are interested in the motion on the scale of seconds, we can neglect the
acceleration term. This is the overdamped limit (in analogy to a damped Overdamped limit
oscillator with high loss of energy due to attrition, so that it quickly reaches
equilibrium without ever “overshooting”). Given that assumption, (3.11) be-
comes:

ṙ =
Fext
γ

+
Fnoise
γ

Which, for a particle moving in one dimension, reduces to:

x(t) = Fext
γ︸︷︷︸

f(x,t)

+
Fnoise
γ︸ ︷︷ ︸√

2D(x,t)ξ(t)

Comparing with (3.10) gives the physical meaning of f(x, t) and D(x, t).

3.3 Summary
(Lesson 7 of
07/11/19)
Compiled: October
13, 2020

Summary of the previous lectures. We considered a more general stochas-
tic process, a Markov Process, when the future only depends on the present.
We wrote a Master Equation, and taking the continuum limit we get a second
order partial differential equation, with two coefficients depending on the first
two moments of the transition rate: f and D. We would want them to repre-
sent the force and diffusion rate, but we can’t find their physical meaning. So
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we consider the Langenvin equation, reaching the desired physical meaning.
There, the increment depends on a deterministic term f and a noise term:

dx(t) = f(x(t), t) dt+
√

2D(x(t), t) dB(t) f =
Fext
γ

If we discretize this equation, passing to finite differences, we get:

∆x(t) = f(x(t), t)∆t+
√

2D(x(t), t)∆B(t) ∆B(t) ∼ 1√
2π∆t

exp
Ç

−∆B2

2∆t

å
This is needed because dx(t) / dt is ill-defined (as we saw in the previous lec-
ture). Note that ∆x(t) = x(t+ ∆t) − x(t).
We want to show that this kind equation leads to the same Fokker-Planck equa-
tion that we saw previously, and that was derived from the Master Equation.
Then we would like to examine how much the stochastic amplitude (coefficient
of dB(t)) is related to temperature. In fact, we know already that f depends
on Fext, with Fext = −∇V . We would like that, at constant temperature, the
pdf of the stationary state will tend to the Maxwell-Boltzmann distribution:

P(x, t) −−−→
t→∞

1
z

exp
Å

−V (x)
kBT

ã
3.4 Stochastic integrals
We arrived at the Langevin equation:

dx
dt

= f(x, t) +
√

2D(x, t)ξ(t) (3.12)

where ξ(t) is a “rapidly varying, highly irregular function”, i.e. such that for
t ̸= t′, ξ(t) and ξ(t′) are statistically independent. As ⟨ξ(t)⟩ = 0, this means
that:

⟨ξ(t)ξ(t′)⟩ = δ(t− t′)

Equation (3.12) does not make much sense, as ẋ(t) does not exist anywhere.
Even changing variables to dB (i.e. “multiplying” both sides by dt) and inte-
grating, we are left with the following equation:

x(t) = x(0) +
∫ t

0
f(x(τ), τ) dτ +

∫ t

0

√
2D(x(τ), τ) dB(τ)

It is not clear how the last integral is defined, as it involves a stochastic term
dB.

So, before tackling the full problem, we take a step back and study the theory
behind stochastic calculus. Let’s introduce a generic integral of that kind:

St =
∫ t

0
G(τ) dB(τ)

Intuitively, we could see this as an infinite sum, where each term G(τ) is
weighted by the outcome of a random variable B(τ).
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So, to compute it, an idea is to first introduce a time discretization {tj}j=0,...,n,
with tn = t, leading to:

Sn =
n∑
i=0

G(τi)[B(ti) −B(ti−1)] ti−1 ≤ τi ≤ ti (3.13)

and then take the continuum limit for n → ∞. This, however, proves to be
more difficult than expected, for the following reasons:

• First of all, the increments B(ti) −B(ti−1) are chosen at random. This
means that Sn is a random variable. In fact, we could see St as the
sum of points from G(τ), each weighted with a randomly chosen weight.
So it is necessary to define what it means to take the limit of a sequence
of random variables Sn. As we will see, there is no unique definition.

• It is not clear how to choose the sampling instants τi for G(τ) in the
discretization (3.13). We could hope that in the limit of n → ∞, any
choice would lead to the same final result. This would be indeed true
if B(τ) were a differentiable function - except it is only continuous and
nowhere differentiable. So we need to pay attention to the specific (and
arbitrary) rule to be used in computing the discretization.

3.4.1 Limits of sequences of random variables

Some basic definitions. Recall that a probability space is defined by a triple
(Ω, F , P), where Ω is a set of outcomes (sample space), F is a σ-algebra on
Ω, containing all possible events, that is sets of outcomes, and P : F → [0, 1]
is the probability measure. Then, a random variable is a measurable function
X : Ω → S, with S denoting a state space.
For example, let Ω be the set of all possible results of rolling two dice, i.e. the
set of ordered pairs (x1,x2) with x1,x2 ∈ {1, 2, 3, 4, 5, 6}. Then F is the set of
all possible subsets of Ω (including both Ω and ∅) and P : F ∋ f 7→ P(f) is
given by:

P(f) = |f |
36

where |f | is the cardinality of the set f .
A random variable can be, for example, the sum of the two dice:

X(ω) = x1 + x2 ∀ω = (x1,x2) ∈ Ω

Then, we can compute the probability of X assuming a certain value by mea-
suring with P the preimage set of X:

P(X = 2) = P(ω ∈ Ω|X(ω) = 2) = P({1, 1}) = 1
36

For discrete one-dimensional variables such as these all of this formalism does
not lead to much gain, as there is an immediate and natural choice for (Ω, F , P),
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which is usually denoted by the saying “random”. However, in more complex
cases it becomes imperative to precisely define Ω, F and P, so to avoid am-
biguous results (see Bertrand’s paradox).

Consider a sequence {Xn}n∈N of random variables in a certain probability
space (Ω, F , P). Suppose that X is another random variable, and we would
like to give meaning to the concept of Xn “tending to” X:

Xn −−−→
n→∞ X

There are several possibilities, here stated from the weakest to the strongest:

1. Convergence in distribution. In this case, we simply require that the
distribution of Sn approaches that of S as n → ∞. Let Fn and F be the
cumulative distributions of Sn and S, respectively. Then:

Xn
D−−−→

n→∞ X ⇔ lim
n→∞Fn(x) = F (x) ∀x ∈ R|F is continuous at x

(The cumulative distribution, or cdf, is defined as FX(x) = P(X ≤ x)).
Note that, as we are merely comparing functions, there is no need for
Xn or X to be defined on the same probability space. Also, here the
focus is on integral properties of the random variables, so there is no
guarantee that sampling Xn and X will lead to close results, even for a
large n. For example, consider Xn to be a sequence of standard gaussians,
which obviously converges to a standard gaussian (X) in the distribution
sense. If we sample a number from X100 and one from X, they could
be arbitrarily far away from each other with a non-zero probability, that
remains the same for all n. If we want to exclude that possibility we need
a stronger requirement, which leads to the next definition.

2. Convergence in probability (Stochastic limit). If the probability of
values of Xn being far from values of X vanishes as n → ∞, then Xn

converges in probability to X:

Xn
P−−−→

n→∞ X ⇔ lim
n→∞ P(|Xn −X| > ϵ) = 0

Expanding the definition, this means that:

∀ϵ > 0, ∀δ > 0, ∃N(ϵ, δ) s.t. ∀n ≥ N , P(|Xn −X| > ϵ) < δ

In other words, the probability of “a significant discordance” between
values sampled from Xn and X vanishes as n → ∞. Intuitively, Xn

and X are strongly related, i.e. they not only distribute similarly, but
also come from similar processes. For example, let X be the true length
of a stick chosen at random from a population of sticks, and Xn be a
measurement of that length made with an instrument that is more and
more precise as n → ∞. Then, for large n, it is clear that Xn will have
a value that is really close to that of X. In this case, we say that Xn

converges in probability to X, as n → ∞.

65



3. Almost sure convergence. An even stronger limit requires that:

Xn
a.s.−−−→
n→∞ X ⇔ P

Ä
lim inf
n→∞ {ω ∈ Ω : |Xn(ω) −X(ω)| < ϵ}

ä
= 1 ∀ϵ > 0

Here, the lim inf of a sequence of sets An is defined as:

lim inf
n→∞ An =

∞∪
N=1

∩
n≥N

An

A member of lim inf An is a member of all sets An, except a finite number
of them (i.e. it’s definitively a member of the An, as it is ∈ An for all
n ≥ n̄). So the term inside the parentheses is the set of all outcomes
ω ∈ Ω for which Xn(ω) is definitively close to X(ω), i.e. it covers all
events resulting in a sequence of Xn that converges to X.
If we take Xn and X to be real-valued random variables, then the defini-
tion is simpler:

Xn
a.s.−−−→
n→∞ X ⇔ P

Ä
ω ∈ Ω : lim

n→∞Xn(ω) = X(ω)
ä
= 1

Or, in other words:

lim
n→∞Xn(ω) = X(ω) ∀ω ∈ Ω \A

where A ⊂ Ω has 0 measure.

Almost sure convergence vs probability convergence. The difference
between the two definitions is subtle, and can be somewhat seen from the
following example, taken from http://bit.ly/2u2E9Rk and http://bit.ly/
2Zy66vO.
Consider a sequence {Xn} of independent random variables with only two pos-
sible values, 0 and 1, such that:

P(Xn = 1) = 1
n

P(Xn = 0) = 1 − 1
n

For ϵ > 0:

P(|Xn| ≥ ϵ) =

 1
n 0 < ϵ ≤ 1

0 otherwise

As n → ∞, P(|Xn| ≥ ϵ) → 0, and so Xn
P−−−→

n→∞ 0.
However, Xn does not converge almost surely to 0. Consider a realization of
the sequence Xn, i.e. the measured outcomes of all Xn during “one run” of the
experiment. This will be a binary sequence, like 000101001 . . . . Now, consider
an ensemble of such sequences. What is the average number of ones in them?
We can estimate it by summing the probability to have a 1 in the first place,
in the second, and so on:

∞∑
n=1

1
n
= +∞
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This in fact implies, by the second Borel Cantelli theorema, that the probability
of getting Xn = 1 infinitely often (i.o.) is 1, and so Xn cannot converge almost
surely to 0.

a∧See a proof at http://bit.ly/2tcfZU4 The main idea is that, given a set of in-
dependent events (Xn = 1), the sum of their probabilities diverges, then surely an in-
finite number of them do indeed occur. Formally: if

∑+∞
n=1 P(Xn = 1) = ∞, then

P(lim supn→∞{Xn = 1}) = P(∩∞
N=1 ∪n≥N {Xn = 1}) = P({Xn = 1} i.o.) = 1

It can be proven that almost sure convergence implies convergence in probability,
which implies convergence in distribution. However, for our purposes we are
interested in another kind of convergence:

• Lq convergence:

Xn
L

q

−−−→
n→∞ X ⇔ lim

n→∞⟨|Xn −X|q⟩ = 0 q ∈ N

Note that this implies convergence in probability. In fact:

P(|X −Xn| > ϵ) = ⟨I|X−Xn|>ϵ⟩ ≤ ⟨I|X−Xn|>ϵ︸ ︷︷ ︸
0≤⊙≤1

∣∣∣∣X −Xn

ϵ

∣∣∣∣q︸ ︷︷ ︸
≥1

⟩ (3.14)

where I is a characteristic function, i.e. the random variable that is 1
when |X −Xn| > ϵ and 0 otherwise - so that the second term is always
≥ 1 when it is not killed by the first one. Then, by substituting I with
its maximum 1 we get a greater term:

(3.14) ≤ ⟨|X −Xn|q⟩ 1
ϵq

−−−→
n→∞ 0 ∀ϵ > 0

where we used the linearity of the average to extract the constant ϵq, and
then the Lq convergence (assumed by hypothesis).
Also, Lq convergence implies the convergence (in the usual sense) of the
q-th moment:

Xn
L

q

−−−→
n→∞ X ⇒ lim

n→∞⟨|Xn|q⟩ = ⟨|X|q⟩ (3.15)

If we choose q = 2, we obtain mean square convergence:

Xn
m.s.−−−→
n→∞ X ⇔ lim

n→∞⟨|Xn −X|2⟩ = 0

In this case it is easy to prove (3.15) by using the Cauchy-Schwarz in-
equality:

(E(XY ))2 ≤ E(X2)E(Y 2)

If we let X = Xn −X and Y = 1, and assume that Xn converges to X
in mean square, we obtain:

0 ≤ (E(Xn −X))2 ≤ E((Xn −X)2)E(1) −−−→
n→∞ 0

And so:

E(Xn −X) = E(Xn) − E(X) −−−→
n→∞ 0 ⇒ lim

n→∞ E(Xn) = E(X) □
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Hölder inequality. Cauchy inequality is, in this case, a special case of
the more general Hölder inequality. Consider a measure space (S, Σ,µ)
(where S is the space, Σ a σ-algebra and µ a measure), and two measur-
able functions f , g : S → R:

∥fg∥1 ≤ ∥f∥p∥g∥p ∥·∥p =
(∫

S
| · |p dµ

)1/p

To compute a stochastic integral, we will proceed like the following:
• Discretize the integral as a finite (Riemann) sum, obtaining a sequence

of finer and finer random variables {Sn}n∈N

• Use a mean square limit to compute the limit S of the sequence {Sn}

3.4.2 Prescriptions
All that’s left is to choose a rule for the mid-points in the terms of the dis-
cretized sum. As we will see in the following example, there are several different
possibilities, each leading to different results.�� ��Example 6 (A simple stochastic integral):

Suppose G(τ) = B(τ), and consider the following integral:

S =
∫ t

0
B(τ) dB(τ)

If B(τ) where differentiable, then we could simply change variables and
solve:

S =
∫ t

0
B(τ)dB(τ)

dτ
dτ =

1
2
B2(τ)

∣∣∣t
0
=
B2(t) −B2(0)

2
if ∃dB

dτ

However, here B(τ) is a rapidly varying irregular function, which is nowhere
differentiable.
So, following our plan, we first discretize:

Sn =
n∑
i=1

B(τi)[B(ti) −B(ti−1)] t0 ≡ 0; tn ≡ t; ti−1 ≤ τi ≤ ti (3.16)

We now need a rule for choosing the τi. The simplest possibility is to fix
them in the “same relative position” in every interval [ti−1, ti], that is:

τi = λti + (1 − λ)ti−1 λ ∈ [0, 1] (3.17)

Depending on the value of λ, the limit S will be different. We can quickly
check this before computing S, by focusing on the expected values. In fact,
we know that if Sn

m.s.−−−→
n→∞ S, then ⟨Sn⟩ −−−→

n→∞ S in the usual sense. So, we
compute the average of Sn:

⟨Sn⟩ =
n∑
i=1

⟨B(τi)(B(ti) −B(ti−1))⟩ =
n∑
i=1

(⟨B(τi)B(ti)⟩ − ⟨B(τi)B(ti−1)⟩)
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We already computed the correlator function for the Brownian noise B(t):

⟨B(t)B(t′)⟩ = min(t, t′) (3.18)

And so, as ti−1 ≤ τi ≤ ti, we get:

⟨Sn⟩ =
n∑
i=1

(τi − ti−1)

Substituting the choice for τ (3.17):

⟨Sn⟩ = λ
n∑
i=1

(ti − ti−1) = λtn = λt

Which does not depend on n, making the limit trivial:

⟨S⟩ = lim
n→∞⟨Sn⟩ = λt

This dependence on the prescription of τi is an important difference from
ordinary calculus, meaning that many common results cannot be directly
translated to stochastic calculus.
In practice, there are many possibilities for λ. The two most common are:

λ =

0 Ito’s prescription
1
2 Stratonovich’s prescription (also called middle-point prescription)

Leading to, as we will see:

Sn
m.s.−−−→
n→∞ S =

B
2(t)−B2(0)

2 − t
2 λ = 0

B
2(t)−B2(0)

2 λ = 1/2

The Stratonovich prescription gives exactly the same result as ordinary cal-
culus. However, note that it involves a dependence on the future, i.e. the
next step of a path depends on the point that is a half-step later. This
has no a real physical meaning (in a certain sense, it “violates causality”).
That’s why many physicists prefer the Ito’s prescription.
Let’s explicitly compute both results.

Ito’s prescription. We want to prove the following result:
n∑
i=1

B(ti−1)(B(ti) −B(ti−1)) m.s.−−−→
n→∞

B2(t) −B2(0)
2

− t

2
(3.19)

Denoting:

B(ti) = Bi; ∆Bi = Bi −Bi−1

we can rewrite (3.16) as:

Sn =
n∑
i=1

Bi−1∆Bi
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First of all, we split that product in a sum of terms, with the double-product
trick:

ab =
1
2

[(a+ b)2 − a2 − b2]

So that:

Sn =
n∑
i=1

Bi−1∆Bi =
1
2

n∑
i=1

[
(Bi−1 + ∆Bi)2︸ ︷︷ ︸

B
2
i

−B2
i−1 − (∆Bi)2

]
=

=
1
2

n∑
i=1

[
B2
i −B2

i−1 − (∆Bi)2
]
=

1
2

( B2
n −B2

0 ) − 1
2

n∑
i=1

(∆Bi)2 =

=
1
2

( B2(t) −B2(0) ) − 1
2

n∑
i=1

(∆Bi)2

Now (3.19) becomes:

B2(t) −B2(0)
2

− 1
2

n∑
i=1

(∆Bi)2 m.s.−−−→
n→∞

B2(t) −B(0)
2

− t

2
tn = t; t0 = 0

Applying the definition of mean square limit, this is equivalent to showing
that:

⟨
∣∣∣∣∣��������B2(t) −B2(0)

2
− 1

2

n∑
i=1

(∆Bi)2 −
ï
��������B2(t) −B2(0)

2
− t

2

ò∣∣∣∣∣2⟩ ?−−−→
n→∞ 0 (3.20)

Expanding:

1
4

⟨
ñ
−

n∑
i=1

(∆Bi)2 + t

ô2

⟩ = 1
4

⟨
ñ
t−

n∑
i=1

(∆Bi)2
ô2

⟩ =
(a)

1
4

⟨
ñ
n∑
i=1

(∆ti − ∆B2
i )
ô2

⟩ =

=
(b)

1
4

n∑
i,j=1

⟨[∆ti − (∆Bi)2][∆tj − (∆Bj)2]⟩ (3.21)

where in (a) we used t =
∑n
i=1 ∆ti, and in (b) (∑

i ai)2 =
∑
ij aiaj . We can

rewrite the sum highlighting the case where i = j:

(3.21) = 1
4

[
n∑
i=1

⟨[∆ti − (∆Bi)2]2⟩ +
n∑
i ̸=j

⟨[∆ti − (∆Bi)2][∆tj − (∆Bj)2]⟩

]
(3.22)

Noting that the ∆Bi come from independent gaussians, we have that the
expected values integrals factorize:

⟨A⟩ =
∫

d∆Bi . . . d∆BnA
n∏
i=1

1√
2π∆ti

exp
Ç

−(∆Bi)2

2∆ti

å
In other words, this means that the average of the product is just the product
of the averages:

⟨(∆ti − (∆Bi)2)(∆tj − (∆Bj)2)⟩ = ⟨(∆ti − (∆Bi)2)⟩⟨(∆tj − (∆Bj)2)⟩ =
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= [∆ti − ⟨(∆Bi)2⟩][∆tj − ⟨(∆Bj)2⟩]

We already computed the second moment of that gaussian:

⟨(∆Bi)2⟩ =
∫ d∆Bi√

2π∆ti
∆B2

i exp
Ç

−∆B2
i

2∆ti

å
= ∆ti

and so:

⟨(∆ti − (∆Bi)2)⟩ = 0

So we are left only with the first term of (3.22):

(3.22) = 1
4

n∑
i=1

⟨[∆ti − (∆Bi)2]2⟩ = 1
4

n∑
i=1

∆t2i − 2∆ti ⟨(∆Bi)2⟩︸ ︷︷ ︸
∆ti

+⟨∆B4
i ⟩


(3.23)

Recall that, for a random variable x sampled from a gaussian N (0,σ):

⟨x2n⟩ = σ2n (2n)!
2nn!

=

σ2 n = 1

σ4 4!
4·2! = 3σ4 n = 2

In our case, this means that ⟨(∆Bi)4⟩ = ∆t2i , leading to:

(3.23) = 1
2

n∑
i=1

∆t2i

When taking the limit of the mesh (n → ∞), the number of summed terms
become infinite, but also the size of each of them vanishes:

max
i

∆ti −−−→
n→∞ 0

To resolve that limit we need to use the fact that the end-point is fixed
(tn ≡ t) and so:

1
2

n∑
i=1

∆t2i ≤ 1
2

Ç
n∑
i=1

∆ti

å2

=
1
2

Ç
n∑
i=1

∆ti

å(
n∑
j=1

∆tj

)
︸ ︷︷ ︸

t

≤ t

2

(
max
i

∆ti
)

−−−→
n→∞ 0

This proves (3.20), and so the desired result (3.19).

Stratonovich’s prescription. In this case, we want to show that:

Sn =
n∑
i=1

B

Å
ti + ti−1

2

ã
[B(ti) −B(ti−1)] m.s.−−−→

n→∞
B2(t) −B2(0)

2

Note that now we need a set of middle points in the mesh, which leads to
some complications.
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One trick is to simply double the “resolution” of the discretization, and
choose the middle points to be the odd indices. We then define:

S′
2n =

2n∑
i=1

B2i−1(B2i −B2(i−1))

with t2i−1 ≡ (t2i + t2(i−1))/2, while the t2i may be distributed arbitrarily.
The full computation is very long and tedious, and not much enlightening,
and is therefore omitted.

A shorter way to compute that, but not as rigorous, is by stating that:

Sn =
n∑
i=1

B(ti) +B(ti−1)
2

(B(ti) −B(ti−1))

However it is not obvious that is possible to approximate a midpoint of B
with an average, as B(ti) are all random variables. In fact, it is possible to
show that the two expressions have the same distribution, but they are not
the same random variable! In any way, if we do this, the thesis immediately
follows:

=
1
2

n∑
i=1

(B2(ti) −B2(ti−1))

3.4.3 Ito’s calculus
In our calculations, we will be usually concerned with the following kinds of
stochastic integrals G(t):

1.
∫ t

0
F (B(τ)) dB(τ)

2.
∫ t

0
g(τ) dB(τ)

3.
∫ t

0
g(τ) dτ (usual integrals)

These G(t) are called non-anticipating functions, because they are indepen-
dent of B(t′) −B(t) for t′ > t, meaning that they do not dependent on what
happens in the Brownian motion at times later than t (i.e. they do not depend
on the future). So, by using Ito’s prescription (I.p.) in the discretization and
mean square (m.s.) for the continuum limit we get:

∫ t

0
F (B(τ)) dB(τ) I.p.

=m.s.

n∑
i=1

F (Bi−1)∆Bi

Note how F (Bi−1) and ∆Bi are independent of each other, simplifying the cal-
culations. (Note that the Stratonovich prescription here causes troubles during
evaluation, as it introduces some interdependence between different terms).
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3.5 Stochastic Differential Calculus
(Lesson 8 of
11/11/19)
Compiled: October
13, 2020

3.5.1 Ito’s rules of integration
We now consider a more general stochastic integral, and show that, using Ito’s
prescription:∫ t

0
H(B(τ), τ)(dB(τ))k I.p.

=
m.s.

n∑
i=1

H(Bi−1, τi−1)(∆Bi)k =

=


∫ t
0 H(B, τ) dB(τ) k = 1∫ t
0 H(B(τ), τ) dτ k = 2

0 k > 2

This leads to the following “rules” for Ito integrals:

(dB)n =


dB n = 1

dt n = 2

0 n > 2

(3.24)

We already showed an example for k = 1, and we now proceed with the other
two cases.�
�

�
�Example 7 (Integral in dB2):

Consider a non-anticipating function G(τ), and the following stochastic in-
tegral:

I =
∫ t

0
G(τ)(dB (τ))2

With non-anticipating we mean that G(τ) does not depend on B(s) −
B(τ) ∀s > τ , i.e. it does not depend on the future. Discretizing:

I =
m.s.
lim
n→∞ In =

m.s.
lim
n→∞

n∑
i=1

G(ti−1)∆B2
i

For simplicity, denote:

Gi ≡ Gi ∆Bi ≡ Bi −Bi−1 ∆ti = ti − ti−1

We want to prove that:
∫ t

0
G(τ)(dB(τ))2 ?

=
∫ t

0
G(τ) dτ = lim

n→∞

n∑
i=1

Gi−1∆ti

Applying the definition of a mean square limit, this is equivalent to:

⟨
Ç

n∑
i=1

Gi−1∆B2
i −

n∑
i=1

Gi−1∆ti

å2

⟩ ?−−−→
n→∞ 0
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Expanding the square as a product of two sums over i and j, and then
highlighting the case with i = j:

⟨
ñ
n∑
i=1

Gi−1[(∆Bi)2 − ∆ti]
ô2

⟩ =
n∑

i,j=1
⟨Gi−1[(∆Bi)2 − ∆ti]Gj−1[(∆Bj)2 − ∆tj ]⟩ =

=
n∑
i=1

⟨G2
i−1[(∆Bi)2 − ∆ti]2⟩ + 2

n∑
i<j

⟨ Gi−1[(∆Bi)2 − ∆ti]Gj−1 [(∆Bj)2 − ∆tj ] ⟩

(3.25)

As i < j, note that the yellow term does not depend on ∆Bj = Bj −Bj−1 =
B(tj) −B(tj−1). In fact, as G is non-anticipating, Gj−1 depends only on
the previous steps. Thus, the yellow and blue terms are independent of each
other, and so we can factorize the average:

(3.25) =
n∑
i=1

⟨G2
i−1[(∆Bi)2 − ∆ti]2⟩ + 2

n∑
i<j

⟨Gi−1[(∆Bi)2 − ∆ti]Gj−1⟩ ⟨(∆Bj)2 − ∆tj⟩

Recall that:

⟨(∆Bj)2 − ∆tj⟩ = ⟨(∆Bj)2⟩ − ∆tj = 0

and so only the first term of (3.25) remains. Again, noting that Gi−1 does
not depend on ∆Bi, as it is non-anticipating, can factorize the average:

(3.25) = ⟨
n∑
i=1

G2
i−1[(∆Bi)2 − ∆ti]2⟩ =

n∑
i=1

⟨G2
i−1⟩︸ ︷︷ ︸

G
2
i−1

⟨[(∆Bi)2 − ∆ti]2⟩ (3.26)

Expanding the stochastic term:

⟨[(∆Bi)2 − ∆ti]2⟩ = ⟨(∆Bi)4 − 2∆ti(∆Bi)2⟩ + ∆t2i =

= ⟨(∆Bi)4⟩︸ ︷︷ ︸
3(∆ti)

2

−2∆ti ⟨(∆Bi)2⟩︸ ︷︷ ︸
∆ti

+∆t2i = 2∆t2i

And substituting back into the sum and taking the limit completes the proof:

(3.26) = 2
n∑
i=1

G2
i−1∆t2i ≤ 2

Å
max
i≤j≤n

∆tj

ã n∑
i=1

G2
i−1∆ti −−−→

n→∞ 2 · 0 ·
∫ t

0
G2(τ) dτ = 0

This proves that (dB)2 = dt.
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�� ��Example 8 (The case with n > 2):

We want now to show that:∫ t

0
G(τ)(dB (τ))n =

m.s.
lim
n→∞

n∑
i=1

Gi−1(∆Bi)n = 0

By definition, we want to show that:

⟨
Ç

n∑
i=1

Gi−1(∆Bi)n
å2

⟩ −−−→
n→∞ 0

Expanding the square, and factorizing the averages (as G is non-
anticipating) leads to:

⟨
Ç

n∑
i=1

Gi−1(∆Bi)n
å2

⟩ =
n∑
i=1

⟨G2
i−1(∆Bi)2n⟩ + 2

n∑
i<j

⟨Gi−1Gj−1(∆Bi)n(∆Bj)n⟩ =

=
n∑
i=1

G2
i−1 ⟨(∆Bi)2n⟩ + 2

n∑
i<j

⟨Gi−1Gj−1(∆Bi)n⟩ ⟨(∆Bj)n⟩

(3.27)

Now, recall that the p-th central moment of X ∼ N (µ,σ) can be computed
with Isserlis theorem, resulting in:

E[(X − µ)p] =

0 p is odd

σp(p− 1)!! p is even

where p!! = p · (p− 2) · · · · · 1 is a double factorial, that can be rewritten in
terms of factorials as follows:

p!! =


2kk! p = 2k even
(2k)!
2kk!

p = 2k− 1 odd
(3.28)

So, if n is odd, the blue term in (3.27) vanishes. Let’s suppose, for sim-
plicity, that G is bounded, i.e. |G(τ)| < K ∀τ ∈ R. Then:

(3.27) =
n∑
i=1

G2
i−1(∆ti)n (2n− 1)!! =

n∑
i=1

G2
i−1(∆ti)n

(2n)!
2nn!

≤ K2(2n)!
2nn!

n∑
i=1

(∆ti)n

≤ K2(2n)!
2nn!

Å
max
i≤j≤n

(∆t)n−1
ã n∑
i=1

∆ti︸ ︷︷ ︸
t

−−−→
n→∞ 0

On the other hand, if n is even, the blue term in (3.27) is not null. However,
the same argument for n odd can be applied to the first term, which vanishes
in the limit. So we only need to study the blue term:

(3.27) = 2
n∑
i<j

⟨Gi−1Gj−1︸ ︷︷ ︸
≤K2

(∆Bi)n⟩⟨(∆Bj)n⟩ (3.29)
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Here, as n is even:

⟨(∆Bi)n⟩ = (∆ti)n/2(n− 1)!! = (∆ti)n/2
(

2n
2

− 1
)

!! =
(3.28)

(∆ti)n/2
n!

2n/2(n/2)!

And so:

(3.29) ≤ 2K2
Ç

n!

2n/2(n/2)!

å2 n∑
i<j

∆tn/2i ∆tn/2j

≤ 2K2
Ç

n!

2n/2(n/2)!

å2 Å
max
i≤l≤n

∆tl

ã2(n/2−1) n∑
i<j

∆ti∆tj︸ ︷︷ ︸
≤t2

−−−→
n→∞ 0 □

�� ��Example 9 (Other cases):

Ito’s rules allow us to consider even more general integrals. For example:∫ t

0
G(τ) dB(τ) dτ = 0

In fact, as (dB)2 = dτ , dB dτ = 0 because (dB)n = 0 ∀n > 2.�� ��Example 10 (Integration of polynomials):

By using Ito’s rules we can find a formula for integrating powers of the
Brownian motion: ∫ t

0
(B(τ))n dB(τ)

We first differentiate a polynomial, and then recover the rule for integration
by performing the inverse operation.
Recall that, in general, a differential is the increment of a function after a
small nudge of its argument:

df(t) = f(t+ dt) − f(t)

The same holds in the stochastic case. In particular:

d(B(t))n = [B(t+ dt)]n − (B(t))n = [B(t) + dB(t)]n − (B(t))n =

=
(a)

n∑
k=0

Ç
n

k

å
(dB(t))k(B(t))n−k − (B(t))n =

=�����(B(t))n +
n∑
k=1

Ç
n

k

å
(dB(t))k(B(t))n−k −�����(B(t))n =

=
(b)
n(dB(t))(B(t))n−1︸ ︷︷ ︸

k=1

+
n(n− 1)

2

dt︷ ︸︸ ︷
(dB(t))2(B(t))n−2︸ ︷︷ ︸

k=2

+ 0︸︷︷︸
k>2

76



where in (a) we used Newton’s binomial formula, and in (b) the previously
found Ito’s rules for integration (3.24). Letting m = n− 1 and isolating
dB(t) leads to:

(m+ 1)(B(t))m dB(t) = (dB(t))m+1 − m(m+ 1)
2

(B(t))m−1 dt

Finally, dividing by m+ 1 and integrating leads to the desired formula:∫ τ

0
(B(t))m dB(t) = 1

m+ 1

∫ τ

0
d(B(t))m+1 − m

2

∫ τ

0
(B(t))m−1 dt =

=
1

m+ 1
(B(t))m+1

∣∣∣τ
0

− m

2

∫ τ

0
(B(t))m−1 dt =

=
(B(τ))m+1 − (B(0))m+1

m+ 1
− m

2

∫ τ

0
(B(t))m−1 dt

And in the case m = 1 we retrieve the previously obtained result:

∫ τ

0
B(t) dB(t) = B2(τ) −B2(0)

2
− τ

2

�� ��Example 11 (General differentiation rule):

Because (dB)2 = dt, when computing differentials from a Taylor expansion
up to O(dt2) one must compute even the terms of order dB2. For example,
consider a generic function f(B(t), t):

df(B(t), t) = ∂f

∂t
dt+ ∂f

∂B
dB(t) + 1

2
∂2f

∂t2

2

︸ ︷︷ ︸
O([dt]2)

+
1
2
∂2f

∂B2 [dB(t)]2︸ ︷︷ ︸
dt

+

+
∂2f

∂B(t)∂t
dt dB(t)︸ ︷︷ ︸

0

+O([dt]2) =

=
∂f

∂t
dt+ ∂f

∂B
dB(t) + 1

2
∂2f

∂B2 dt+O([dt]2)

3.6 Derivation of the Fokker-Planck equation
Starting from the Master Equation and taking the continuum limit we arrived
at the Fokker-Planck equation:

Ẇ (x, t) = − ∂

∂x

ï
f(x, t)W (x, t) − ∂

∂x
W (x, t)D(x, t)

ò
(3.30)

At the same time, if we consider the dynamics of a single path, adding a stochas-
tic term to the second law of motion, we arrive at the Langevin equation (in
the overdamped limit):

dx(t) = f(x(t), t) dt+
√

2D(x(t), t) dB(t) (3.31)
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We want now to show that these two formulations are equivalent, by deriving
(3.30) from (3.31). The main idea is to introduce a test function h(x(t)), and
compute its expected value at the instant t over all possible points that can be
reached by the trajectory x(t), thus obtaining a value that will depend on the
global probability distribution W (x, t). Then, we can use Langevin equation to
describe the dynamics of each single path. In this way, we will obtain a relation
between a quantity involving W (x, t) and the parameters f(x, t) and D(x, t)
appearing in (3.31), which will hopefully be (3.30).
So, let’s start by computing the average of h(x(t)) at a fixed time:

⟨h(x(t))⟩ =
∫

R
dxW (x, t)h(x)

As we seek to construct a time derivative, we start by differentiating:

d⟨h(x(t))⟩ =
Å
∂

∂t

∫
R

dxW (x, t)h(x)
ã

dt = dt
∫

R
dx Ẇ (x, t)h(x) (3.32)

And then dividing by dt leads to:

d
dt

⟨h(x(t))⟩ =
∫

R
dx Ẇ (x, t)h(x) (3.33)

However, we could also start by differentiating h(x(t)):

dh(x(t)) = h(x(t) + dx (t)) − h(x(t)) = (3.34)

=
(a)

h′(x(t)) dx (t) + 1
2
h′′(x(t))[dx (t)]2 +O([dx (t)]2) (3.35)

where in (a) we used a Taylor expansion for the first term. From (3.31), and
applying Ito’s rules, we can obtain explicit expressions for the [dx(t)]n:

[dx(t)]2 = f2[dt]2 + 2D

dt︷ ︸︸ ︷
[dB(t)]2 +f

√
2D

0︷ ︸︸ ︷
dB(t) dt

[dx(t)]3 = O([dt]2)

And substituting in (3.35) leads to:

dh(x(t)) = h′[f dt+
√

2D dB] + 1
2
h′′2D dt+O([dt]2) =

= dt [h′f + h′′D] + h′√2D dB

Taking the expected value:

d⟨h(x(t))⟩ = ⟨dt [h′f + h′′D]⟩ + ⟨h′√2D dB⟩ =
=
(a)

⟨dt [h′f + h′′D]⟩ + ⟨
√

2Dh′⟩ ⟨dB⟩︸ ︷︷ ︸
0

=

= ⟨dt [h′f + h′′D]⟩

where in (a) we used the fact that D(x(t), t) is non-anticipating, allowing to
factor the average.
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Dividing by dt and expanding the average leads to:

d
dt

⟨h(x(t))⟩ =
∫

R
dxW (x, t)[h′(x)f(x, t) + h′′(x)D(x, t)] =

=
∫

R
dxW (x, t)f(x, t)h′(x) +

∫
R

dxW (x, t)D(x, t)h′′(x) =

=
(a) �����

Whf
∣∣∣+∞

−∞
−

∫
R

dxh ∂
∂x

(Wf)+

+
������
WDh′

∣∣∣+∞

−∞
−

��������
h
∂

∂x
(DW )

∣∣∣+∞

−∞
+

∫
R

dxh ∂
2

∂x2 (WD) =

=
∫

R
dxh(x)

ñ
∂2

∂x2 (W (x, t)D(x, t)) − ∂

∂x
(W (x, t)f(x, t))

ô
(3.36)

where in (a) we integrated by parts the first integral once, and the second one
twice.
Finally, equating (3.33) and (3.36) leads to:

d
dt

⟨h(x(t))⟩ =
∫

R
dx ∂

∂t
W (x, t)h(x) =

∫
R

dxh(x)
ñ
∂2

∂x2 (W (x, t)D(x, t)) − ∂

∂x
(W (x, t)f(x, t))

ô
As this relation holds for any test function h(x), it means that the integrands
are equal. So, by collecting a derivative, we retrieve the the Fokker-Planck
equation (3.30):

∂

∂t
W (x, t) = − ∂

∂x

ï
f(x, t)W (x, t) − ∂

∂x
(W (x, t)D(x, t))

ò
3.7 The role of temperature
From physical observations, we expect the amplitude of stochastic oscillations
in Brownian motion to be dependent on temperature - as it is a direct effect
of collisions with molecules in thermal equilibrium. So, we want to derive an
explicit relation between the diffusion parameter D and T .
We start by assuming that, for t → ∞, the particle will be at equilibrium,
meaning that its distribution will be given by the Maxwell-Boltzmann:

W (x, t) −−−→
t→∞

Peq(x) = e−βV (x)

Z
Z =

∫
R

dx e−βV (x); β =
1

kBT

Recall the Fokker-Planck equation:

∂

∂t
W (x, t) = − ∂

∂x

ï
f(x, t)W (x, t) − ∂

∂x
(D(x, t)W (x, t))

ò
From the Langevin equivalence, and some physical reasoning, we found that:

f(x, t) = Fext
γ

= −1
γ

∂V (x)
∂x

γ = 6πηa

Where Fext is an external conservative force with potential V (x) acting on
the Brownian particle, assumed to be a sphere of radius a moving through a
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medium of viscosity η. Assuming D(x, t) ≡ D for simplicity, the Fokker-Planck
equation becomes:

∂W ∗

∂t
=

∂

∂x

ï
W ∗

γ

∂V

∂x
+D

∂W ∗

∂x

ò
Here we are interested in the particular solution W ∗(x) that will be reached at
the equilibrium, as it does not depend on time. So:

∂W ∗

∂t
!
= 0

Meaning that: ï
W ∗(x)
γ

∂V

∂x
+D

∂W ∗

∂x

ò
= constant ∀x (3.37)

As this relation holds for any x, we can examine it in the limit x → ∞ to find
the value of the constant. In fact, as W ∗(x) is a normalized pdf, we expect:

W ∗, ∂W
∗

∂x
−−−→
x→∞ 0

And so the constant in (3.37) must be 0, leading to:

∂W ∗

∂x
= − 1

γD
W ∗∂V

∂x
⇒ 1

W ∗
∂W ∗

∂x
=
∂ ln

(
W ∗)

∂x
= − 1

γD

∂V

∂x

Integrating, we find:

lnW ∗(x) = − 1
γD

V (x) + c ⇒ W ∗(x) = K exp
Å

− 1
γD

V (x)
ã

!
=

1
Z

exp (−βV (x))

And by comparing the two functions we obtain the desired relation:

β =
1
γD

=
1

kBT
⇒ D =

kBT

γ
=

kBT

6πηa

This is indeed the same relation that Einstein found when examining Brow-
nian motion (fluctuation-dissipation relationship, 1905). As D(x, t) ∝ T , the
amplitude of stochastic oscillations (from Langevin equation) is proportional√

2D ∝
√
T .

3.8 Harmonic overdamped oscillator
(Lesson 9 of
14/11/19)
Compiled: October
13, 2020

Using the framework developed in the previous sections, we now tackle a more
general setting, that of a particle moving in a harmonic potential and subject
to thermal noise. This will be useful to model the local behaviour about the
minima of any potential - as they are approximately harmonic.
So, consider a particle of mass m moving in one dimension through a viscous
medium and immersed in a harmonic potential. To model the random collisions
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with the other (much smaller) particles in the fluid we add a stochastic term√
2Dγξ. The equation of motion becomes:

mẍ = −γẋ−mω2x+
√

2Dγξ (3.38)

As m/γ is much smaller than the timescale we are interested in, we can neglect
it, reaching the overdamped limit:

ẋ = − mω2

γ︸ ︷︷ ︸
k

x+
√

2Dξ

And multiplying by dt:

dx(t) = −kx(t) dt+
√

2D dB(t) (3.39)

As usual, we introduce a time discretization {tj}j=1,...,n. Letting:

x(ti) ≡ xi; ∆xi ≡ xi − xi−1; B(ti) ≡ Bi; ∆ti = ti − ti−1

we arrive to:

∆xi = −kxi−1∆ti +
√

2D∆Bi (3.40)

Note that we evaluated the potential term −kx(τ) at the left extremum of the
discretized interval [ti−1, ti], following Ito’s prescription.
To solve (3.39) the plan will be the following:

1. Use the discretization to find the infinitesimal probability P({∆xi}i=1,...,n)
of a discretized path, i.e. of a path traversing all gates [xi,xi + dxi] at
successive instants 0 ≡ t1 < · · · < tn ≡ t.

2. Find the probability for a continuous path dP ≡ P({x(τ)τ∈[0,t]}) by
taking the limit n → ∞.

3. Find the transition probabilities that solve (3.39) by using a path integral
to evaluate:

W (xt, t;x0, 0) = ⟨δ(xt − x(τ))⟩W ≡
∫

R
T
δ(xt − x(τ)) dP

In other words, this is the fraction of paths (from the set R
T of all

continuous paths happening in the timeframe [0, t]) that start in x0 at
instant 0, and reach xt at instant t.

To find P({∆xi}i=1,...,n) we start from the joint pdf P({∆Bi}i=1,...,n) that we
already know, and perform a change of random variables according to (3.40).
In practice, start from:

P(∆B1, . . . , ∆Bn) =
n∏
i=1

d∆Bi√
2π∆ti

exp
Ç

−
n∑
i=1

∆B2
i

2∆ti

å
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Then insert ∆Bi in terms of ∆xi from (3.40):

∆Bi =
∆xi + kxi−1∆ti√

2D
and then multiply by the determinant J of the jacobian of the change of vari-
ables to find the desired new pdf:

P(x1,x2, . . . ,xn) = P(∆x1)P(∆x2|∆x1)P(∆x3|∆x1, ∆x2) · · · =

=
n∏
i=1

d∆xi√
2π∆ti

exp
Ç

−
n∑
i=1

1
2∆ti

Å
∆xi + kxi−1∆ti√

2D

ã2å
J

J = det
∣∣∣∣∣∂(∆B1, . . . , ∆Bn)
∂(∆x1, . . . , ∆xn)

∣∣∣∣∣ = det
∣∣∣∣∣ ∂(∆x1, . . . , ∆xn)
∂(∆B1, . . . , ∆Bn)

∣∣∣∣∣
−1

=

∣∣∣∣∣∣∣∣∣∣∣∣

√
2D 0 · · · 0

∗
√

2D
.. .

...
...

. . .
. . . 0

∗ . . . ∗
√

2D

∣∣∣∣∣∣∣∣∣∣∣∣

−1

n×n

= (2D)−n/2

The elements under the diagonal are, in general, non-zero derivatives. However,
as the matrix is lower triangular, its determinant is just the product of the
diagonal elements. Substituting back:

P(∆x1, . . . , ∆xn) =
n∏
i=1

Å d∆xi√
4πD∆ti

ã
exp
Ç

−
n∑
i=1

1
2∆ti

Å
∆xi + kxi−1∆ti√

2D

ã2å
(3.41)

Taking the limit n → ∞:

dP ≡ P(x(τ)) =

(
t∏

τ=0+

dx(τ)√
4πD dτ

)
exp
Å

− 1
4D

∫ t

0
(ẋ+ kx)2 dτ

ã
where we used:

1
∆ti

(∆xi + kxi−1∆ti)2 =
∆t2i
∆ti

Å
∆xi
∆ti

+ kxi−1
∆ti
∆ti

ã2
−−−→
n→∞ (ẋ+ kx)2 dt

Expanding the square in (3.41):

dP =
n∏
i=1

d∆xi√
4πD∆ti

exp
Ç

−
n∑
i=1

∆x2
i

4D∆ti

å
︸ ︷︷ ︸

Wiener measure (dxW )

exp
Ç

− k

2D

n∑
i=1

xi−1∆xi

å
︸ ︷︷ ︸

stochastic integral

exp
Ç

− k2

4D

n∑
i=1

∆tix
2
i−1

å
︸ ︷︷ ︸

normal integral

(3.42)

Let’s focus on the stochastic integral. We already know that, for Ito’s integrals,
the usual rules of calculus do not apply. In particular, we can’t just do:

n∑
i=1

xi−1∆xi −−−→
n→∞

∫ t

0
x(τ) dx(τ) ̸= x2(t) − x2(0)

2

So, more in general for a differentiable function h(x):∫ t

0
h′(τ) dx(τ) ̸= h(x(t)) − h(x(0)) (3.43)
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The idea is now to start from the right side and use Ito’s rules to correct the
left side, so to have a usable identity for integration. As always, we start by
discretizing time {ti}i=1,...,n:

h(x(t)) − h(x(0)) =
n∑
i=1

[h(x(ti)) − h(x(ti−1))] ≡
n∑
i=1

∆hi

In the limit, ti = ti−1 + dt, and so the ∆hi are differentials of h:

∆hi =
dh
dxi

∆xi +
1
2

d2h

dx2
i

∆x2
i +O(∆x3

i )

Now:

∆xi =
d∆Bi
d∆xi

∆Bi +O(∆B2
i ) ≈

√
2D∆Bi

And by Ito’s rules, ∆B2
i = ∆ti and ∆Bn

i = 0 for n ≥ 3. So:

∆hi = h′∆xi +
1
2
h′′ ∆x2

i︸︷︷︸
2D∆ti

And substituting back in (3.43) leads to:

h(x(t)) − h(x(0)) =
n∑
i=1

(h′
i∆xi + h′′D∆ti)

Rearranging:
n∑
i=1

h′
i∆xi = h(x(t)) − h(x(0)) −D

n∑
i=1

h′′∆ti

In the limit n → ∞, the sums become integrals:∫ t

0
h′ dx(τ) = h(x(t)) − h(x(0)) −D

∫ t

0
h′′ dτ (3.44)

We can finally apply the result (3.44) to our case, by setting h′(x(τ)) = x(τ),
so that:

h(x(t)) =
∫
x(τ) = x(t)2

2
; h′′(x(τ)) = 1

Substituting in (3.44) leads to:

n∑
i=1

xi−1∆xi −−−→
n→∞

∫ t

0
x(τ) dx(τ) = x2(t) − x2(0)

2
−D

∫ t

0
dτ︸ ︷︷ ︸
t

=
x2(t) − x2(0)

2
−Dt

And substituting this result back in (3.42) leads to:

dP =
n→∞ dxW exp

Ç
− k

2D

ñ
x2
t − x2

0
2

−Dt

ôå
exp
Ç

− k2

4D

∫ t

0
x2(τ) dτ

å
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From this expression we can compute transition probabilities. Let T = [0, t]
and R

T be the space of continuous functions T → R, then:

W (xt, t|x0, 0) = ⟨δ(xt − x)⟩W =
∫

R
T
δ(xt − x) dP =

=
∫

R
T

dxW δ(x(t) − x) exp
Ç

− k

2D

ñ
x2
t − x2

0
2

−Dt

ôå
exp
Ç

− k2

4D

∫ t

0
x2(τ) dτ

å
=

= exp
Ç

− k

2D

ñ
x2
t − x2

0
2

−Dt

ôå ∫
R

T
dxW δ(x(t) − x) exp

Ç
− k2

4D

∫ t

0
x2(τ) dτ

å
︸ ︷︷ ︸

CFR I4 on 28/10

=

= exp
Ç

− k

2D

ñ
x2
t − x2

0
2

−Dt

ôå 
k

4πD sinh(kt)
exp
Ç

−kx2
t

4D
coth(kt)

å
(3.45)

�� ��Exercise 3.8.1 (Some more integrals):

Check that:

W (x, 0|x0, 0) = δ(x− x0)

Hint. Start from the case x0 = 0. Using (3.45), after some algebra:

W (x, t|0, 0) =
 

k

2πD(1 − e−2kt)
exp
Ç

− k

2D
x2

1 − e−2kt

å
(3.46)

And then show W (x, t|0, 0) −−→
t→0

δ(x). The general case follows by translat-
ing that solution.

Alternative derivation The same result can be found solving the Fokker-
Planck equation for the transition probabilities W (x, t|x0, 0):

Ẇ (x, t|x0, 0) = ∂

∂x

Å
kxW +D

∂

∂x
W

ã
(3.47)

A quick way to solve this differential equation is to note that {∆Bi} are all i.i.d.
gaussian variables, and so x, which is a sum of ∆Bi must have a gaussian pdf.
So we can make an ansatz for the solution:

W (x, t|x0, 0) = 1
Z(t)

exp
Ä
−a(t)x2 + b(t)x

ä
(3.48)

Where a(t) and b(t) are the gaussian parameters, and Z(t) the normalization
factor. All that’s left is to substitute (3.48) in (3.47) and solve for a, b,Z.
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3.8.1 Equilibrium distribution
As before, we expect the equilibrium distribution to follow Maxwell-Boltzmann
formula:

Weq(x) = 1
Z

exp(−βV (x)) = 1
Z

exp
Ç

−mω2x2

2kBT

å
Z =

∫
R

exp(−βV (x))

(3.49)
Starting from (3.46) and taking the limit t → ∞:

lim
t→∞

W (x, t|0, 0) =
…

k

2πD
exp
Å

− k

2D
x2
ã

(3.50)

Comparing (3.49) with (3.50) we find:

mω2

2kBT
=

k

2D
=
mω2

2γD
⇒ kBT = γD

So we obtain the same relation between D and T that we found in the general
case.

3.8.2 High dimensional generalization
We can generalize the previous results to the case where ∆Bi = (∆B1

i , . . . , ∆Bd
i )T

are d-dimensional vectors, following a multivariate gaussian distribution:

P(∆B1, . . . , ∆Bn) =
n∏
i=1

d∏
α=1

dBα
i√

2π∆ti
exp
Å

−∆Bα
i

2∆ti

ã
As different components of the same ∆Bi are independent, by Ito’s rules of
integration:

dBα
i dBβ

i = δαβ dti dBα
i dBβ

i dBγ
i = 0

We then need to write d different Langevin equations, one for each component:

dxα(t) = fα(x(t), t) dt+
√

2Dα(x(t), t) dBα(t)

More in general, the stochastic term could be:
d∑

β=1
gαβ(x(t), t) dBβ(t)

and in our case gαβ = 2
√

2Dαδαβ.
The Fokker-Planck equation then becomes:

Ẇ (x, t) =
d∑

α=1

∂

∂xα

Å
−fα(x, t)W (x, t) + ∂

∂xα
Dα(x, t)W (x, t)

ã
And the joint probability for a discretized path:

P(∆x1, . . . , ∆xn) =
n∏
i=1

d∏
α=1

d∆xαi√
4πDα∆ti

exp
Ç

−
n∑
i=1

d∑
α=1

(∆xαi − fαi−1∆ti)2

4Dα∆ti

å
And taking the limit n → ∞:

P(x(τ)) =
t∏

τ=0+

Ç
ddx(τ)√

4π dτ ∏d
α=1

√
Dα

å
exp
Ç

−
d∑

α=1

1
4Dα

∫ t

0
(ẋα − fα)2 dτ

å
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3.8.3 Underdamped Harmonic Oscillator
If we do not ignore the inertia term in (3.38) we are left with:

mẍ = mv̇ = −γẋ + F (x) +
√

2Dξ

This second order (stochastic) differential equation can be written as a system
of two first order equations:

dx = v dt

dv =

Å
− γ

m
v +

F (x)
m

ã
dt+

√
2D
m

dB

This leads to a generalization of the Fokker-Planck equation, named Kramer
equation:

Ẇ (x, v, t) = ∇v

ñÅ
γv

m
− F

m

ã
W (x, v, t) + γ2D

m2 ∇vW (x, v, t)
ô
+ ∇x(−vW (x, v, t))

In the limit t → ∞, the distribution at equilibrium will be:

W (x, v) = 1
Z

exp
Ç

−β
ñ
m∥v∥2

2
+ V (x)

ôå
D =

kBT

γ

(Lesson 14 of
18/11/19)
Compiled: October
13, 20203.9 Particle in a conservative force-field

In last section, we examined a particle of radius a immersed in a harmonic
potential U(x) = mω2x2/2, moving through a medium with viscosity η and
subject to thermal fluctuations of amplitude proportional to

√
2D, so that its

dynamics are described by the following stochastic differential equation:

dx = −kx dt+
√

2D dB k =
mω2

γ
γ = 6πηa

The solution, expressed as the transition probability between any two given
points, is a path integral:

W (xt, t|x0, 0) = exp
Ç

−x2
t − x2

0
4D

k+
kt

2

å
⟨exp

Å
−

∫ t

0
V (x(τ)) dτ

ã
δ(x(t) − xt)⟩W

(3.51)

with V (x(τ)) = k2x2(τ)/(4D). The average is computed with the Wiener
measure:

⟨f(x(τ))⟩W ≡
∫

R
T

(
t∏

τ=0+

dx(τ)√
4πD dτ

)
exp
Å

− 1
4D

∫ t

0
ẋ2(τ) dτ

ã
f(x(τ))

with R
T being the set of continuous functions T → R, and T = [0, t].
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We want now to show that, in the more general case of a particle immersed
in a generic potential U(x), a path integral similar to the highlighted term in
(3.51) will appear. Of course, the function V (x(τ)) will be different, but it will
be proportional to U(x) - as it is evident in the harmonic case.

So, let’s consider a particle in a 3D space r = (x1,x2,x3)T , immersed in a
conservative force-field F (r) = −∇U(r) with potential U(r), and subject to
thermal noise. The Langevin equation becomes:

dr = f(r) dt+
√

2D dB f(r) = F (r)
γ

γ = 6πηa (3.52)

with B = (B1,B2,B3)T being a d = 3 vector with gaussian components:

∆Bα ∼ 1√
2π∆t

exp
Ç

−∆B2
α

2∆t

å
α = 1, 2, 3 (3.53)

As different components are independent, the joint pdf for the vector ∆B is
just the product of the three terms in (3.53):

∆B ∼ 1
(2π∆t)3/2 exp

Ç
−∥∆B∥2

2∆t

å
As before, we introduce a time discretization {tj}j=0,...,n with t0 ≡ 0 and tn ≡ t

fixed, so that (3.52) becomes:

∆ri = r(ti) − r(ti−1) = fi−1∆ti +
√

2D∆Bi

where the force f(r) is evaluated at the left side ti−1 of each discrete interval
[ti−1, ti], following Ito’s prescription.
Then, starting from the joint pdf of the {∆Bi}:

dP (∆B1, . . . , ∆Bn) =
n∏
i=1

d3∆Bi

(2π∆t)3/2 exp
Ç

−
n∑
i=1

∥∆Bi∥
2

2∆ti

å
we perform a change of variables by inverting (3.52):

∆Bi =
∆ri − fi−1∆ti√

2D
⇒
∣∣∣∣∣∂{∆Bα

i }
∂{∆rβj }

∣∣∣∣∣ =
∣∣∣∣∣ ∂{∆rβj }
∂{∆Bα

i }

∣∣∣∣∣
−1

= (2D)3/2

This leads to the joint pdf for the increments {∆ri}:

dP (∆r1, . . . , ∆rn) =
Ç

n∏
i=1

d3∆ri

(4πD∆ti)3/2

å
exp

− 1
4D

n∑
i=1

∥∥∥∆ri − fi−1∆ti
∥∥∥2

∆ti


(3.54)

Expanding the square in the exponential:

− 1
4D

n∑
i=1

ñ
∥∆ri∥

2

∆ti
+

∥∥∥fi−1
∥∥∥2

∆ti − 2∆ri · fi−1

ô
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allows to recognize the d = 3 Wiener measure in (3.54):

dP ({∆ri}) =

(
n∏
i=1

d3∆ri

(4πD∆ti)3/2 exp
ñ
− 1

4D

n∑
i=1

∥∆ri∥
2

∆ti

ô
︸ ︷︷ ︸

d3
W r

)
·

· exp

(
− 1

4D

n∑
i=1

∥∥∥fi−1
∥∥∥2

∆ti︸ ︷︷ ︸∫ t

0
∥f(r(τ))∥2 dτ

+
1

2D

n∑
i=1

fi−1 · ∆ri︸ ︷︷ ︸∫ t

0
f(r(τ)) · dr(τ)

)

(3.55)

Let’s focus on the stochastic integral (the one in dr(τ)). For this we need to
generalize to d = 3 the integration formula we found in the previous section.
Consider a multi-variable scalar function h(r) : R

3 → R, r 7→ h(r). As before,
we start from the difference:

h(rn) − h(r0) = h(rn) − h(rn−1) + h(rn−1) − h(rn−2) + · · · + h(r1) − h(r0) =

=
n∑
i=1

(h(ri) − h(ri−1)) =
n∑
i=1

∆hi (3.56)

In the discretization, ri = ri−1 + ∆x, with ∆x = (∆x1
i , ∆x2

i , ∆x3
i ). Each

differential ∆hi is then:

∆hi = h(ri) − h(ri−1) ≡ hi − hi−1 =

=
(a)

����h(ri−1) +
3∑

α=1

ï
∂

∂xα
h(ri−1)

ò
∆xαi +

1
2

3∑
α,β=1

ñ
∂2

∂xα∂xβ
h(ri−1)

ô
∆xαi ∆xβi + · · · −����h(ri−1) =

=
(b)

3∑
α=1

ï
∂

∂xα
h(ri−1)

ò
∆xαi + D

3∑
α,β=1

ñ
∂2

∂xα∂xβ
h(ri−1)

ô
∆t i (3.57)

where in (a) we expanded the first term in Taylor series about ri−1, and in (b)
we used Ito’s rules, and in particular the fact that:

∆xαi ∆xβi = ∆ti2Dδαβ

Substituting (3.57) back in (3.56) leads to:

h(rn) − h(r0) =
n∑
i=1

∆hi =
n∑
i=1

3∑
α=1

∂

∂xα
hi−1∆xαi +D

3∑
α=1

∂2

∂xα
2hi−1∆ti

and then, in the continuum limit:

h(r(t)) − h(r(0)) =
∫ t

0
∇h(r) · d3r +D

∫ t

0
∇2h(r(τ)) dτ

Rearranging we arrive at the desired formula for integration:∫ t

0
∇h(r) · d3r = h(r(t)) − h(r(0)) −D

∫ t

0
∇2h(r(τ)) dτ (3.58)
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Thanks to (3.58) we can solve the stochastic integral in (3.55):∫ t

0
f(r(τ)) · d3r(τ)

Inserting f(r) = −∇U(r)/γ and applying the formula leads to:∫ t

0
f(r(τ)) · d3r(τ) = −1

γ

∫ t

0
∇U(r(τ)) · d3r(τ) = −1

γ

ï
U(r(t)) −U(r(0)) −D

∫ t

0
∇2U(r(τ)) dτ

ò
Substituting back in (3.55):

dP = d3
Wr exp

Å
− 1

4D

∫ t

0
∥f∥2 dτ + 1

2D

ï
−1
γ

[U(r(t)) −U(r(0))] + D

γ

∫ t

0
∇2U(r(τ)) dτ

òã
=

= d3
Wr exp

(
− 1

4D

∫ t

0
dτ
ï
∥f∥2 − 2D

γ
∇2U

ò
︸ ︷︷ ︸

V (r)

)
exp
Å

− 1
2Dγ

[U(r(t)) −U(r(0))]
ã

(3.59)

where:

V = f2 − 2D
γ

∇2U = f2 − 2D∇ · f

Using the just found measure dP we can compute path integrals, and in par-
ticular transition probabilities:

W (r, t|r0, 0) =
∫

R
T

dP δ(r(t) − r) ≡ ⟨δ(r(t) − r(0))⟩W =

=
∫

R
T

d3
Wr exp

Å
− 1

4D

∫ t

0
V (r(τ)) dτ

ã
δ(r(t) − r) exp

Å
− 1

2Dγ
(U(r) −U(r0))

ã
=

= ⟨exp
Å

− 1
4D

∫ t

0
V (r(τ)) dτ

ã
δ(r(t) − r)⟩W exp

Å
− 1

2Dγ
(U(r) −U(r0))

ã
This expression is indeed similar to that derived in the specific case of the
harmonic oscillator (3.51), meaning that the techniques we used to evaluate
previous path integrals can be useful in much more general cases.

This observation has indeed a deeper meaning, as we found a way to describe the
dynamics of conservative systems with a path integral. We already know that
the behaviour of these systems can be also described with partial differential
equations (e.g. the Fokker-Planck equation). So, there should be a link between
path integrals and PDEs, that will be explored in the next section.

3.10 Feynman-Kac formula
It is possible to use the machinery of stochastic processes and path integrals
to solve certain partial differential equations, which - as we will see - are of
fundamental importance in Quantum Mechanics.
In this regard, a very important result is offered by the Feynman-Kac for-
mula. The main idea is to use a Brownian process to simulate many paths,
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and express the solution of the differential equation as the average of a certain
functional computed over all these paths.
More precisely, consider the following partial differential equation (Bloch’s equa-
tion):

∂tWB(x, t) = D∂2
xWB(x, t) − V (x)WB(x, t) D ∈ R,V : R → R (3.60)

The Feynman-Kac formula states that the functionWB(x, t) that solves (3.60)
can be found by computing a Wiener path integral:

WB(x, t) ≡ ⟨exp
Å

−
∫ t

0
V (x(τ)) dτ

ã
δ(x(t) − x)⟩W (3.61)

Note that this result can be generalized to more dimensions - but we will limit
ourselves to the d = 1 case for simplicity.

Proof. We now show that (3.61) indeed satisfies (3.60). As usual, we start
by defining a time discretization, {ti}i=0,...,n+1, so that t0 ≡ 0 and tn+1 ≡ t̄ is
the instant at which we wish to evaluate the solution WB(x, t). Then (3.61) at
that instant will be obtained by the continuum limit of the discretized average
ψn+1(x):

WB(x, t̄) = lim
n→∞ψn+1(x)

ψn+1(x) =
∫

R
n+1

Ç
n+1∏
i=1

dxi√
4πD∆ti

å
exp
Ç

−
n+1∑
i=1

(xi − xi−1)2

4D∆ti
−
n+1∑
i=1

∆tiV (xi)
å
δ(xn+1 − x)

(3.62)

Note that ψn+1(x) is the average of a functional over all paths that arrive in x
at the instant t̄, making exactly n+ 1 steps from their starting point 0. In the
following, the intuition is to see these paths as being generated, i.e. evolving step
after step from 0 to x. For example, suppose we want to approximate (3.62).
We would start by choosing an ensemble of paths arriving to x after n + 1
timesteps, compute the functional on each of them, and average the results.
However, we could also do it in another - a bit stranger - way. Consider the
same ensemble of paths we already (supposedly) generated. From each of them,
remove the last step. We now have a set of paths that arrive close to x, and
will arrive exactly there if we let another timestep pass. However, we decide
to compute the functional on each of these paths and then average the results,
before letting them arrive at their destination. So, in a certain sense, we will
estimate the value of the functional “a timestep in the past”. Of course, we
can repeat this process, removing more and more timesteps at every iteration.
At the end, we will have a sequence of numbers detailing the “evolution” of
the functional from the start to the end. Turns out that the rule for such an
evolution is exactly (3.60). So, to prove Feynman-Kac, we just have to find
that rule - meaning how to relate ψn+1 to its “past” ψn (in the continuum limit
n → ∞).
This is just an informal intuition, that will only be useful as a guide for the
rest of the proof. So, let’s go on.
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For simplicity, we choose the time discretization as uniform, so that ∆ti ≡ ϵ

∀i, and:

tn+1 = (n+ 1)ϵ ≡ t̄ ⇒ ϵ =
t̄

n+ 1

We then rewrite (3.62), highlight the last term (the one with the xn+1) and
integrate to remove the δ:

ψn+1(x) =
∫

R
n

Ç
n∏
i=1

dxi√
4πDϵ

å
exp
Ç

−
n∑
i=1

(xi − xi−1)2

4Dϵ
−

n∑
i=1

ϵV (xi)
å

·

·
∫

R

dxn+1√
4πDϵ

exp
Ç

−(xn+1 − xn)2

4Dϵ
− ϵV (xn+1)

å
δ(xn+1 − x) =

=
∫

R
n

Ç
n∏
i=1

dxi√
4πDϵ

å
exp
Ç

−
n∑
i=1

(xi − xi−1)2

4Dϵ
−

n∑
i=1

ϵV (xi)
å

·

· 1√
4πDϵ

exp
Ç

−(x− xn)2

4Dϵ
− ϵV (x)

å
(3.63)

Now, with some algebra, we recognize in these integrals a term ψn(xn), indi-
cating the expected value of the functional over all paths reaching xn (which
is close to the end-point x) at timestep tn = t− ϵ. We start by rearranging,
putting the integration over dxn at the front:

(3.63) =
∫

R

dxn√
4πDϵ

exp
Ç

−(x− xn)2

4Dϵ
− ϵV (x)

å
·

· 1√
4πDϵ

∫
R

n−1

Ç
n−1∏
i=1

dxi√
4πDϵ

å
exp
Ç

−
n∑
i=1

(xi − xi−1)2

4Dϵ
− ϵ

n∑
i=1

V (xi)
å

(3.64)

Now we change all the xi in the second line to yi, and then add a δ (with its
integral) to connect yn to xn, which appears in the integral in the first line. In
this way we will highlight the desired ψn(xn):

(3.64) =
∫

R

dxn√
4πDϵ

exp
Ç

−(x− xn)2

4Dϵ
− ϵV (x)

å
·

·
∫

R
n

Ç
n∏
i=1

dyi√
4πDϵ

å
exp
Ç

−
n∑
i=1

(yi − yi−1)2

4Dϵ
− ϵ

n∑
i=1

V (yi)
å
δ(xn − yn)︸ ︷︷ ︸

ψn(xn)
(3.65)

And so:

ψn+1(x) = e−ϵV (x)
∫

R

dxn√
4πDϵ

exp
Ç

−(x− xn)2

4Dϵ

å
ψn(xn) (3.66)

This is relation between ψn+1(x) and its “past” ψn(x) that we were searching
for. Now, to retrieve (3.60), all that’s left is to put (3.66) in differential form.
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We start by simplifying the integral, making it similar to a gaussian with a
change of variables:

−(x− xn)2

4Dϵ
!
= −z2

2
⇒ z = −x− xn√

2Dϵ
; xn = x+

√
2Dϵz; dxn =

√
2Dϵ dz

which leads to:

ψn+1(x) = e−ϵV (x)
∫ +∞

−∞

dz√
2π

exp
Ç

−z2

2

å
ψn(xn + z

√
2Dϵ) (3.67)

As n → ∞, z → 0. We will not prove this, but note that:

z = −x− xn
ϵ

√
ϵ√

2D
where the first factor is a velocity, which must be physically limited, and so
n → ∞ ⇒ ϵ → 0 ⇒ z → 0.
This means that we can expand ψn in Taylor series about x:

ψn(xn + z
√

2Dϵ) = ψn(x) + z
√

2Dϵψ′
n(x) + z2Dϵψ′′

n(x) +O(z3ϵ3/2)

Substituting back in (3.67):

ψn+1(x) = e−ϵV (x)
[
ψn(x)

∫
R

dz√
2π

exp
Ç

−z2

2

å
︸ ︷︷ ︸

1

+
√

2Dϵψ′
n(x)

∫
R

dz√
2π
z exp

Ç
−z2

2

å
︸ ︷︷ ︸

0

+

+Dϵψ′′
n(x)

∫
R

dz√
2π
z2 exp

Ç
−z2

2

å
︸ ︷︷ ︸

1

+O(ϵ2)

]
(3.68)

as the integrand is just a standard gaussian (µ = 0, σ = 1). Note how the
error term is of order ϵ2, as the first non-null integral in the series will be that
with z4:

∫
R

dz√
2π
zk

(2Dϵ)k/2

k!
ψ(k)
n =

0 k odd

1k(k− 1)!! k even

Expanding also the e−ϵV (x) term:

e−ϵV (x) = 1 − ϵV (x) + ϵ2V 2(x)
2

+O(ϵ3)

Finally, substituting back in (3.68), expanding the product and ignoring all
terms of order 2 or higher in ϵ:

ψn+1(x) = ψn(x) +Dϵψ′′
n(x) − ϵV (x)ψn(x) +O(ϵ2)

Rearranging:
ψn+1 − ψn

ϵ
= Dψ′′

n − V ψn

And when ϵ → 0 the first term becomes a time derivative, leading to Bloch’s
equation, and proving Feynman-Kac formula:

∂tWB(x, t) = D∂2
xWB(x, t) − V (x)WB(x, t)
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3.10.1 Application to Quantum Mechanics
It is possible to map the Schrödinger equation to the Bloch equation (3.60),
and then use Feynman-Kac formula to solve it.
Recall the time-dependent Schrödinger equation for a particle immersed in a
d = 1 potential v(x) and described by a wavefunction ψ(x, t):

i h̄∂tψ(x, t) = − h̄2

2m
∂2
xψ(x, t) + v(x)ψ(x, t)

This is already similar to (3.60), except for the presence of a complex coefficient
i. We can remove it with a change of variable t 7→ it, leading to:

i h̄(i) ∂
∂t
ψ(x, it) = − h̄

∂

∂t
ψ(x, it) = − h̄2

2m
∂2
xψ(x, it) + v(x)ψ(x, it)

Defining ψ(x, it) ≡ ψ̂(x, t) and multiplying both sides by − h̄−1 leads to:

∂

∂t
ψ̂(x, t) = h̄

2m
∂2

∂x2 ψ̂(x, t) − v(x)
h̄
ψ̂(x, t)

which has the form of Bloch’s equation:

∂

∂t
ψ̂(x, t) = D

∂2

∂x2 ψ̂(x, t) − V (x)ψ̂(x, t) D =
h̄

2m
; V (x) = v(x)

h̄

3.11 Variational methods
Consider a particle subject to an external conservative force F (r) = −∇U(r),
moving through a viscous medium and subject to thermal noise. The probabil-
ity density for a path x(τ) can be derived from (3.59), after “dividing by the
volume element” and taking the limit n → ∞:

Ω[r(τ)] ≡ dP
dV

=

= exp

(
− 1

4D

∫ t

0
dτ ṙ2(τ) +

∫ t

0
dτ
Å

− 1
4D

ãï
∥f∥2 − 2D

γ
∇2U

ò
︸ ︷︷ ︸

V (r)

− 1
2Dγ

[U(r(t)) −U(r(0))]

)
=

= exp

(
− 1

4D

∫ t

0
dτ ṙ2(τ) − 1

4D

∫ t

0
dτ
ñ∥∥∥∥∥F

γ

∥∥∥∥∥
2
+

2D
γ

∇ · F

ô
︸ ︷︷ ︸

V (r)

+
1

2Dγ

∫ r(t)

r(0)
d3r · F (r)

)

(3.69)

with f(r) = F /γ, and γ = 6πηa (η being the medium viscosity, and a the
particle radius). If we change variables in the last integral:∫ r(t)

r(0)
d3r · F (r) =

∫ t

0
dτ F (r) · dr(τ)

dτ

we can rewrite (3.69) as a single integral:

Ω[r(τ)] = exp
Å

− 1
4D

∫ t

0
dτ L(r(τ))

ã
(3.70)
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with the function L : R → R, r(τ) 7→ L(r(τ)) defined as:

L(r(τ)) ≡ r2(τ) +
∥∥∥∥∥F (r(τ))

γ

∥∥∥∥∥
2
+

2D
γ

∇ · F (r(τ)) − 2
γ

F (r(τ)) · ṙ(τ) =

=

∥∥∥∥∥ṙ(τ) − F (r(τ))
γ

∥∥∥∥∥
2
+

2D
γ

∇ · F (r(τ)) (3.71)

Classical path.
Consider the classical limit D → 0. Then the ∇ · F term in (3.71) vanishes,
and as −1/(4D) → ∞, there will be only one path with non-zero probability,
i.e. the one rc(τ) for which the functional vanishes:

∫ t

0
dτ L(rc(τ)) = 0 ⇒

∫ t

0
dτ

∥∥∥∥∥ṙc(τ) − F (rc(τ))
γ

∥∥∥∥∥
2
= 0

We can then compute that path. As the integrand is a non-negative function,
for its integral to be 0 it must be 0 ∀t, leading to:

drc

dτ
=

F (rc)
γ

which is just the equation of motion from classical mechanics.

Let’s now use the form (3.70) to compute path integrals. For example, consider
a transition probability:

W (rt, t|r0, 0) =
∫

C{r0,0;rt,t}
dr(τ) exp

Å
− 1

4D

∫ t

0
dτ L(r(τ))

ã
︸ ︷︷ ︸

Ω[r(τ)]

(3.72)

Let’s define the functional:

S[r(τ)] =
∫ t

0
dτ L(r(τ))

Given the form of (3.72), the path rc(τ) that minimizes S[r(τ)] will give the
greatest contribution to the path integral. The parameter D modulates the
relative contributions of paths. If D → 0, rc(τ) will be the only contributing
path, but if D ≫ 1, many different paths will have a significant contribution.
Suppose that rc(τ) is indeed important, meaning that D is sufficiently small
(more precisely, that S[rc(τ)])/D ≫ 1). Then, we write any generic path x(τ)
as the most important one xc(τ) plus a “deviation” y(τ):

x(τ) = xc(τ) + (x(τ) − xc(τ))︸ ︷︷ ︸
y(τ)

Note that as the end-points of every path are fixed, y(0) = y(t) = 0. Then,
we expand in series the functional:

S[x(τ)] = S[xc(τ) + y(τ)] = S[xc] + δS[xc, y] + 1
2!
δ2S[xc, y] + . . .
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where the δ terms are the variations of the functional2. For example, the first
variation δS[xc, y] is given by, measures how much S varies to first order when
changing y(τ). As xc is a minimum of S, it is also a stationary point, meaning
that paths close to xc do not change the value S[xc] to first order. Applying
the definition of the first variation, this leads to the Euler-Lagrange equations
for determining xc:

δS[xc, y] = ∂L(r(τ))
∂xi

− d
dτ

∂L(r(τ))
∂ẋi

!
= 0 i = 1, 2, 3

Then, note how all other terms of the series involve integrals of y(τ), which do
not depend on x - as y(τ) starts from 0 and returns to 0 at t. So:

S[x(τ)] = S[xc] + 1
2!
δ2S[xc, y] + . . .︸ ︷︷ ︸

h(t)

Substituting back in (3.72):

W (rt, t|r0, 0) = − 1
4D

exp(h(t))︸ ︷︷ ︸
Φ(t)

exp
Å

− 1
4D

S[xc]
ã
= Φ(t) exp

Å
− 1

4D

∫ t

0
dτ L[rc(τ)]

ã
The function Φ(t) is called fluctuation factor, and its computation is not trivial
in the general case. However, if we are dealing with transition probabilities, we
can use the normalization condition to find it:∫

R
3 d3rW (r, t|r, 0) ≡ 1

�� ��Example 12 (Simple integral with variational methods):

An example will hopefully clarify the essence of the variational method.
Let’s start with a already known integral, in the d = 1 case:

W (x, t|x0, 0) =
∫

R
T

(
t∏

τ=0+

dx(τ)√
4πD dτ

)
exp
Å

− 1
4D

∫ t

0
ẋ2(τ) dτ

ã
δ(x− x(t)) =

(3.73)

=
1√

4πDt
exp
Ç

−(x− x0)2

4Dt

å
Let’s compute it again, this time using variations. In this case we are
interested in the functional:

S[x(τ)] =
∫ t

0
ẋ2(τ) dτ (3.74)

To minimize it, we solve the Euler-Lagrange equations:

d
dτ

∂S(xc)
∂ẋ

− ∂S(xc)
∂x

= 0 ⇒ 0 − 2ẍc = 0 ⇒ ẍc(τ) = 0

2∧See www2.math.uconn.edu/~gordina/NelsonAaronHonorsThesis2012.pdf for a re-
fresher
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Integrating two times:

ẋc(τ) = a ⇒ xc(τ) = aτ + b

The boundary conditions are path’s two extrema:

xc(0) = b
!
= 0; xc(t) = at+ x0

!
= x ⇒ a =

x− x0
t

leading to:

xc(τ) = x0 +
x− x0
t

τ

So the path minimizing S is just the straight line joining x0 to x. We can
now express any path x(τ) as a deviation from the xc(τ):

x(τ) = xc(τ) + y(τ) y(0) = y(t) = 0 (3.75)

This is a change of variables for (3.73), from x(τ) to y(τ) (xc(τ) is a fixed
path). As this is just a translation, dx(τ) = dy(τ) and the path integral
becomes:

W (x, t|x0, 0) =
∫

R
T

(
t∏

τ=0+

dy(τ)√
4πD dτ

)
δ(y(t) − 0)S[xc(τ) + y(τ)] =

=
∫

C{0,0;0,t}

(
t∏

τ=0+

dy(τ)√
4πD dτ

)
S[xc(τ) + y(τ)] (3.76)

To compute S, first we differentiate (3.75):

ẋ(τ) = ẋc(τ) + ẏ(τ)

and substitute in (3.74), leading to:

S[x(τ)] =
∫ t

0
dτ (ẋc + ẏ)2 =

∫ t

0
ẋ2
c(τ) dτ + 2

∫ t

0
ẋc(τ)ẏ(τ) dτ +

∫ t

0
ẏ2(τ) dτ

Note that the middle term vanishes. We can see it by integrating by parts:∫ t

0
ẋc(τ)ẏ(τ) dτ = ẋc(τ)y(τ)

∣∣∣t
0

−
∫ t

0
ẍc(τ)y(τ) dτ = 0

as y(0) = y(t) = 0 and ẍc(τ) ≡ 0. Going back to (3.76):

W (x, t|x0, 0) =
∫

R
T

(
t∏

τ=0+

dy(τ)√
4πD dτ

)
δ(y(t) − 0) exp

Å
− 1

4D

ï∫ t

0
ẋ2
c(τ) dτ +

∫ t

0
ẏ2(τ) dτ

òã
As xc(τ) is fixed, we can bring it outside the integral:

= exp
Å

−
∫ t

0
ẋ2
c(τ) dτ

ã ∫
R

T

(
t∏

τ=0+

dy(τ)√
4πD dτ

)
δ(y(t) − 0) exp

Å
− 1

4D

∫ t

0
ẏ2(τ) dτ

ã
︸ ︷︷ ︸

Φ(t)
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We recognize the remaining path integral as a function Φ(t) of time only,
and finally:

W (x, t|x0, 0) = Φ(t)
∫ t

0
dτ ẋ2

c(τ) = Φ(t) exp

− 1
4D

Ç
x2 − x2

0
t2

å ∫ t

0
dτ︸ ︷︷ ︸
t

 =

= Φ(t) exp
Ç

−(x− x0)2

4Dt

å
To find the remaining Φ(t) we can now use the normalization condition:∫ +∞

−∞
dxW (x, t|x0, 0) !

= 1

In this case, this is just a gaussian integral:

∫
R

dxΦ(t) exp
Ç

−(x− x0)2

4Dt

å
= Φ(t)

√
4πDt !

= 1 ⇒ Φ(t) = 1√
4πDt

And so we retrieve the correct result:

W (x, t|x0, 0) = 1√
4πDt

exp
Ç

−(x− x0)2

4Dt

å
Gaussian integrals. There is another, more specific, way to interpret the
results we discussed in this section. Instead of working in the continuum, we
could use a discretization, and see path integrals as (3.73) as integrals of a
highly dimensional gaussian. For example, in the case just examined, we have:

W (x, t|x0, 0) = “ lim
n→∞ ”IN

In =
∫

R
n

Ç
n∏
i=1

dxi√
4πD∆ti

å
exp
Ç

−
n∑
i=1

(xi − xi−1)2

4D∆ti

å
δ(x− xn)

Performing the integration over the dxn we can remove the δ, leaving only a
multivariate gaussian:

In =
∫

R
n−1

1√
4πD∆ti

Ç
n∏
i=1

dxi√
4πD∆ti

å
exp
Ç

−
n∑
i=1

(xi − xi−1)2

4D∆ti

å ∣∣∣
xn=x

This is a gaussian in the form of:∫
R

n
dnx exp

Å
−1

2
xTAx + bTx

ã
(3.77)

Note that removing the δ inserts a linear term in the exponential, here high-
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lighted:

n∑
i=1

(xi − xi−1)2

4D∆ti

∣∣∣
x=xn

=
n−1∑
i=1

(xi − xi−1)2

4D∆ti
+
x2
n + 2xnxn−1 + x2

n−1

4D∆tn

and so b ̸= 0.
Recall that to solve (3.77) we proceeded with a change of variables, x = xc +y,
where xc is the minimum of the gaussian (see 10/10 notes). This leads to a
result that is proportional to the exponential evaluated at xc:

∫
R

n
dnx exp

Å
−1

2
xTAx + bTx

ã
=

(2π)n/2√
det(A)

exp
Å1

2
bTA−1b

ã
=

=
(2π)n/2√

det(A)
exp
Å

Statx

ï
−1

2
xTAx + b · x

òã
Statx F (x) = F (xc); xc such that ∂F (x)

∂xi

∣∣∣
x=xc

= 0 ∀i = 1, . . . ,n

So, in the discrete case, the same variational result just derives from choosing
the best set of coordinates to describe the multivariate gaussian.
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Chapter 4

Variational Methods for Path
Integrals

4.1 Variational methods
(Lesson 15 of
21/11/19)
Compiled: October
13, 2020

�� ��Example 13 (Overdamped harmonic oscillator with variational methods):

Consider a particle immersed in a harmonic potential U(x) = mω2x2/2 and
subject to thermal noise, moving in a viscous medium. In the overdamped
limit m/γ → 0 (where γ = 6πηa, with η the medium’s viscosity and a the
particle’s radius), the equation of motion becomes:

dx(t) = −kx(t) dt+
√

2D dB(t) k =
mω2

γ

A path {x(τ)} solving that equation has a infinitesimal probability given
by:

dP =

(
t∏

τ=0+

dx(τ)√
4πD dτ

)
exp
Å

− 1
4D

∫ t

0
(ẋ+ kx)2 dτ

ã
as we already derived. We are now interested in computing the transition
probabilities:

W (x, t|x0, 0) =
∫

R
T
δ(x(t) − x) dP

Following the variational method, we arrive to:

W (x, t|x0, 0) = Φ(t) exp
Å

− 1
4D

S[xc(τ)]
ã

(4.1)

where S is the action functional for the harmonic potential:

S[x(τ)] =
∫ t

0
L(ẋ,x) dτ L(ẋ,x) = (ẋ+ kx)2

and xc(τ) is the path that stationarizes S[x(τ)], meaning that δS[xc(τ)] = 0
and so it satisfies the Euler-Lagrange equation:

0 !
=
∂L

∂x

∣∣∣
xc

− d
dt
∂L

∂ẋ

∣∣∣
xc

= 2k(ẋc + kxc) − 2(ẍc + kẋc) = 2(k2xc − ẍc)
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as:
∂L

∂x
= 2k(ẋ+ kx)

∂L

∂ẋ
= 2(ẋ+ kx)

So, to find xc(τ) we need to solve:
ẍc = k2xc

xc(0) = x0

xc(t) = x

This is the second order ordinary differential equation for an harmonic re-
pulsor, which has the following general integral:

xc(τ) = Aekτ +Be−kτ

Imposing the boundary conditions leads to:x0
!
= A+B

x
!
= Aekt +Be−kt

⇒
®
B = x0 −A

xekt = Ae2kt +B
⇒ xekt − x0 = A[e2kt − 1]

⇒ A =
xekt − x0

e2kt − 1
e−kt

e−kt =
(xekt − x0)e−kt

e
kt−e−kt

2 2
=
x− x0e

−kt

2 sinh(kt)

B = x0 −A = − x− x0e
kt

2 sinh(kt)

Then we evaluate the action at the stationary path xc(τ):

S[xc(τ)] =
∫ t

0
(ẋ+ kx)2 dτ =

∫ t

0
[2kAekτ ]2 dτ = 4k2A2 1

2k
e2kτ

∣∣∣t
0
=

= 4kA2 e
2kt − 1

2
e−kt

e−kt = 4kA2 sinh(kt) ekt =

= �4k
(x− x0e

−kt)2

�4 sinh(kt)
ekt =

k(x− x0e
−kt)2

ekt − e−kt
2

e−kt =
2k(x− x0e

−kt)2

1 − e−2kt

Substituting back in (4.1):

W (x, t|x0, 0) = Φ(t) exp
Ç

− k

2D(1 − e−2kt)
[x− x0e

−kt]2
å

All that’s left to find Φ(t) is to use the normalization condition:

1 !
=

∫
R

dxW (x, t|x0, 0) = Φ(t)
∫

R
dx exp

(
−

α︷ ︸︸ ︷
k

2D(1 − e−2kt)
[x− x0e

−kt]2
)

=

= Φ(t)
…
π

α
= Φ(t)

 
2πD(1 − e−2kt)

k
⇒ Φ(t) =

…
k

2πD
1√

1 − e−2kt
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And so the full solution is:

W (x, t|x0, 0) =
…

k

2πD
1√

1 − e−2kt
exp
Ç

− k

2D
(x− x0e

−kt)2

(1 − e−2kt)

å
−−−→
t→∞

…
k

2πD
exp
Å

− k

2Dx2

ã
As before, we can compute the t → ∞ with a Maxwell-Boltzmann distribu-
tion e−βU(x), obtaining:

1
2
βmω2x2 =

k

2D
x2 ⇒ D =

k

βmω2 =
1
βγ

=
kBT

γ
⇒ Dγ = kBT

as we previously derived.

If we do not consider the overdamped limit, however, the equation of motion
is given by:

mẍ = −γẋ−mω2x+
√

2Dγξ

This can be rewritten as a system of two first order (stochastic) differential
equations: 

dx (τ) = v(τ) dτ

dv (τ) = − γ

m
v(τ) dτ + γ

√
2D
m

dB

It is convenient to “symmetrize” the system, by adding a stochastic term also
in the first equation:

dx (τ) = v(τ) dτ + 2D̂
√

dB̂

dv (τ) = − γ

m
v(τ) dτ + γ

√
2D
m

dB

and then we’ll consider the limit D̂ → 0.
First, as usual, we discretize, with {ti}i=0,...,n and t0 ≡ 0, tn ≡ t, arriving to:∆xi = vi−1∆ti +

√
2D̂∆B̂i

∆vi = − γ

m
vi−1∆ti +

γ

m

√
2D∆Bi

Where the velocity is evaluated at ti−1 as per Ito’s prescription. As ∆Bi and
∆B̂i are independent gaussian increments, their joint distribution is just a
product:

dP (∆B1, ∆B̂1, . . . , ∆Bn, ∆B̂n) =
Ç

n∏
i=1

d∆Bi√
2π∆ti

d∆B̂i√
2π∆ti

å
exp
Ç

−1
2

n∑
i=1

∆B2
i

∆ti
− 1

2

n∑
i=1

∆B̂2
i

∆ti

å
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As done previously (see 14/11 notes), to get the distribution for ∆xi and ∆vi
we make a change of random variables:

∆B̂i =
∆xi − vi−1∆ti√

2D̂
∆Bi =

(
∆vi +

γ

m
vi−1∆ti

) m

γ
√

2D
with jacobian:

det
∣∣∣∣∣∂{∆B̂i}
∂{∆xi}

∣∣∣∣∣ = (2D̂)−n/2

det
∣∣∣∣∂{∆Bi}
∂{∆xi}

∣∣∣∣ = det
∣∣∣∣ ∂{∆xi}
∂{∆Bi}

∣∣∣∣−1
=
( γ
m

√
2D
)−n

=

Ç
γ2

m2 2D
å−n/2

leading to:

dP ({∆xi}, {∆vi}) =

Ñ
n∏
i=1

d∆xi√
4πD∆ti

d∆vi»
4πD∆tiγ

2/m2

é
·

· exp
Ç

−1
2

n∑
i=1

m2

2γ2D

ñÅ
∆vi + γ/mvi−1∆ti

∆ti

ã2
∆ti

ôå
·

· exp
Ç

−1
2

n∑
i=1

1
2D̂

ñÅ
∆xi − vi−1∆ti

∆ti

ã2
∆ti

ôå
=

=

Ñ
n∏
i=1

d∆xi√
4πD∆ti

d∆vi»
4πD∆tiγ

2/m2

é
·

· exp
Ç

− m2

4Dγ2

n∑
i=1

ñÅ
∆vi
∆ti

+
γ

m
vi−1

ã2
∆ti

ôå
·

· exp
Ç

− 1
4D̂

n∑
i=1

ñÅ
∆xi
∆ti

− vi−1

ã2
∆ti

ôå
(4.2)

Taking the continuum limit n → ∞ leads to:

dP ({x(τ), v(τ)}) =

Ñ
t∏

τ=0+

dx(τ)√
4πD̂ dτ

dv(τ)»
4πD dτ γ2/m2

é
·

· exp
Ç

− m2

4Dγ2

∫ t

0
dτ
[
v̇(τ) + γ

m
v(τ)

]2
− 1

4D̂

∫ t

0
dτ [ẋ(τ) − v(τ)]2

å
In the limit D̂ → 0+, 1/(4D̂) → +∞, and so the gaussian pdf for the ∆B̂i
becomes infinitely thin, and the only path with a non-vanishing probability will
be the one where: ∫ t

0
dτ [ẋ− v(τ)]2 = 0

As any > 0 value will lead to exp(−∞) = 0. In particular, the i-th factor of
the discretization becomes:

1√
4πD̂∆ti

exp
ï
− 1

4D̂

Å
∆xi
∆ti

− v2
0

ã
∆ti

ò
=
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=
1√

4πD̂∆ti
exp
Å

− 1
4D̂∆ti

(∆xi − vi−1∆ti)2
ã

−−−→
D̂→0

δ(∆xi − vi−1∆ti)

where we used a limit definition for the δ:

lim
ϵ→0

1√
4πϵ

exp
Ç

−x2

4ϵ

å
= δ(x)

with ϵ = D̂∆ti and x = ∆xi − vi−1∆ti.
Substituting back in (4.2):

dP ({∆xi}, {∆vi}) =

Ñ
n∏
i=1

d∆xi δ(∆xi − vi−1∆ti)
d∆vi»

4πD∆tiγ
2/m2

é
·

· exp
Ç

− m2

4Dγ2

n∑
i=1

ñÅ
∆vi
∆ti

+
γ

m
vi−1

ã2
∆ti

ôå
Now consider the discretized transition probability:

W (xn, vn, tn|x0, v0, 0) =
∫

R
n×R

n
dP ({xi, vi})δ(xn − x)δ(vn − x) = (4.3)

=
∫

R
n×R

n

Ñ
n∏
i=1

d∆xi δ(∆xi − vi−1∆ti)
d∆vi»

4πD∆tiγ
2/m2

é
·

· exp
Ç

− m2

4Dγ2

n∑
i=1

ñÅ
∆vi
∆ti

+
γ

m
vi−1

ã2
∆ti

ôå
δ(vn − v)δ(xn − x)

Let’s focus on the integrations over xi:∫
R

n

Ç
n∏
i=1

d∆xi δ(∆xi − vi−1∆ti)
å
δ(xn − x) =

=
∫

R
n

d∆x1 . . . d∆xn δ(∆x1 − v0∆t1) . . . δ(∆xn − vn−1∆tn)δ(xn − x)

We then perform the change of variables ∆x1 = x1 − x0, with x0 constant, so
that d∆x1 = dx1. Then we integrate over dx1, eliminating the first δ and
setting x1 = x0 − v0∆t1:∫

R
n

dx1 d∆x2 . . . d∆xn δ(x1 − x0 − v0∆t1)δ(∆x2 − v1∆t2) . . . δ(∆xn − vn−1∆tn)δ(xn − x) =∫
R

n−1 d∆x2 . . . d∆xn δ(x2 − x0 − v0∆t1 − v1∆t2) . . . δ(∆xn − vn−1∆tn)δ(xn − x)

Repeating these steps for all the other variables except the last one, we arrive
to:

=
∫

R
dxn δ

Ç
xn − x0 −

n∑
i=1

vi−1∆ti

å
δ(xn − x) = δ

Ç
x− x0 −

n∑
i=1

vi−1∆ti

å
In the continuum limit, this becomes:

δ

Å
x− x0 −

∫ t

0
v(τ) dτ

ã
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Substituting back in (4.3) and finally taking the limit n → ∞:

W (x, v, t|x0, v0, 0) =
∫

R
T

Ñ
t∏

τ=0+

dv(τ)»
4πD dτ γ/m2

é
exp
Ç

− m2

4Dγ

∫ t

0

(
v̇(τ) + γ

m
v(τ)

)2
dτ
å

· δ(v(t) − v)δ
Å
x− x0 −

∫ t

0
v(τ) dτ

ã
We can now use the variational method to compute that integral. So, let vc(τ)
be the path, starting at v(0) = v0 that stationarizes the action functional:

S[v(τ)] =
∫ t

0

(
v̇(τ) + γ

m
v(τ)

)2
dτ

so that δS[vc(τ)] = 0, and also satisfies the constraints imposed by the δ:

v(t) !
= v x− x0

!
=

∫ t

0
v(τ) dτ

Then, the path integral is given by:

W (x, v, t|x0, v0, 0) = Φ(t) exp
Ç

− m2

4Dγ

∫ t

0

(
v̇c(τ) + γ

m
vc(τ)

)2
dτ
å

(4.4)

All that’s left is to compute vc(τ) and evaluate the integral. This is a problem of
constrained optimization, for which we use the method of Lagrange multipliers.

Brief refresher of Lagrange multipliers. Suppose we have two functions
F , g : R

2 → R, with F (x, y) being the function to maximize, and g(x, y) =
c ∈ R a constraint. A stationary point (x0, y0) of F subject to the constraint
g(x, y) = c is such that if we move slightly from (x0, y0) along the contour
g(x, y) = c, the value of F (x, y) does not change (to first order). This happens
if the contour of F passing through the stationary point F (x, y) = F (x0, y0) is
parallel at (x0, y0) to that of g(x, y) = c, meaning that at (x0, y0) the gradients
of F and g are parallel:

∇x,yF = λ∇x,yg λ ∈ R

(Here we assume that ∇x,yg(x0, y0) ̸= 0). Rearranging:

∇x,y(F (x, y) − λg(x, y)) = 0

Together with the constraint equation g(x, y) = c, we have now 3 equations
in 3 unknowns (x, y,λ) that can be solve to yield the desired stationary point
(x0, y0).

In this case, we have functionals instead of functions, and functionals deriva-
tives (i.e. variations) instead of derivatives. So, to find the stationary points
of: ∫ t

0

(
v̇(τ) + γ

m
v(τ)

)2
dτ (a)

104



subject to the constraint:∫ t

0
v(τ) dτ = x− x0 (b)

we need to solve:

δ
∫ t

0

ï(
v̇(τ) + γ

m
v(τ)

)2
− λv(τ)

ò
︸ ︷︷ ︸

L(v,v̇)

dτ = 0

And applying the definition of first variation (the δ above) leads to solving the
Euler-Lagrange equations:

∂L

∂v
− d

dτ
∂L

∂v̇

∣∣∣
v=vc

!
= 0

Expanding the computations:

2
(
v̇c +

γ

m
vc

) γ

m
− λ− d

dτ

[
2
(
v̇c +

γ

m
vc

)]
= 0 ⇒ v̈c(τ) = vc(τ)

( γ
m

)2
− λ

2
The homogeneous solution is again a combination of exponentials:

vc(τ) = A exp
(

− γ

m
τ
)
+B exp

( γ
m
τ
)

And for the inhomogeneous general integral we just need to add a particular
solution, for example the one with constant velocity v̇(τ) = const ⇒ v̈c(τ) = 0,
given by:

vc(τ) = λ

2

Å
m

γ

ã2

Then, we need to impose the boundary conditions:

vc(0) = v0 vc(t) = v
∫ t

0
v(τ) dτ = (x− x0)

So we have 3 parameters (the two constants of integration A,B and λ) and 3
equations. After finding all of them, we just need to evaluate the integral (4.4)
(computations omitted).

4.2 Diffusion with obstacles
(Lesson 15 of
21/11/19)
Compiled: October
13, 2020

Consider a particle in a potential U(x) (fig. 4.1), with a local minimum sepa-
rated by a barrier. In the classical case, if the particle’s energy is sufficiently
low, it can become forever trapped inside the minimum. However, in the pres-
ence of thermal fluctuations there may be a possibility of escape - a sort of
classical tunnelling.

Figure (4.1) – Potential graph
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We first consider an easier problem, that of the diffusion process on a compact
domain [a, b], representing the boundaries of the potential well of fig. 4.1. We
then suppose that the particle cannot escape from the left side a, but it can do
so - and always does - from the right one b. This means that a is a “reflecting”
boundary - i.e. if the particle hits x = a it “bounces back”), while x = b is
an absorbing boundary, that is a particle reaching b can be “absorbed by the
environment” and disappear from the system. In the more general case, the
probability of reflection at x = a or absorption at x = b will not be certain,
but will depend on the particle’s energy.

Recall the Langevin equation:

dx(t) = F (x, t)
γ︸ ︷︷ ︸

f(x,t)

dt+
√

2D(x, t) dB F (x) = −U ′(x); x ∈ [a, b] (4.5)

This is equivalent to the Fokker-Planck equation:

∂

∂t
W (x, t|x0, 0) = − ∂

∂x

ï
f(x, t)W (x, t|x0, 0) − ∂

∂x
(D(x, t)W (x, t|x0, 0))

ò
=

= − ∂

∂x

J(x,t)︷ ︸︸ ︷[
−U ′(x)

γ︸ ︷︷ ︸
A(x)

W (x, t|x0, 0) − ∂

∂x

( kBT
γ︸ ︷︷ ︸
D

W (x, t|x0, 0)
)]

=

(4.6)
= −∂x[A(x)W (x, t|x0, 0)] + ∂2

x[D(x)W (x, t|x0, 0)] (4.7)

where we inserted D(x, t) ≡ D = kBT/γ (derived from the equilibrium limit).
J(x, t) is the probability flux coming out from x at instant t.
To solve (4.6) we need a precise mathematical description for the reflecting and
absorbing boundaries:

• In x = a, the reflecting boundary condition means that:

J(a, t) = A(a)W (a, t|x0, 0) − [∂xD(x)W (x, t|x0, 0)]|x=a
!
= 0 ∀t

(4.8)

As every particle that goes in a immediately comes out after being re-
flected, the inward flux and outward one are the same, and so their sum
is 0.

• In b, however, the absorbing boundary condition means that the proba-
bility to find the particle here is exactly 0:

W (b, t|x0, 0) !
= 0 (4.9)

As x ∈ [a, b], the domain of equation (4.6) is not isotropic anymore - meaning
that the solution W (x, t|x0, 0) will depend on x0, making the problem much
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difficult. The idea is then to translate the problem from finding the full transi-
tion probability W (x, t|x0, 0) to finding a simpler, but still interesting, function,
that depends on less parameters.
One possible choice is given by the survival probability, i.e. the probability
that a particle starting at a given point x will still be inside the interval [a, b]
at a later time t:

G(x, t) =
∫ b

a
dyW (y, t|x, 0)

Note that we keep the starting time fixed at 0, and integrate over all the possible
destinations of the particle - reducing the number of variables from 4 to 2.
Note that generally G(x, t) ̸= 1, as the boundary in b offers a possibility of
escape, leading to a violation of the conservation of probability. In fact the
condition (4.9) W (b, t|x0, t0) = 0 does not mean that the flux here is null.
Recalling the definition of J(x, t) from (4.6):

J(b, t) =((((((((((
A(b)W (b, t|x0, t0) − ∂x(D(x)W (x, t|x0, t0))|x=b =

=
(((((((((((
−(∂xD)W (b, t|x0, t0) −D(b)∂xW (x, t|x0, t0)|x=b ̸= 0

Now, we need to translate (4.6) to a differential equation for G(x, t). We can
start by evaluating the time derivative of G(x, t):

∂

∂t
G(x, t) =

∫ b

a
dx′ ∂

∂t
W (x′, t|x, 0) (4.10)

We could use (4.7) to expand the ∂tW (x′, t|x, 0) term - but this does not really
work:

∂

∂t
G(x, t) =

∫ b

a
dx′ [−∂x′(A(x′)W (x′, t|x, 0)) + ∂2

x
′(D(x′)W (x′, t|x, 0))]

To reconstruct derivatives of G(x, t) in the right side, we would need to bring
the ∂x′ out of the integrals - but this is not possible, as x′ is the variable of
integration. One way to solve this would be to somehow move the derivative
from ∂x′ to ∂x.
To do this, we start from the ESCK relation:∫ b

a
dx1W (x2, t2|x1, t1)W (x1, t1|x0, t0) = W (x2, t2|x0, t0) t0 < t1 < t2

Differentiating with respect to the middle time t1:∫ b

a
dx1 [W (x1, t1|x0, t0)∂t1W (x2, t2|x1, t1) +W (x2, t2|x1, t1) ∂t1W (x1, t1|x0, t0)] = 0

We then use (4.7) to expand the highlighted term:
∫ b

a
dx1W (x1, t1|x0, t0)∂t1W (x2, t2|x1, t1)+

+
∫ b

a
dx1W (x2, t2|x1, t1)[−∂x1A(x1)W (x1, t1|x0, t0) + ∂2

x1D(x1)W (x1, t1|x0, t0)] = 0
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And then we integrate by parts the second term, to move the ∂x1 and ∂2
x1

derivatives:∫ b

a
dx1W (x1, t1|x0, t0)∂t1W (x2, t2|x1, t1)+

−A(x1)W (x1, t1|x0, t0)W (x2, t2|x1, t1)
∣∣∣x1=b

x1=a
+W (x2, t2|x1, t1)[∂x1D(x1)W (x1, t1|x0, t0)]

∣∣∣x1=b

x1=a

−D(x1)W (x1, t1|x0, t0)[∂x1W (x2, t2|x1, t1)]
∣∣∣x1=b

x1=a

+
∫ b

a
dx1 [A(x1)W (x1, t1|x0, t0)∂x1W (x2, t2|x1, t1) +D(x1)W (x1, t1|x0, t0)]∂2

x1W (x2, t2|x1, t1) = 0

In the limit t1 → 0, W (x1, t1|x0, t0) = δ(x1 − x0)δ(t1 − t0). This makes all the
boundary terms vanish (given that x0 ̸= a, b), and allows to compute the other
integrals (with x1 = x0 and t1 = t0), leading to:

∂

∂t0
W (x2, t2|x0, t0) +A(x0) ∂

∂x0
W (x2, t2|x0, t0) +D(x0) ∂

2

∂x2
0
W (x2, t2|x0, t0) = 0

Rearranging, and dropping some subscripts:

∂t0W (x, t|x0, t0) = −A(x0)∂x0W (x, t|x0, t0) −D(x0)∂2
x0W (x, t|x0, t0) (4.11)

This is the backward Fokker-Planck equation, as all derivatives are with
respect to the starting time or position - meaning that it can be use to “retro-
dict” the past given the future. This could be used for computing ∂tG(x, t) -
but first we need to express the derivative ∂t0 in terms of the derivative ∂t that
appears in ∂tG(x, t).
Supposing that A(x) andD(x) are time-independent (as we implicitly did in the
previous notation), then (4.7) is an autonomous differential equation, meaning
that the solution does not change after a time translation:

W (x, t|x0, t0) = W (x, t− t0|x0, 0)

Differentiating with respect to t0:

∂t0W (x, t|x0, t0) = ∂t′W (x, t′|x0, 0)|t′=t−t0∂t0(t− t0) = −∂tW (x, t− t0|x0, 0) = −∂tW (x, t|x0, t0)

Substituting this relation in (4.11) we get:

∂tW (x, t|x0, t0) = A(x0)∂x0W (x, t|x0, t0) +D(x0)∂2
x0W (x, t|x0, t0) (4.12)

Finally, we can use (4.12) in (4.10):

∂

∂t
G(x, t) =

∫ b

a
dx′ ∂tW (x′, t|x, 0) = (4.13)

=
(4.12)

∫ b

a
dx′ [A(x)∂xW (x′, t|x, 0) +D(x)∂2

xW (x′, t|x, 0)] =

= A(x)∂x
∫ b

a
dx′W (x′, t|x, 0)︸ ︷︷ ︸

G(x,t)

+D(x)∂2
x

∫ b

a
dx′W (x′, t|x, 0)︸ ︷︷ ︸

G(x,t)

=
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= A(x)∂xG(x, t) +D(x)∂2
xG(x, t) (4.14)

We have now a differential equation for G(x, t), and we need to translate the
appropriate boundary conditions (4.8) and (4.9). The latter is immediate:

W (b, t|x0, 0) = 0 ∀t ∀x0 ∈ [a, b] ⇒ G(x, t)|x=b = 0 (4.15)

However, the analogous of (4.8) requires a bit more work. So we start again
from the ESCK relation, and differentiate with respect to the mid-time:

∂τ

∫ b

a
dyW (x′, t|y, τ)W (y, τ |x, 0) = ∂τW (x′, t|x, 0) = 0

Expanding the left side:∫ b

a
dy [W (y, τ |x, 0) ∂τW (x′, t|y, τ) +W (x′, t|y, τ) ∂τW (y, τ |x, 0) ] = 0

We can now use (4.11) for the term highlighted in yellow, and (4.7) (also called
forward Fokker-Planck equation) for the term in green, leading to:∫ b

a
dy [−A(y)∂yW (x′, t|y, τ) −D(y)∂2

yW (x′, t|y, τ)]W (y, τ |x, 0)+∫ b

a
dy [−∂yA(y)W (y, τ |X, 0) + ∂2

yD(y)W (y, τ |x, 0)]W (x′, t|y, τ)

We now integrate by parts the first term, moving the ∂y and ∂2
y derivatives

away from W (x′, t|y, τ):

−A(y)W (x′, t|y, τ)W (y, τ |x, 0)
∣∣∣y=b
y=a

+
∫ b

a
dy [∂yA(y)W (y, τ |x, 0)]W (x′, t|y, τ) +

−D(y)W (y, τ |x, 0)[∂yW (x′, t|y, τ)]
∣∣∣y=b
y=a

+W (x′, t|y, τ)[∂yD(y)W (y, τ |x, 0)]
∣∣∣y=b
y=a

+

−
∫ b

a
dy [∂2

yD(y)W (y, τ |x, 0)]W (x′, t|y, τ) −
∫ b

a
dy ∂y[A(y)W (y, τ |x, 0)]W (x′, t|y, τ) +

+
∫ b

a
dy ∂2

y [D(y)W (y, τ |x, 0)]W (x′, t|y, τ) = 0

The highlighted terms cancel out, leaving only boundaries:

−A(y)W (x′, t|y, τ)W (y, τ |x, 0)
∣∣∣
y=a

−D(y)W (y, τ |x, 0)[∂yW (x′, t|y, τ)]
∣∣∣y=b
y=a

+

+W (x′, t|y, τ)[∂yD(y)W (y, τ |x, 0)]
∣∣∣y=b
y=a

= 0

Now W (b, t|x0, 0) = 0 (4.9), and also W (x′, t|b, τ) = 0, as a particle starting in
b escapes immediately from [a, b]. This makes all the boundary terms vanish
at y = b, leaving only:

+A(a)W (x′, t|a, τ)W (a, τ |x, 0) +D(a)W (a, τ |x, 0)[∂yW (x′, t|y, τ)]|y=a+
−W (x′, t|a, τ)[∂yD(y)W (y, τ |x, 0)]|y=a = 0
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Collecting W (x′, t|a, τ) allows to recognize a J(x, t) term:

D(a)W (a, τ |x, 0)[∂yW (x′, t|y, τ)]|y=a+

+W (x′, t|a, τ)
[
A(a)W (a, τ |x, 0) − [∂yD(y)W (y, τ |x, 0)]|y=a

]
︸ ︷︷ ︸

J(a,τ)

= 0

But recall that J(a, τ) = 0 ∀τ as per (4.9). So only a term remains:

D(a)W (a, τ |x, 0)[∂yW (x′, t|y, τ)]|y=a = 0 ⇒ W (a, τ |x, 0) = 0 ∨ ∂yW (x′, t|y, τ)|y=a = 0 ∀τ

Finally, by integrating the second term:∫ b

a
dx′ ∂yW (x′, t|y, τ) = ∂y

∫ b

a
dx′W (x′, t|y, τ) = ∂yG(y, τ)

And evaluating at y = a leads to:

∂xG(x, t)|x=a = 0 (4.16)

which is the last boundary condition we needed for G(x, t).
So, the problem now becomes:

∂tG(x, t) = A(x)∂xG(x, t) +D(x)∂2
xG(x, t)

∂xG(x, t)|x=a = 0

G(x, t)|x=b = 0

We can make one last simplification by removing the time coordinate. Let’s
introduce T (x) as being the lifetime of a particle starting at x - meaning the
amount of time needed for that particle to “disappear” by reaching b (so, in
this case, T (x) coincides with Tftv(b,x), i.e. the time to the first visit of b). The
exact value of T (x) will depend on the particle’s path, making T (x) a random
variable. Note that:

G(x, t) = P(T (x) > t)

That is, the survival probability is the probability that the particle has not yet
reached b during the time interval [0, t], which is equivalent to saying that its
lifetime is greater than t. Denoting with Pftv(Tb) dTb the probability that a
particle will visit b in the time range [Tb,Tb + dTb], we have:

G(x, t) = P(T (x) > t) =
∫ +∞

t
Pftv(Tb) dTb = −

∫ t

+∞
Pftv(Tb) dTb

Differentiating with respect to t:

∂tG(x, t) = −Pfvt(t)

As we need a function, and T (x) is a random variable, we consider its average,
i.e. the mean time of arrival at b Tb(x):

Tb(x) ≡ ⟨T (x)⟩ ≡
∫ +∞

0
tPfvt(t) dt = −

∫ +∞

0
t∂tG(x, t) dt =
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= −tG(x, t)
∣∣∣t=+∞

t=0
+

∫ +∞

0
G(x, t) dt =

(a)
⟨G(x)⟩ (4.17)

In (a) we used that tG(x, t) vanishes at t = 0 and also at t = +∞, because
the particle will eventually reach x = b if given infinite time to do so. It is not
clear if G(x, t) −−−→

t→∞
0 faster than t → ∞, so that tG(x, t) −−−→

t→∞
0. Here, we

will just assume it, as it is physically reasonable.

Then, we need to translate once again everything to expressions involving Tb(x).
Fortunately, this time it is much quicker. To get the differential equation, we
just integrate (4.14):∫ +∞

0
dt ∂tG(x, t) = A(x)∂x

∫ +∞

0
G(x, t) dt+D(x)∂2

x

∫ +∞

0
G(x, t) dt

And applying (4.17) we get:

G(x, t)
∣∣∣t=+∞

t=0
= G(x,+∞) −G(x, 0) = −1 = A(x)∂xTb(x) +D(x)∂2

xTb(x)

as G(x,+∞) = 0 (no particle lives eternally) and G(x, 0) = 0 (as a particle
does not “disappear” immediately for x ̸= b). Similarly, integrating (4.16) and
(4.15) leads to: 

A(x)∂xTb(x) +D(x)∂2
xTb(x) = −1

Tb(x)|x=b = 0

∂xTb(x)|x=a = 0

This is a linear ordinary differential equation. We start by letting f(x) =
∂xTb(x), leading to:

f ′(x) = −A(x)
D(x)

f(x) − 1
D(x)

f(a) = 0

First consider the homogeneous equation:

A(x)Φ(x) +D(x)Φ′(x) = 0

This can be solved by separation of variables:

AΦ +D
dΦ
dx

= 0 ⇒ dΦ
Φ

= −A

D
dx ⇒ ln |Φ(x)| = −

∫ x

x0

A(y)
D(y)

dy+ c

where x0 is a fixed point ∈ [a, b] (it does not matter which one). Exponentiating:

Φ(x) = exp
Å

−
∫ x

x0

A(y)
D(y)

dy
ã
k

Where k = ec will be fixed by the boundary condition f(a) = 0. First, we
need to find the general integral of the inhomogeneous equation - for example
by using the method of variation of parameters.
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Refresher of variation of parameters. Consider the following Cauchy prob-
lem: y′ = A(t)y+ b(t)

y(t0) = y0

Suppose we know a solution Φ(t) of the homogeneous equation y′ = A(t)y.
Then Φ′ = AΦ. We search for a particular solution for the full equation in the
form φ̃(t) = Φ(t)c(t). Substituting in the equation:

Φ′c+ c′Φ = AΦc+ c′Φ = AΦc+ b ⇒ c′ = Φ−1b

This can be integrated to find c, and then φ̃. Then, the general integral will be
the sum of the homogeneous solution Φ(t) and the particular one φ̃. Imposing
the boundary condition will lead to the general integral:

φ(t) = Φ(t)Φ(t0)−1y0 + Φ(t)
∫ t

t0
Φ(τ)−1b(τ) dτ (4.18)

Applying formula (4.18) leads to the desired f(x):

f(x) = Φ(x)Φ(a) · 0 + Φ(x)
∫ x

a
dz Φ(z)−1

ï
− 1
D(z)

ò
=

= exp
Å

−
∫ x

x0

A(y)
D(y)

dy
ã ∫ x

a
− dz
D(z)

exp
Å
+

∫ z

x0

A(y)
D(y)

dy
ã
=

= −
∫ x

a

dz
D(z)

exp
Å
+

∫ z

x

A(y)
D(y)

dy
ã

Recall that f(x) = ∂xTb(x), with Tb(b) = 0. So, to find Tb(x) we need one last
integration:

Tb(x) =
∫ x

x0
dy f(y) + c

Imposing Tb(b) = 0 leads to:

Tb(b) =
∫ b

x0
dy f(y) + c

!
= 0 ⇒ c = −

∫ b

x0
dy f(y)

Leading to:

Tb(x) =
∫ x

b
dy f(y) =

∫ b

x
dy

∫ y

a

dz
D(z)

exp
Å

−
∫ y

z
dv A(v)

D(v)

ã
(4.19)

4.2.1 Escape from a potential well
Let’s now use (4.19) to solve the problem we started from. So, suppose to have
a potential U(x) with a local minimum at x = c, and a local maximum at
x = d, with c < d. Consider a particle starting at x = c. We wish to compute
the average first visit time of d, denoted with ⟨T (c → d)⟩. This can be done by
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redefining the system as the half-line [−∞, d], with x = −∞ being a reflective
boundary, and x = d an absorbing one. We can do this because we are not
interested in the behaviour after passing d, but just in the mean arrival times.
So A(x) = −∂xU(x)/γ. Supposing to be at equilibrium, D(x) ≡ D = 1/(γB).
Letting a = −∞ and b = d leads to:

Td(x) =
∫ d

x
dy

∫ y

−∞
βγ dz exp

Å
−

∫ y

z
− dv ∂vU(v)

γ
γβ

ã
=

= βγ
∫ d

x
dy

∫ y

−∞
dz exp(β[U(y) −U(z)]) =

= βγ
∫ d

x
dy eβU(y)

∫ y

−∞
dz e−βU(z)︸ ︷︷ ︸
e

F (y)

= βγ
∫ d

x
dy eβU(y)+F (y)

It is not possible to evaluate this integral in the general case. However, in the
limit β → ∞ (T → 0) we can use the saddle-point approximation.
Recall Laplace’s formula:

∫ b

a
eMf(x) dx ≈

M→+∞

 
2π

M |f ′′(x0)|
eMf(x0)

where f ′(x0) = 0 and f ′′(x0) < 0.
For the integral in dz, f(z) = −U(z). We search for a maximum of f(z), i.e.
a minimum of U(z), which is z = c. So:

∫ y

−∞
e−βU(z) dz =

 
2π

βU ′′(c)
e−βU(c)

This is a constant, and can be brought outside the integral over dy. Then, by
applying Laplace’s formula once again:

∫ d

c
dy eβU(y) =

 
2π

β|U ′′(d)|
eβU(d)

as now f(y) = U(y), and U has a local maximum in y = d. Finally, this leads
to:

Td(c) ≈
T→0

2πγ»
U ′′(c)|U ′′(d)|

exp (β[U(d) −U(c)]) (4.20)

Note that the mean transition time from c to d diverges exponentially as the
barrier’s height U(d) − U(c) rises. Equivalently, the escape transition rate
1/Td(c) → 0.

4.3 Feynman Path Integral
We finish our discussion about the diffusion formalism noting several correspon-
dences with quantum processes.
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Recall the Schödinger equation:

i h̄
∂

∂t
ψ(x, t) = − h̄2

2m
∂2

∂x2ψ(x, t) + V (x)ψ(x, t) =

= H(x, ∂2
x, t)ψ(x, t)

where H is the Hamiltonian operator:

H(x, ∂2
x, t) ≡ − h̄2

2m
∂2
x + V (x, t)

If we consider a free particle (V (x, t) ≡ 0), the Schrödinger equation becomes:

∂tψ = i
h̄

2m
∂2
xψ ψ(x, 0) = δ(x− x0) (4.21)

which is very similar to the diffusion equation:

∂tW (x, t) = D∂xW (x, t) W (x, t|x0, 0)
∣∣∣
t=0

= δ(x− x0) (4.22)

In fact, we can map (6.24) to (4.22) by defining a quantum diffusion coefficient
DQM = i h̄/(2m).

Does this mean that all properties of the diffusion equation - and its solution
- can be mapped to the quantum case? Unfortunately, the answer is a bit
complex.
Recall that the solution of (4.22) for a particle initially starting in x0 at t0 is:

W (x, t|x0, t0) = 1√
4πD(t− t0)

exp
Ç

− (x− x0)2

4D(t− t0)

å
(4.23)

By substituting D ↔ DQM we can construct the analogous quantum solution:

ψ(x, t) =
 

2m
4π(t− t0)i h̄

exp
Ç
i
m

2 h̄
(x− x0)2

t− t0

å
(4.24)

Note that now the exponential argument is complex, making basic properties
of (4.23) not-trivial. For example, if t → t0, the exponential in (4.23) tends to
a δ:

lim
t→t0

W (x, t|x0, t0) = δ(x− x0)

giving back the starting distribution, as expected.
The same, however, does not happen for (4.24), given the presence of the i.
Nonetheless, it is true that in the limit t → t0, (4.24) is a infinitely oscillating
function, meaning that it is 0 almost everywhere. This can be proven by using
more sophisticated techniques, such as the stationary phase approximation.

What about path integrals? If we start with the usual definition and make the
substitution D ↔ DQM we get:

ψ(x, t) = ⟨δ(x(t) − x)⟩W =
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=
∫

R
T

t∏
τ=0+

dx(τ)√
4πDQM dτ

exp
Ç

− 1
4DQM

∫ t

0

ïdx(τ)
dτ

ò2
dτ
å
δ(x(t) − x) =

=
∫

R
T

t∏
τ=0+

dx(τ)√
4πDQM dt

exp
Ç
i

h̄

1
2
m

∫ t

0

ïdx(τ)
dτ

ò2
dτ
å
δ(x(t) − x)

Note that now trajectories are weighted by a complex number. This means
that they are not probabilities - and in particular, we cannot use Kolmogorov
extension theorem to prove the existence of such a measure as the continuum
limit of a measure defined on discretized paths.
However, we note that in the limit h̄ → 0, the integral can be approximated
with the saddle-point method, which returns the classical trajectory - the one
where the phases oscillate slowly.
In fact, it can be proven that QM cannot be derived by statistical mechanics
alone: quantum “noise” is very much different from thermal “noise”!

Consider now the more general case of non-zero potential:

∂

∂t
ψ(x, t) = i

h̄

2m
∂2
xψ(x, t) − iV (x)

h̄
ψ(x, t)

which is just the quantum evaluated version of the Fokker-Planck equation:

∂tW (x, t) = D∂2
xW (x, t) − V (x)W (x, t)

with the substitutions:

D → DQM =
i h̄

2m
(4.25)

V → i

h̄
V

The solution we obtained from discussing the diffusion process is:

W (x, t|x0, t0) = ⟨exp
Å

−
∫ t

0
V (x(τ)) dτ

ã
δ(x(t) − x)⟩W =

=
∫

R
T

t∏
τ=0+

dx(τ)√
4Dπ dτ

exp
Å

− 1
4D

∫ t

0
ẋ2(τ) dτ −

∫ t

0
V (x(τ)) dτ

ã
δ(x(t) − x)

Applying (4.25) we arrive to the Feynman path integral:

ψ(x, t) =
∫

R
T

t∏
τ=0+

dx(τ)√
4πDQM dτ

exp
( i
h̄

∫ t

0
dτ
ñ
ẋ2(τ)

2
− V (x(τ))

ô
︸ ︷︷ ︸

L(ẋ,x)

)
δ(x(t) − x)

(4.26)

To compute it we can resort to variational methods. We define the action
functional S as:

S ≡
∫ t

0
dτ L(ẋ(τ),x(τ))
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Note that the Feynman path integral weights every trajectory with the following
quantity:

exp
Å
i

h̄
S
Ä
{x(τ)}τ∈[0,t]

äã
Then, according to the variational method, we can approximate ψ(x, t) by eval-
uating it only for the most contributing trajectory, i.e. the one that stationarizes
S: δS = 0, implying:

xc :
∂L

∂x
− d

dt
∂L

∂ẋ

∣∣∣
xc

= 0
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Part II

Baiesi’s Lectures
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Chapter 5

Gaussian integrals

5.1 Moments and Generating Functions
(Lesson 3 of
10/10/19)
Compiled: October
13, 2020

Consider a continuous function f : R → R, x 7→ f(x). The n-th moment of f
about a point c ∈ R is defined as the integral:

µn =
∫ ∞

−∞
(x− c)nf(x) dx

Moments provide a way to quantify, in a certain sense, the shape of f . For
example, if f(x) is a linear density ([kg m−1]), then the 0-th moment is the
total mass, the first one (with c = 0) is the center of mass, and the second is
the moment of inertia.

Moments are especially useful if f(x) is a probability density function (pdf),
i.e. a non-negative normalized function. In this case the first moment about 0
is the mean:

µ1 ≡
∫ ∞

−∞
xf(x) dx = E[X] ≡ µ; X ∼ f

where X is a random variable sampled from f . Note that, if not specified, a
moment is intended to be centered around c = 0 (it is a raw moment or crude
moment).

The central second moment, that is µ2 with c = µ is the variance:∫ ∞

−∞
(x− µ)2f(x) dx ≡ E[(X − µ)2] = Var[X]

A moment-generating function of a real-valued random variable is a certain
function f : R

n → R, x 7→ f(x) that can be used to compute the moment of
the distribution where X comes from.
More precisely, for a random variable X, the moment-generating function MX

is defined as:

MX(t) ≡ E[etX ], t ∈ R (5.1)

118



In fact, recall that:

etX = 1 + tX +
t2X2

2!
+ . . .

Hence, as the expected value is a linear operator:

MX(t) = E[etX ] = 1 + tE[X] + t2 E[X2]
2!

+ · · · =

= 1 + tµ1 +
t2µ2
2!

+ . . .

Note that the distribution’s moments are the coefficients of the power series
that defines MX(t).

In fact, the more general definition of a generating function is that of a
power-series with “hand-picked” coefficients an, such that by simply knowing
the function one can compute an in an iterative way.

To recover a certain µn we start by differentiating MX n times with respect to
t, such that the first n− 1 terms vanish:

dn

dtn
MX(t) = n(n− 1) . . . 1

n!︸ ︷︷ ︸
=1

µn +
(n+ 1)n . . . 2

(n+ 1)!
tµn+1 + . . .

Then, by setting t = 0, all µr with r > n vanish, leaving only the desired µn:

dn

dtn
MX(t)

∣∣
t=0 = µn

Finally, we note that a moment-generating function can be constructed even
for a multi-dimensional vector X = (X1, . . . ,Xn)T of random variables, by
simply taking a scalar product in the exponential:

MX(t) ≡ E
(
et

T
X
)

t ∈ R
n

5.2 Multivariate Gaussian
Consider now a normal pdf in d = 1:

f(x;µ,σ) = 1√
2πσ

exp
Ç

−(x− µ)2

2σ2

å
We denote a random variable sampled from f(x;µ,σ) as X ∼ N (µ,σ).
Suppose that we have multiple random variables {Xi}i=1,...,n, each normally
distributed (Xi ∼ N (µi,σi)), with covariance matrix Σ ∈ R

n×n defined as:

Σij = E[(Xi − µi)(Xj − µj)]

Their joint pdf is given by a multivariate normal distribution :

f(x1, . . . ,xn; µ, Σ) = 1√
(2π)n det(Σ)

exp
Å

−1
2

(x − µ)TΣ−1(x − µ)
ã
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5.3 Moments and Gaussians
We want now to compute the moment generating function for a multivariate
gaussian, that is the value of the integral:

MX(t) =
∫

R
n
et·xf(x; µ, Σ) dnx (5.2)

Let’s start from the easiest case, and work our way out to the most general one.

Recall that the gaussian integral, i.e. the 0-th moment of a normal univariate
distribution is: ∫ ∞

−∞
exp

(
−a

2
x2
)

dx =

…
2
a
π

Proof. The integral as is can’t be computed in terms of elementary functions.
However, its square can be calculated:Å∫ ∞

−∞
dx exp

(
−a

2
x2
)ã2

=
∫ ∞

−∞
dx

∫ ∞

−∞
dy exp

Å
−2

2
(x2 + y2)

ã
Transforming to polar coordinates:

=
∫ 2π

0
dθ

∫ ∞

0
dr exp

(
−a

2
r2
)
r = −2π

a
exp

(
−a

2
r2
) ∣∣∣∞

0
=

2π
a

and we arrive at the desired result by simply taking the square root.

Consider now the integral of the multivariate case, with µ = 0 (meaning we
applied a translation from the general case):

Z(Σ) =
∫

R
n

dnx exp
Å

−1
2

xTΣ−1x

ã
Notice that the inverse of the covariance matrix Σ−1 ≡ A is a symmetric
positive-definite matrix, thus can be used to define a quadratic form:

A(x) =
n∑

i,j=1
xiAijxj

The integral can be computed by applying a change of variables, rotating x

such that A becomes diagonal:

y = Ox; O ∈ R
n×n; OT = O−1, det(O) = 1

where O is an orthogonal matrix, with a set of orthogonal eigenvectors of A as
columns, such that:

OAO−1 = diag(a1, . . . , an)
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with ai being the eigenvalues of A.
Note that, as det(O) = 1, the volume element in the integral does not change.
So, by substituting:

x = O−1y; xT = yT (O−1)T = yTO

in the integral, we get:

Z(A) =
∫

R
n

dny exp
Å

−1
2

yTOAOTy

ã
=

∫
R

n
dny exp

Ç
−1

2

n∑
i=1

aiy
2
i

å
=

=
n∏
i=1

∫
R

dyi exp
Å

−1
2
aiy

2
i

ã
= (2π)n/2

n∏
i=1

a
−1/2
i =

(a)
(2π)n/2(det(A))−1/2

(5.3)

where in (a) we noted that the determinant of a matrix is the product of its
eigenvalues.

We are now ready to consider the more general case of (5.2), by simply adding
a linear term in the exponential of Z(A):

Z(A, b) ≡
∫ ∞

−∞
dnx exp

Å
−1

2
A(x) + b · x

ã
b · x =

n∑
i=1

bixi (5.4)

To compute this integral, a trick is to translate the maximum of the exponential
to the origin. So we start by differentiating:

∂

∂xi

Å1
2

A(x) − b · x

ã
!
= 0 ∀i (5.5)

Note that:

∂

∂xi
A(x) = ∂

∂xi

∑
ab

xaAabxb =
∑
ab

δaiAabxb +
∑
ab

xaAabδbi =

=
∑
b

Aibxb +
∑
a
xaAai

By renaming the first summation variable to a, we get:

=
∑
a

(Aia +Aai)xa =
(b)

2
∑
a
Aiaxa = 2Ax

where in (b) we used the fact that A is symmetrical (Aij = Aji).
Substituting in (5.5):

1
�2
�2

∑
j

Aijxj = bi ∀i ⇔
(c)
ATx = b ⇔

(d)
x∗ = A−1b

In (c) we noted that bi is the scalar product between the i-th column of A and
x, leading to the transpose in the matrix notation. Of course, as A = AT , in
(d) we simply dropped the transpose.
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We can now apply the coordinate change:

x = x∗ + y

Substituting in the exponential argument:

−A(x)
2

+ b · x = −1
2

xTAx + xTb = −1
2

(x∗ + y)TA(x∗ + y) + (x∗ + y)Tb =

= −1
2

[
x∗TAx∗ + yTAy +����

x∗TAy +����
yTAx∗

]
+ x∗TAx∗ +����

yTAx∗

(5.6)

Note, in fact, that yTAx∗ = (x∗TATy)T = (x∗TAy)T because A is symmetric,
and then (x∗TAy)T = x∗TAy because they are scalars.
Then:

x∗TAx∗ = (A−1b)TAA−1b = bT (A−1)Tb = bTA−1b = b · x∗

And substituting in (5.6):

−A(x)
2

+ b · x = −1
2

yTAy +
1
2

b · x∗︸ ︷︷ ︸
ω2(b)

To simplify notation, let’s define:

w2(b) = 1
2

n∑
i,j=1

bi(A−1)ijbi =
1
2

b · x∗ (5.7)

As the change of variables involves only a translation by a constant value, the
volume element in the integral does not change, leading to:

Z(A, b) =
∫ ∞

−∞
dny exp

Å
−A(y)

2
+ ω2(b)

ã
Note that ω2(b) is constant, thus can be extracted from the integral:

= eω2(b)
∫ ∞

−∞
dny exp

Å
−A(y)

2

ã
=

(5.3)
eω2(b)(2π)n/2(detA)−1/2 (5.8)

Another way to solve the integral for Z(A, b) is by using the matrix equiva-
lent of “completing the square”. We start by considering the argument of the
exponential in (5.4):

−1
2

(xTAx − 2bTx)

xTAx has the role of the square, and −2bTx that of the double product.
We can then sum and subtract a constant vector c in order to rewrite:

xTAx − 2bTx + c − c = yTAy − c

for some y ∈ R
n.

Comparing to a generic square:

(a + b)TA(a + b) = aTAa + bTAb + 2aTAb
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we note that a = x and b = −A−1b, leading to:

xTAx − 2bTx = (x −A−1b)TA(x −A−1b) − bTA−1b

Defining A−1b ≡ x∗ and y = x − x∗ then leads to the same calculations as
before.

�� ��Exercise 5.3.1 (Multivariate Gaussian Integral):

Compute Z(A) and Z(A, b⃗) with:

A =

(
3 −1

−1 3

)
; b =

(
1
0

)

Note that detA = 8, and:

A−1 =
1
8

(
3 1
1 3

)

So, by simply using (5.3) and (5.8):

Z(A, 0) = (2π)2/2
√

8
=

π√
2

1
2
Ä

1 0
ä 1

8

(
3 1
1 3

)(
1
0

)
=

3
16

Z(A, b) = π√
2

exp
Å 3

16

ã
5.3.1 Gaussian expectation values
The result in (5.8) is exactly what we need to compute the moment generating
function for the multivariate normal (5.2).

So, we can finally compute moments:

⟨xk1xk2 . . . xkl
⟩ ≡ 1

Z(A)

∫
dnxxk1xk2 . . . xkl

exp
Å

−1
2

A(x)
ã

by simply deriving the generating function Z(A, b) with respect to certain
variables in b. For example:

⟨xk⟩ =
1

Z(A)
∂

∂bk
Z(A, b⃗) = 1

Z(A)

∫
dnxxk exp

Å
−A(x)

2
+ bTx

ã
For the general case:

⟨xk1xk2 . . . xkl
⟩ = (2π)−n/2(detA)−1/2

ñ
∂

∂bk1

∂

∂bk2

. . .
∂

∂bkl

Z(A, b)
ô

b=0
=
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=
∂

∂bk1

∂

∂bk2

. . .
∂

∂bkl

ew2(b)
∣∣∣
b=0

In physics, we say that bk is “coupled” to xk, and that Z(A, b) is used as “gen-
erating function” for x.

5.3.2 Wick’s Theorem
From the previous formula we know that:

∂

∂bi
pulls down a bi

Explicitly, recall that:

ω2(b) = 1
2

bTA−1b

and so:
∂

∂bi
eω2(b) =

1
2
eω2b ∂

∂bi

∑
tk

btA
−1
tk bk = eω2b ∑

k

A−1
ik bk

If we now set b = 0, the result will be 0, meaning that:

⟨xi⟩ =
∂

∂bi

Z(A, b)
Z(A)

= 0

This result is expected, as in Z(A, b) all random variables are centered in 0.
However, note that if we derive one more time, with respect to some bl:

∂

∂bi

∂

∂bl
eω2(b) = eω2b ∑

s
A−1
ls bs

∑
k

A−1
ik bk + eω2bA−1

il

And now, if we set b = 0, the result may be ̸= 0.
Note that if we derive one more time we return to the previous situation - and
the result will be also 0.

In general, every moment of odd-order is 0, due to the symmetry of the gaussian,
we have:

⟨xixjxk⟩ = 0

So the expectation value of the product of different random variables, sampled
from the same gaussian distribution centered on 0, is only non-zero for an even
number of variables. This result is known as the Wick’s theorem (also known
in literature as the Isserlis theorem).

By extending this argument, one can find a way to compute the even-order
moments, leading to the following formula (which we will not prove):

⟨xk1xk2 . . . xkl
⟩ =

∑
P∈σ(K)

A−1
kP1

kP2
A−1
kP3

kP4
. . . A−1

kPl−1
kPl

=
∑

P∈σ(K)
⟨xkP1

xkP2
⟩ . . . ⟨xkPl−1

xkPl
⟩
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where (kp, kq) are a pair of indices from K = {k1, . . . , kl}, and P is a permuta-
tion of K, so that (kP1 , kP2) is the first pair of indices after the permutation P .
The sum is over all the distinct ways of partitioning l = 2s variables in pairs
to obtain distinct products of s groups.
So, the total number of terms to be added will be (2s)!/(2ss!) - that is the
total number of permutation of 2s elements, where the order within couples
does not matter (2s) and neither the order of the couples themselves (s!).
Note that:

(2s)!
2ss!

= (2s− 1)!! = (2s− 1)(2s− 3)(2s− 5) . . .

Where !! denotes the double factorial, not to be confused with the factorial of
a factorial (which requires brackets: (a!)!).�� ��Exercise 5.3.2 (Wick’s theorem):

Consider a univariate normal distribution:

f(x) = 1
Z(A)

exp
(

−a

2
x2
)

Show that:

⟨x2⟩ = 1
a

⟨x4⟩ = 3
a2 = 3(⟨x2⟩)2

Here the A matrix is just the scalar a = σ−2. As the pdf is univariate, there
is only one index possible K = {1}. As (2 − 1)!! = 1!! = 1, there is only
one term in the summation, thus:

⟨x2⟩ = A−1
11 =

1
a

For the 4-th order, however, we have more combinations: (4 − 1)!! = 3!! =
3 · 1 = 3. Again, there is only one possible index, so all terms will be the
same:

⟨x4⟩ = A−1
11 A

−1
11 +A−1

11 A
−1
11 +A−1

11 A
−1
11 =

3
a2 = 3(⟨x2⟩)2

5.4 Steepest Descent Integrals
It is possible to use gaussian integrals to solve a more general set of integrals,
thanks to the Steepest Descent approximation.
We start with an integral of the form:

I(λ) ≡
∫
S

dnx exp
Å

−F (x)
λ

ã
(5.9)
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where λ is a small parameter (the approximation is more and more accurate as
λ → 0), F (x) has a global minimum in x0 ∈ (a, b) and S ⊆ R

n is a sufficiently
large region.
Note that, if λ is lowered, the integral is dominated by the neighborhood of the
minimum x0. In fact:

h(x) ≡ exp
Å

−F (x)
λ

ã
; h(x0)

h(x)
= exp

Å
− 1
λ

(F (x0) − F (x))
ã

As F (x0) − F (x) < 0, the ratio becomes exponentially higher if λ → 0. Basi-
cally, for λ → 0, the integrand function becomes “more and more similar to a
gaussian”.

To compute the integral, then, we translate the coordinates about x0:

x = x0 +
√
λy dnx = λn/2 dny

Then we perform a second order Taylor expansion about λ = 0 and x = x0:

1
λ
F (x) = 1

λ
F (x0) +

�����������1
λ

∑
i

∂xi
F (x0)yi

√
λ+

1
��λ

1
2!

∑
ij

∂2
xixj

F (x0)yiyj��λ+O(λ1/2)

where we cancelled the first derivative, as x0 is a stationary point for F .

Substituting back in the integral we get:

I(λ) = λn/2 exp
Å

−F (x0)
λ

ã ∫
S

′ dny exp

[
−1

2
∑
ij

∂2
xixj

F (x0)yiyj −R(y)

]
This is a gaussian integral Z(A), with A being the Hessian of F evaluated at
the minimum x0 (or, equivalently, at the maximum of −F (x)).
Now, for λ sufficiently small, we can ignore R(y) and compute the integral with
(5.3), leading to the approximation:

I(λ) ≈
λ→0

(2πλ)n/2[det ∂2
xixi

F (x0)]−1/2 exp
Å

−F (x0)
λ

ã
(5.10)

Doing this, we implicitly integrated over the entire R
n. This is fine because,

for λ → 0, the gaussian is “peaked” in a small region around x0, and vanishes
exponentially moving further away.

The Steepest Descent approximation generalizes Laplace’s method for calcu-
lating integrals, which has a much simpler expression for the limited case of
univariate integrals:

I(s) =
∫
g(z)esf(z)dz ≈

s→∞
(2π)1/2g(zc)esf(zc)

|sf ′′(zc)|1/2
(5.11)

with f , g ∈ R, and zc is the maximum of f , i.e. f(zc) ≥ f(z) ∀z ∈ (a, b).
This formula is useful in physics: s can model the system’s size, and s → ∞ is
then the limit for a large system.
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�� ��Example 14 (Stirling approximation):

We can use the Steepest Descent approximation to derive the formula for
the Stirling approximation of factorials.
Recall that a factorial is merely the Γ function evaluated on N:

s! =
∫ ∞

0
xse−xdx

We then perform a change of variables:

x = zs

so that:

s! = ss+1
∫ ∞

0
es(ln z−z)dz

This is an integral in the form:∫
exp
Å

−F (x)
λ

ã
if we let λ = 1/s and F (z) = z − ln z. So we need to find the minimum of
F (z):

F ′(z) = d
dz

(z − ln z) = 1 − 1
z

!
= 0 ⇒ zc = 1

F ′′(z) = 1
z2 ⇒ F ′′(zc) = 1 > 0

We can now apply (5.10), leading to:

s! ≈
s→∞

Å2π
s

ã1/2
(1)1/2e−s =

√
2πss+

1
2 e−s

Taking the ln we arrive at the usual form for the Stirling approximation:

ln s! ≈ s lnns− s+
1
2

ln(2πs) +O

Å1
s

ã
Note that the same result can be obtained by using the much simpler (5.11),
with g(z) ≡ 1 and f(z) = ln z − z.
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�� ��Exercise 5.4.1 (Steepest Descent Approximation):

Compute the Steepest Descent Approximation for the following integral (for
s → ∞):

I(s) =
∫ ∞

−∞
esx−cosh xdx

By collecting a s in the exponential argument:

I(s) =
∫ ∞

−∞
exp
Å
s

Å
x− cosh x

s

ãã
we can bring back to the form of (5.9) with F (x) = cosh x/s− x and λ =
s−1.
We find the minimum of F (x) by differentiating:

F ′(x) = sinh x
s

− 1 !
= 0 ⇒ x0 = sinh−1 s

F ′′(x) = cosh x
s

⇒ F ′′(x0) = cosh sinh−1 s

s
=

√
1 + s2

s
> 0

Finally, by applying (5.10) we obtain the result:

I(s) ≈
s→∞

…
2π
s

 
s√

1 + s2 exp

(√
1 + s2

s
− sinh−1 s

)
=

=

√
2π

(1 + s2)1/4 exp

(√
1 + s2

s
− sinh−1 s

)

Note that, for this peculiar case, the simple 1D formula does not work
(why?) - and so one should proceed with the general method (full steps:
find maximum, second derivative...).�� ��Exercise 5.4.2 (Laplace’s formula):

Compute:

I(N) =
∫ ∞

0
cos(x) exp

Å
−N
ï(
x− π

3

)2
+
(
x− π

3

)4òã
dx

in the limit N → ∞.

For this exercise we can use Laplace’s formula (5.11) with:

g(x) = cos(x) f(x) = −
ï(
x− π

3

)2
+
(
x− π

3

)4ò
By looking at f(x) one can see directly that it has a global maximum in
x0 = π/3. In fact:

f ′(x) = −
ï
2
(
x− π

3

)
+ 4

(
x− π

3

)3ò !
= 0 ⇔ x0 =

π

3
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f ′′(x) = −
ï
2 + 12

(
x− π

3

)2ò
⇒ f ′′(x0) = −2 < 0

And so we arrive at:

I(N) ≈
N→∞

(2π)1/2 cos(π/3)eN ·0

|N(−2)|1/2
=

1
2

…
π

N
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Chapter 6

Integrals of complex variables

In this chapter we discuss several techniques for computing integrals on the
complex plane.

6.1 Fourier Transform
One of the most frequent kind of complex integral is given by the Fourier
Transform (FT). Let f(x) ∈ L2(R) be a square-integrable function. Then the
Fourier transform maps f(x) to another function f̃(k) defined as follows: Fourier transform

F [f(x)](k) = f̃(k) ≡
∫

R
e−ikxf(x) dx f ∈ L2(R) (6.1)

Similarly, it is possible to define the inverse Fourier transform, linking f̃(k)
back to f(x): Inverse Fourier

transform

F−1[f̃(k)](x) = f(x) = 1
2π

∫
R
eikxf̃(k) dk

The 2π factor is needed for normalization, so that:

F−1[F [f(x)](k)](x) = f(x) (6.2)

As long as (6.2) is satisfied, any different definition of the Fourier transforms is Conventions
acceptable. For example, it is possible to switch the signs in the eikx, or split
differently the normalization factor between F and F−1.

6.1.1 Refresher on functional analysis
The definition (6.1) is quite limited, as several interesting functions are not in
L2(R) - for example sin(x), cos(x), θ(x). Fortunately, it is possible to extend
the Fourier transform by considering generalized functions (distributions).

We start by defining a space S(R) (Schwartz space) containing all functions Schwartz space
φ ∈ C∞(R) that are rapidly decreasing, i.e. such that supx∈R |xαφ(β)(x)| < ∞
∀α, β ∈ N. These are also called test functions.

Then a tempered distribution T is a continuous linear mapping S(R) → Tempered
distributions
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R. So it is possible to “apply” a distribution T to any test function φ ∈ S(R),
resulting in a real number, denoted with ⟨T ,φ⟩.

The choice of S is made expressly so that the Fourier transform is a linear and
invertible operator on S. However, other choices can be made for the space
of test functions. For example, one can take the set D of all functions with
compact support, i.e. that vanish (along with all their derivatives) outside a
compact region.

We can now see that distributions generalize the concept of function. We start
by noting that any locally integrable function f : R → R can be used to
define a distribution, by considering its inner product with a test function:

⟨Tf ,φ⟩ ≡
∫

R
dx f(x)φ(x) ∀φ ∈ S(R) (6.3)

Distributions that can be defined like this are called regular.

In the complex case, where f : R → C, we instead use the Hermitian inner
product:

⟨Tf ,φ⟩ =
∫

R
dx f(x)∗φ(x)

where f(x)∗ is the complex conjugate of f(x). The choice of the position of
this conjugate (on the first or second entry) is a convention. Physicists tend to
use the first position (due to Dirac notation), while mathematicians the second
one.

Not all distributions are regular: in general, it is not possible to find a function
f(x) for a generic distribution T such that (6.3) is satisfied. The distributions
for which this is not possible are called singular.

The simplest (and most important) singular distribution is the Dirac Delta

Dirac Delta

δ(x), defined as follows:

⟨δ,φ⟩ ≡ φ(0) φ ∈ S(R)

In other words, applying the δ to any test function φ returns the value of φ at
0.
In practice, we often write formally:

⟨δ,φ⟩ =
∫

R
δ(x)φ(x) dx

as if δ(x) were a function (but keep in mind that it isn’t). This expression is
often just a shortcut for quickly reaching useful results, as we will see in the
following.

The point of defining distributions is that they provide a way to extend rig-
orously may operations that cannot be done on normal functions. One such
example is differentiation. Given a distribution T , its distributional deriva-
tive is defined as:

Distributional
derivative131



⟨T ′,φ⟩ ≡ −⟨T ,φ′⟩ ∀φ ∈ S(R) (6.4)

This is done so that, for a regular distribution Tf , that result comes from
integration by parts:

⟨T ′
f ,φ⟩ =

∫
R
f ′(x)φ(x) dx =�������

f(x)φ(x)
∣∣∣+∞

−∞
−

∫
R
f(x)φ′(x) = −⟨Tf ,φ′⟩ (6.5)

For a singular distribution we use directly the definition (6.4), as the construc-
tion in (6.5) has no meaning (but still, sometimes we will write it nonetheless,
as a merely formal expression).

In the distributional sense, it is possible to differentiate the Heaviside func-
tion θ(x):

Heaviside step
function

θ(x) ≡


1 x > 0
1
2 x = 0

0 x < 0

(6.6)

As θ(x) is locally integrable, we can define a corresponding distribution - that
we denote with the same symbol θ. Then:

⟨θ′,φ⟩ = −⟨θ,φ′⟩ = −
∫

R
θ(x)φ′(x) dx = −

∫ +∞

0
φ′(x) dx = −[�����φ(+∞) − φ(0)] =

= φ(0) = ⟨δ|φ⟩ (6.7)

So θ′ = δ in the distributional sense - i.e. applying θ′ or δ to any test function
φ leads to the same result.

6.1.2 Fourier transform of distributions
We are finally ready to extend the Fourier Transform to tempered distri-
butions. In fact, S(R) has been chosen1 such that any φ(x) ∈ S(R) has a

Fourier Transform
of distributions

well-defined transform φ̃(k). Then we define the Fourier transform of a distri-
bution as follows:

⟨F [T ],φ⟩ ≡ 2π⟨T , F−1[φ]⟩

Again, this comes from the expression for regular distributions:

⟨F [Tf ],φ⟩ =
∫

R
dk {F [f(x)](k)}∗φ(k) =

∫
R

dk
∫

R
dx
î
e−ikxf(x)

ó∗
φ(x) =

=
∫

R
dx f(x)

∫
R

dk eikxφ(k) =
∫

R
2πf(x)F−1[φ(k)](x) = 2π⟨T , F−1[φ]⟩

Note that:

⟨F [T ], F [φ]⟩ = 2π⟨T , F−1F [φ]⟩ = 2π⟨T ,φ⟩ (6.8)
1∧More precisely, the Fourier transform is an automorphism of S, i.e. it is linear and

invertible
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Delta transform

Finally, we can use all this machinery to compute Fourier transforms of some
generalized functions. We start with the δ:

⟨F [δ],φ⟩ = 2π⟨δ, F−1[φ]⟩ = 2πF−1[φ(x)](0)

where:

F−1[φ(x)](k) = 1
2π

∫
R

dx eikxφ(x) ⇒ 2πF−1[φ(x)](0) =
∫

R
dxφ(x) = ⟨1,φ⟩

And so F [δ] = 1.

Note that the same result could be obtained in a simpler way by treating δ as
a “formal function”:

F [δ](k) =
∫

R
e−ikxδ(x) = e−ik0 = 1

This leads to an equivalent definition for the δ “function”:

δ(x) = F−1[1](x) = 1
2π

∫
R
eikx dk

Also, note that:

F [1](k) =
∫

R
e−ikx dx =

∫
R
eikx dx = 2π

Å 1
2π

∫
R
eikx
ã
= 2πδ(k) (6.9)

Heaviside transform

We can use the result for the δ to aid the computation of F [θ], where θ(x) is
the regular distribution defined from (6.6). We have already seen in (6.7) that
θ′ = δ. So, we can use the formula for the Fourier transform of a derivative

Fourier transform
of a derivative

(which naturally generalizes to distributions):

F [T ′] = ikT̃ (6.10)

In our case:

F [θ′] =
(6.7)

F [δ] = 1 = ikθ̃ (6.11)

However, (6.11) cannot be used to reconstruct θ̃ by itself, that is we cannot
just “solve by θ̃” and write:

θ̃(k) = 1
ik

(6.12)

In fact, consider a different θ∗(x) ≡ θ(x) + c, with c ∈ R constant. Their
derivatives coincide, and so formula (6.11) would give the same result for both
of them. However:

F [θ∗(x)](k) = F [θ(x)](k) + F [c](k) = θ̃(k) + cδ(k) ̸= θ̃(k)
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So we are missing a δ term, meaning that the correct Fourier transform should
be:

Inversion formulaθ̃(k) = P
Å 1
ik

ã
+ cδ(k) (6.13)

for some constant c. P denotes the Cauchy principal value, which needs to be
used to “fix” the singularity at k = 0 (see the following green boxes for the
details).
There are several ways to fix c in (6.13). One of the quickest is to reason with
symmetries.
Let f be an even function (i.e. a gaussian). Symmetry is preserved by the 1. Fix c

(symmetries)Fourier transform, and so:

⟨θ̃, f̃⟩ = P
∫

R

1
ik
f̃(k) dk+ c⟨δ, f̃⟩ = cf̃(0) = c

∫
R
f(x) dx (6.14)

The principal value vanishes because f̃ is even (as f is even). The corresponding
scalar product without the Fourier transforms is:

⟨θ, f⟩ =
∫ +∞

0
f(x) dx =

(a)

1
2

∫
R
f(x) dx (6.15)

where in (a) we again used the symmetry of f . Then, recalling (6.8), we have:

⟨θ̃, f̃⟩ = 2π⟨θ, f⟩ ⇒ c
∫

R
f(x) dx =

2π
2

∫
R
f(x) dx ⇒ c = π

(Note that c depends on the choice we made for the normalization in the Fourier
transforms).
A similar argument can be made noting that θ(x) is just a scaled and shifted 2. Fix c with

symmetries and
sgn(x)

sgn function, which is odd:

θ(x) = 1
2
+

1
2

sgn(x) sgn(x) =


1 x > 0

0 x = 0

−1 x < 0

By linearity we have:

θ̃(k) = F
Å1

2

ã
+

1
2

F [sgn(x)](k) (6.16)

Noting that sgn′ = 2δ and using (6.10) leads to:

2 = ikF [sgn](k)

Inverting with (6.13), we have:

F [sgn](k) = P
Å 2
ik

ã
+ cδ(k) = P

Å 2
ik

ã
As this time c must be 0, otherwise F [sgn](k) wouldn’t be odd (the δ is even).
Substituting in (6.16) we have:

θ̃(k) = 1
2

F [1]︸︷︷︸
2π

+
1
�2
P
Å

�2
ik

ã
= P

Å 1
ik

ã
+ πδ(k)
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Why is (6.12) wrong? There are two main reasons:

• 1/(ik) is not locally integrable (as it diverges for k = 0), so it cannot be
used to define a distribution, such as θ̃. This can be solved by using the
principal part of 1/(ik) instead.

• The most general solution to the equation xT = 1, where T is a tempered
distribution, is not just T = P(1/x), but:

T = P
Å1
x

ã
+ cδ

for some constant c ∈ R.

First, to be precise, the product of a function, such as f(x) = x, with a
distribution T is defined as the following distribution:

⟨f(x)T ,φ⟩ ≡ ⟨T , f(x)φ⟩ (6.17)

where f(x) must be such that f(x)φ ∈ S ∀φ ∈ S, which is indeed the case for
any polynomial.
Now consider the distributional equation xT = 1. If we apply both sides to
some test function φ, we have:

⟨T ,xφ⟩ = ⟨1,φ⟩ =
∫

R
φ(x) dx (6.18)

The problem of finding T satisfying (6.18) is called the (distributional) division
problem. To solve it, we want to reduce the equation to something in the form
of xT ′ = 0, that can then be solved. So we rewrite the rhs as follows:∫

R
φ(x) dx = lim

ϵ→0+

∫
R\[−ϵ,ϵ]

φ(x) dx = lim
ϵ→0+

∫
R\[−ϵ,ϵ]

xφ(x)
x

dx

Then we define the principal value distribution P(1/x) as:

⟨P
Å1
x

ã
,φ⟩ = lim

ϵ→0+

∫
R\[−ϵ,ϵ]

φ(x)
x

dx

so that: ∫
R
φ(x) dx = ⟨P

Å1
x

ã
,xφ⟩

Substituting back in (6.18) and rearranging we get:

⟨T ,xφ⟩ = ⟨P
Å1
x

ã
,xφ⟩ ⇒ ⟨T − P

Å1
x

ã
,xφ⟩ = 0 ⇒

(6.17)
x

ï
T − P

Å1
x

ãò
= 0

All that’s left is to solve:

xT ′ = 0 (6.19)
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with T ′ = T − P(1/x). We will now see that the general solution of (6.19) is
T = cδ, for some constant c. This leads to:

T ′ = T − P
Å1
x

ã
= cδ ⇒ T = P

Å1
x

ã
+ cδ

which indeed confirms (6.13).

So, let’s see why T ′ = cδ. In the following, we drop the ′ for simplicity.
First, we note that any test function φ(x) can be written as:

φ(x) = φ(0) + xψ(x)

for some ψ(x) ∈ S(R). Explicitly:

φ(x) = φ(0) +
∫ x

0
φ′(t) dt =

u= t
x

φ(0) +
∫ 1

0
xφ′(xu) du =

= φ(0) + x
∫ 1

0
φ′(xu) du︸ ︷︷ ︸
ψ(x)

= φ(0) + xψ(x) (6.20)

Note that if φ(0) = 0, then φ(x) = xψ(x).

Now, xT = 0 means that:

⟨xT ,φ⟩ = 0 ∀φ ∈ S(R) (6.21)

To see what T is, we evaluate it on a test function φ(x). The idea is to write
φ(x) as a sum of two test functions a(x) and b(x), choosing b(x) so that it
vanishes at 0, meaning that we can factor a x from it (6.20), and then use
⟨T ,xb⟩ = ⟨xT , b⟩ = 0 (6.21).
Note that we can’t just directly use (6.20), because while xψ(x) is indeed a test
function, φ(0) /∈ S(R) (it is a constant value, so it doesn’t vanish for x → ∞).
So, the following is ill-defined:

⟨T ,φ⟩ = ⟨T ,φ(0)⟩︸ ︷︷ ︸
?

+ ⟨T ,xψ(x)⟩︸ ︷︷ ︸
0

as ⟨T ,φ(0)⟩ can’t be done, because distributions act only on elements of S(R).

The idea is to convert φ(0) to a test function by multiplying it with another
test function χ(x) ∈ S(R), that we choose (for simplicity) so that χ(0) = 1.
Then we write φ(x) as:

φ(x) = φ(x) + φ(0)χ(x) − φ(0)χ(x) =
= φ(0)χ(x)︸ ︷︷ ︸

a(x)

+ [φ(x) − φ(0)χ(x)]︸ ︷︷ ︸
b(x)
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Note that now a(x) ∈ S(R), meaning that ⟨T , a⟩ is properly defined. Moreover,
as we chose χ(0) = 1, b(x) is a test function that vanishes at 0:

b(0) = φ(0) − φ(0)χ(0) = φ(0) − φ(0) = 0

And so we can use (6.20) to write b(x) = xψ(x) for some ψ(x) ∈ S(R).
Finally, we are able to apply T to φ(x):

⟨T ,φ⟩ = ⟨T ,φ(0)χ+ xψ⟩ =
= φ(0) ⟨T ,χ⟩︸ ︷︷ ︸

c

+ ⟨xT ,ψ⟩︸ ︷︷ ︸
0

=

= cφ(0) = ⟨cδ,φ⟩

where we denoted with c the result of ⟨T ,χ⟩. This proves that the general
solution is indeed T = cδ.

Some references on these derivations can be found in:

• https://see.stanford.edu/materials/lsoftaee261/book-fall-07.pdf

• https://math.stackexchange.com/questions/678457/
distribution-solution-to-xt-0-in-schwartz-space

• https://math.stackexchange.com/questions/2962209/solve-
the-distribution-equation-xt-1

Explicit computation. It is also possible to compute θ̃ directly, at the cost
of a longer derivation. The idea is to use a limit representation θϵ(x) for θ(x),
so that θϵ(x) has the same discontinuity of θ(x) at x = 0, and lim

ϵ→0+ θϵ(x) =
θ(x). One possible choice is:

θϵ(x) =

e−ϵx x > 0

0 x < 0

When ϵ → 0+, e−ϵx → 1, reconstructing the Heaviside function. So:

θ̃(k) =
∫

R
θ(x)e−ikx dx = lim

ϵ→0+

∫ +∞

0
e−ϵxe−ikx dx = lim

ϵ→0+
− 1
ϵ+ ik

[e−∞ − 1] =

= lim
ϵ→0+

1
ϵ+ ik

−i2

−i2
= lim

ϵ→0+
−i

k− iϵ

To manipulate this expression we need to treat it in the context of distributions,
meaning that we need to apply it to a test function φ(x) and see what happens:

⟨θ̃,φ⟩ =
∫

R
θ̃(k)φ(k) dk = lim

ϵ→0+

∫
R

−i
k− iϵ

k+ iϵ

k+ iϵ
φ(k) dk =

= −i lim
ϵ→0+

∫
R

k+ iϵ

k2 + ϵ2
φ(k) dk =
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=
(a)

−i

[
lim
ϵ→0+

∫
R

k

k2 + ϵ2
φ(k) dk︸ ︷︷ ︸

A(ϵ)

+i lim
ϵ→0+

∫
R

ϵ

k2 + ϵ2
φ(k) dk︸ ︷︷ ︸

B(ϵ)

]

where in (a) we split the real and imaginary part. We then examine each of
them separately:

A(ϵ) =
∫

R

k

k2 + ϵ2
φ(k) dk =

∫
R

Å d
dk

1
2

ln
Ä
k2 + ϵ2

äã
φ(k) dk =

=
(b) �

�
�

aφ
∣∣∣
R

− 1
2

∫
R

ln
Ä
k2 + ϵ2

ä
φ′(k) dk

−−−→
ϵ→0+

−1
2

∫
R

ln
Ä
k2ä︸ ︷︷ ︸

2 ln |k|

φ′(k) dk = −
∫

R
ln |k|φ′(k) dk

B(ϵ) =
∫

R

ϵ

k2 + ϵ2
φ(k) dk =

∫
R

1
ϵ

1
1 + k

2

ϵ
2

φ(k) dk =

=
∫

R

ï d
dk

arctan
Å
k

ϵ

ãò
φ(k) dk =

=
(c) �

�
�bφ
∣∣∣
R

−
∫

R
arctan

Å
k

ϵ

ã
φ′(k) dk

−−−→
ϵ→0+

−
∫ +∞

0

π

2
φ′(k) dk−

∫ 0

−∞

(
−π

2

)
φ′(k) dk =

= −π

2

∫
R

sgn(k)φ′(k) dk =
(d)

π

�2

∫
R

sgn′(k)︸ ︷︷ ︸
�2δ(k)

φ(k) dk

where in (b), (c) and (d) we performed integrations by parts. Then we note
that:

lim
ϵ→0+

⟨B(ϵ),φ⟩ = π⟨δ,φ⟩

lim
ϵ→0+

A(ϵ) = −
∫

R
ln |k|φ′(k) dk =

(e)
P

∫
R

1
k
φ(k) dk

with a final integration by parts in (e). Putting it all together we arrive at the
desired result:

θ̃(k) = −iP(1
k

) + πδ(k) = P
Å 1
ik

ã
+ πδ(k)

Reference: https://math.stackexchange.com/questions/269809/heaviside-
step-function-fourier-transform-and-principal-values
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6.2 Fresnel integral
An important complex integral, appearing for example in the Schrödinger equa-
tion, is the Fresnel integral:

I(a, b) ≡
∫ +∞

−∞

dk
2π

exp
Ä
−iak2 − ibk

ä
=

1√
4πai

exp
Ç
ib2

4a

å
It is similar to a Gaussian integral, but with complex mean and variance.

To compute it, the idea is to rotate it so that it is not entirely along the
imaginary axis. Explicitly, we rewrite the i multiplying the a in the exponential
argument as:

i = exp
(
i
π

2

)
And then we subtract an angle ϵ, and consider the limit ϵ → 0+:

i = lim
ϵ→0+

exp
[
i
(π

2
− ϵ
)]

Then, we evaluate the integral over one segment [−R,R] of the real line, and
take the limit R → ∞:

“Regularized”
Fresnel integral

I(a, b) = lim
ϵ→0+

Iϵ(a, b)

Iϵ(a, b) = lim
R→∞

∫ +R

−R

dk
2π

exp

(
− a k2 exp

[
i
(π

2
− ϵ
)]

︸ ︷︷ ︸
z

2

−ibk

)
a, b ∈ R

Suppose that a > 0. We make the change of variables:
1. Change of
variables

z2 ≡ k2 exp
[
i
(π

2
− ϵ
)]

⇒ z = k exp

[
i
(π

4
− ϵ

2

)
︸ ︷︷ ︸

ϕϵ

]
= keiϕϵ ⇒ k = ze−iϕϵ

And dk = dz e−iϕϵ . Note that:

ϕϵ <
π

4
(6.22)

definitely when ϵ → 0+.

This change of variables has removed the i multiplying the z2, meaning that
now we have a “standard” Gaussian integral. However, the integration path is
now γR = {|z| ≤ R, arg z = ϕϵ}, i.e. a segment of length 2R, centred at the
origin and forming an angle ϕϵ with the real line. So the integral becomes:

Iϵ(a, b) = lim
R→∞

∫
γR

dz
2π
e−iϕϵ exp

(
− az2 − iz be−iϕϵ︸ ︷︷ ︸

b
′

)
b′ = be−iϕϵ

= lim
R→∞

∫
γR

dz
2π
e−iϕϵ exp

Ä
−az2 − ib′z

ä
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Im

Re

ϕϵγ̄R

γR
γ−

γ+

Figure (6.1) – Integration path for the Fresnel integral

We want to relate this integral to its version on the real line, that we know how
to compute. To do this, as always, we close the path of integration and use the
Cauchy integral theorem, following the schema in fig. 6.1.
Explicitly, consider the closed curve ΓR defined by:

2. Contour
integrationΓR = γR + γ+ + γ̄R + γ−

where:

γ+ = {z = Reiθ : θ ∈ [0,ϕϵ]}
γ− = {z = Reiθ : θ ∈ [π, π+ ϕϵ]}
γR = {|z| ≤ R, arg z = ϕϵ}
γ̄R = [−R,R]

As the integrand has no poles inside ΓR, we have:

lim
R→∞

∫
ΓR

dz
2π
e−iϕϵ exp

Ä
−az2 − ib′z

ä
= 0

Moreover, the integral over γ+ and γ− vanish. We show this explicitly only for
the γ+ case: 3. Integrals over

γ± vanish∣∣∣∣∫
γ+

dz
2π
e−iϕϵ exp

Ä
−az2 − ibze−iϕϵ

ä∣∣∣∣ (6.23)

We use the parameterization of γ+ to change variables:

z = Reiθ ⇒ dz = iReiθ dθ

leading to:

(6.23) =
∣∣∣∣∫ ϕϵ

0

dθ
2π
iReiθe−iϕϵ exp

Ä
−aR2e2iθ − ibReiθe−iϕϵ

ä∣∣∣∣ =
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=

∣∣∣∣iR2πe−iϕϵ

∣∣∣∣︸ ︷︷ ︸
R/(2π)

∣∣∣∣∫ ϕϵ

0
dθ eiθ exp

Ä
−aR2e2iθ − ibRei(θ−ϕϵ)ä∣∣∣∣ ≤

≤ R

2π

∫ ϕϵ

0
dθ
∣∣∣exp
Ä
iθ− aR2e2iθ − ibRei(θ−ϕϵ)ä∣∣∣ =

=
R

2π

∫ ϕϵ

0
dθ |eiθ|︸︷︷︸

1

|e−aR2(cos 2θ+i sin 2θ)||e−ibR(cos(θ−ϕϵ)+i sin(θ−ϕϵ))| =

=
R

2π

∫ ϕϵ

0
dθ e−aR2 cos 2θ+Rb sin(θ−ϕϵ) −−−−→

R→∞
0

As the integral is over θ in [0,ϕϵ], we have:

0 < θ < ϕϵ <︸︷︷︸
(6.22)

π

4
⇒ 0 < 2θ < π

2
⇒ cos(2θ) > 0

So, as we assumed a > 0, the integrand decays exponentially fast when R → ∞,
making the integral vanish.

Finally, as the integral over γ+ and γ− vanish, then:

IγR
+ Iγ̄R

= 0 ⇒ IγR
= −Iγ̄R

where Iγ̄R
is the integral over the real line, that we can compute: 4. Integral over the

real line

IγR
= −

∫ R

−R

dz
2π
e−iϕϵ exp

Ä
−az2 − ib′z

ä
−−−−→
R→∞

e−iϕϵ

2π

…
π

a
exp
Ç

−(b′)2

4a

å
=

=
1√
4πa

e−iϕϵ exp
Ç

−(b′)2

4a

å
Inserting back b′ = be−iϕϵ , and taking the limit ϵ → 0+, we have:

ϕϵ −−−→
ϵ→0+

π

4
⇒ e−iϕϵ −−−→

ϵ→0+
1√
i

⇒ b′ −−−→
ϵ→0+

b√
i

and (b′)2 → −ib2, so that:

I(a, b) = 1√
4πai

exp
Ç
ib2

4a

å
which is the desired result.

For a < 0, observe that I(a, b) = I∗(−a, −b), with −ia = (ia)∗ and b2 = (b2)∗,
and the same result follows.

6.2.1 Schrödinger Equation
A possible application of the Fresnel integration is solving the Schrödinger
equation for a free particle: Example of

application

iℏ∂tψ(x, t) = − ℏ2

2m
∂2
xψ(x, t) (6.24)
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In the following, we will take ℏ = 1 for simplicity. Note that (6.24) is very
similar to the diffusion equation, and in fact we can solve it in the same way,
by applying a Fourier transform to both sides:

i∂tψ̃(p, t) =
(a)

− 1
2m

∫
R

dx ∂2
xψ(x, t)e−ixp =

=
p2

2m

∫
R

dxψ(x, t)e−ipx︸ ︷︷ ︸
ψ̃(p,t)

=
p2

2m
ψ̃(p, t)

where in (a) we performed two integrations by parts, using the fact that ψ(x, t)
vanishes at infinity to remove the boundary terms.

We are left with a first order ODE that can be solved by separation of variables:

i∂tψ̃ =
p2

2m
ψ̃ ⇒ dψ̃

ψ̃
= −i2 p2

2mi
dt = − ip2

2m
dt ⇒ ψ̃(p, t) = ψ̃(p, 0) exp

Ç
−ip2t

2m

å
If we assume the particle to be initially localized at x = 0, meaning that
ψ(x, 0) = δ(x), we have ψ̃(p, 0) = 1, and so:

ψ̃(p, t) = exp
Ç

−i p
2t

2m

å
All that’s left is to “go back to position space” with an inverse Fourier transform,
which involves a Fresnel integral:

ψ(x, t) = 1
2π

∫
R

dp exp
Ç

−ip2t

2m

å
eipx =

1√
4πai

exp
Ç
ib2

4a

å
with a = t/(2m) and b = −x, leading to:

ψ(x, t) =
…

m

2πit
exp
Ç

−mx2

2it

å
To reinsert ℏ we substitute t → tℏ:

ψ(x, t) =
…

m

2πℏit exp
Ç

−mx2

2ℏit

å
This is the Schrödinger propagator for a one-dimensional free particle.

6.3 Indented Integrals
Sometimes it is needed to compute integrals with singularities on the path Compute integrals

that do not existof integration. Note that this integrals do not exist, meaning that there is
not a unique way to compute them. Nonetheless, there are several rules (or
prescriptions) that can be used to assign some result (possibly of physical
significance) to these integrals.
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Consider, for example, an analytic function f(z), and the following integral:

I =
∫

R
dx f(x)

x− x0

The integrand has a pole at x0, which lies in the path of integration. So I

does not exist. However, we could integrate “symmetrically”, hoping that the 1. Symmetrical
integrationdiverging term from one side “cancels” with the one from the other. This is

the gist of the Cauchy Principal Value:

Cauchy Principal
Value

P
∫

R
dx f(x)

x− x0
= lim

δ→0

ï∫ x0−δ

−∞

f(x)
x− x0

dx+
∫ ∞

x0+δ

f(x)
x− x0

dx
ò

For example, this works for f(x) = 1/x2 and x0 = 0:

P
∫

R

1
x3 dx = lim

δ→0

ï∫ −δ

−∞

1
x3 +

∫ ∞

δ

1
x3

ò
=
(a)

lim
δ→0

0 = 0

where in (a) we used the symmetry of 1/x3 to cancel the two integrals.

Figure (6.2) – Integration path for an indented integral

Another possibility is to deform the integration path from the real line to a 2. Path
deformationcurve γϵ that avoids the singularity, as can be seen in the bottom half of fig. 6.2.

Doing so produces a different result from the one of the Cauchy Principal Value,
because now we are accounting for half a small circle Cϵ = {z = x0 + ϵeiθ : θ ∈
[−π, 0]} around the singularity:

lim
ϵ→0

∫
γϵ

f(x)
x− x0

dx = P
∫

R

f(x)
x− x0

dx+ lim
ϵ→0

∫
Cϵ

f(x)
x− x0

dx (6.25)

And the difference amounts to:

lim
ϵ→0

∫
Cϵ

dz f(z)
z − a

=
(a)

lim
ϵ→0

∫ 0

−π
dθ (iϵeiθ)f(x0 + ϵeiθ)

ϵeiθ
= i lim

ϵ→0
dθ f(x0 + ϵeiθ) = iπf(x0)
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where in (a) we changed variables using the parameterization of Cϵ.

Integrating over γϵ that passes to the right of the singularity is equivalent to not 3. Moving the
singularitydeforming at all the integration path and moving the singularity “up” instead,

as can be seen in fig. 6.2. This is the idea of the prescription ±iϵ:∫
R

dx f(x)
x− (x0 + iϵ)

=
∫
γϵ

dx f(x)
x− x0

= P
∫

R

f(x)
x− x0

dx+ iπf(x0)

Equivalently, it is possible to show that integrating over a path γ−
ϵ that passes

to the left of the singularity equates to moving the singularity “down”:∫
R

dx f(x)
x− (x0 − iϵ)

=
∫
γ

−
ϵ

dx f(x)
x− x0

= P
∫

R

f(x)
x− x0

dx− iπf(x0)

We can summarize these facts as an equation between operators:

lim
ϵ→0

1
x− x0 ∓ iϵ

= P 1
x− x0

∓ iπδ(x− x0)
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Chapter 7

Limit Distributions

In our previous discussion of Brownian motion, we concluded that the sum
of many independent gaussian increments converges, in distribution, to a
gaussian.
But what would happen if we consider increments that are still independent
and identically distributed, but not gaussian? How would the distribution for
their sum change, in the limit of many steps? Does it even have a unique form?

In this lesson, we will see that the sum of a general class of i.i.d. random
variables - the ones for which it makes sense to compute mean and variance -,
after some proper normalization, tends to a normal distribution. This is the
gist of the Central Limit Theorem (CLT).
Moreover, even the distributions without finite mean or variance, for which the
CLT does not apply, can still produce sums that converge to some distribution
(not gaussian), which we call a stable distribution. This observation will
allow us to study generalizations of Brownian motion, and in particular the
phenomena of subdiffusion and superdiffusion, which have interesting physical
applications.

So, we will start by proving the CLT, and then generalize the diffusion equation
and study it in some particular cases.

7.1 Characteristic functions
To prove the CLT, we first need a way to efficiently compute the pdf of a sum
of i.i.d. random variables.

Let’s start with the case of just two independent variables X ′ and X ′′, with
distributions p1(x′) and p2(x′′). Let X = X ′ +X ′′ = f(X,X ′) be their sum,
with distribution p(x).
Applying the rule for a change of random variables, we get:

Sum of 2
independent
random variables

p(x) = ⟨δ(x− f(x′,x′′))⟩p1,p2 =
∫

R
dx′

∫
R

dx′′ p1(x′)p2(x′′)δ(x− x′ − x′′)
(7.1)
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where we used the independence of X ′ and X ′′ to factorize their joint pdf.
By symmetry, δ(x − x′ − x′′) = δ(x′ + x′′ − x) = δ(x′′ − (x − x′)). Then,
integrating over x′′ to remove the δ, we get:

=
∫

R
dx′

∫
R

dx′′ p1(x′)p2(x′′)δ(x′′ − (x− x′)) =
∫

R
dx′ p1(x′)p2(x− x′)

which is the convolution of the distributions p1 and p2.

Convolutions are best computed in the Fourier domain, where they reduce to
multiplications:

F
[∫

R
dx′ p1(x′)p2(x− x′)

]
(k) = F [p1](k) · F [p2](k) (7.2)

The Fourier transform1 of a pdf p(x) is called the characteristic function of
the corresponding random variable X, and denoted with φ(k):

Characteristic
functionφ(k) ≡ F [p(x)](k) =

∫
R

dx eikxp(x) = ⟨eikx⟩p(x)

Note that φ(k) is the moment-generating function MX of X, evaluated at a
complex argument:

MX(k) = ⟨ekx⟩ ⇒ φ(k) = MX(ik)

This means that we can use φ(k) to compute moments of X. Note that: Moments from
characteristic
functions

eikx = 1 + ikx− 1
2
k2x2 + · · · =

+∞∑
n=0

(ikx)n

n!

And so:

φ(k) = ⟨eikx⟩ =
∞∑
n=0

inkn

n!
⟨xn⟩ (7.3)

Then, by differentiating n times and evaluating at 0, all terms of order ̸= n

vanish, leaving only a multiple of ⟨xn⟩:

∂φ(k)
∂kn

= 0︸︷︷︸
First n terms

+ in
n!
n!

⟨xn⟩ +
+∞∑

j=n+1

n!
j!
ijkj−n⟨xj⟩ =

∂φ(k)
∂kn

∣∣∣
k=0

= in⟨xn⟩ ⇒ ⟨xn⟩ = 1
in

(−i2)n ∂

∂kn
φ(k)

∣∣∣
k=0

= (−i)n ∂

∂kn
φ(k)

∣∣∣
k=0

Proof of convolution property. Start from the left side of (7.2). By repeat-
ing backwards the steps from (7.1) we have:

F
[∫

R
dx′ p1(x′)p2(x− x′)

]
(k) = F

[∫
R

dx′
∫

R
dx′′ δ(x− x′ − x′′)

]
(k) =

=
∫

R
dx eikx

∫
R

dx′
∫

R
dx′′ p1(x′)p2(x′′)δ(x− x′ − x′′) =

1∧Here we are using a slightly different convention for the Fourier transform compared
to sec. 6.1, where both the − sign and (2π)−1 normalization factor are contained in the
inverse transform.
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=
∫

R
dx′

∫
R

dx′′ eik(x′+x′′)p1(x′)p2(x′′) =
∫

R
dx′ eikx

′ ∫
R

dx′′ eikx
′′
=

= F [p1](k) · F [p2](k)

7.2 Central Limit Theorem
We are finally ready to prove the full Central Limit Theorem.

Consider a set of n independent and identically distributed (i.i.d.) random
variables X = {X1, . . . ,Xn}, each according to a distribution f(x) with finite
mean µ and variance σ2. We want to prove that their sum Sn =

∑n
i=1 xi, when

properly translated/scaled, converges in distribution to a gaussian.

More precisely, the “proper translation/scaling” means considering the random
variable Yn defined by:

Yn ≡ Sn − nµ√
nσ

(7.4)

Note that, by additivity of mean and variance:

⟨Sn⟩ = ⟨x1⟩ + · · · + ⟨xn⟩ = nµ

Var(Sn) = Var(x1) + · · · + Var(xn) = nσ2

And so:

⟨Yn⟩ = ⟨Sn⟩ − nµ√
nσ

= 0 Var(Yn) = Var(Sn)
nσ2 =

���nσ2

���nσ2 = 1

where we used Var(x+ a) = Var(x) and Var(bx) = b2 Var(x) where b ∈ R is a
constant. So, we expect Yn to converge in distribution to a standard gaussian
(0 mean and unit variance).

To compute the distribution of Yn we apply the rule for changing random
variables:

Yn ∼ g(y) = P(Yn(x) = y|xi ∼ f(x) ∀i) = ⟨δ(y − Yn(x))⟩x∼[f(x)]n =

We rewrite the δ as a Fourier transform δ(x) = F−1[1] = (2π)−1 ∫
R dk e−ikx,

and then insert the definition for Yn:

= ⟨ 1
2π

∫
R

dα e−iα(y−Yn(x))⟩ =
(7.4)

⟨ 1
2π

∫
R

dα exp
ï
−iαy + iα

Å∑n
i=1 xi − nµ√

nσ

ãò
⟩ =

By linearity we can bring the average inside the integral, which is then factor-
ized as the Xi are independent:

=
1

2π

∫
R

dα exp(−iαy)
n∏
i=1

⟨exp
Å
iαxi√
nσ

ã
⟩ exp

Å
−iαnµ√

nσ

ã
=

Finally we write explicitly the average:

=
1

2π

∫
R

dα exp
Å

−iα
ï
y+

nµ√
nσ

òã n∏
i=1

∫
R

dxi exp
Å
iαxi√
nσ

ã
p(xi) =
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And then, as the Xi are identically distributed, the product becomes the
power of the characteristic function of any of the n variables:

=
1

2π

∫
R

dα exp
Å

−iα
ï
y+

nµ√
nσ

òã[ ∫
R

dx1 p(x1) exp
Å
iαx1√
nσ

ã
︸ ︷︷ ︸

φ1

(
α√
nσ

)
]n

(7.5)

As all the n variables are effectively the same, we will drop the subscript in the
following steps.

The idea is now to expand φ as in (7.3), bring all the terms inside the same
exponential, and show that it reduces to a gaussian after integration. So:

φ

Å
k =

α√
nσ

ã
= 1 + i ⟨x⟩︸︷︷︸

µ

α√
nσ

− ⟨x2⟩ α2

2nσ2 + o(n−3/2)

This expansion only makes sense if µ and σ are finite. Actually, we need to
require only σ to be finite, as then µ is finite by consequence of the Cauchy
Schwarz Inequality. To proceed, recall that σ2 = ⟨x2⟩ − ⟨x⟩2 = ⟨x2⟩ − µ2 ⇒
⟨x2⟩ = σ2 + µ2. Substituting in the previous expression:

= 1 + iµ
α√
nσ

− α2

2n
−α2µ2

2nσ2 + o(n−3/2) = (7.6)

If we ignore all the higher order terms (as in the limit n → ∞), (7.6) is the
expansion of the following exponential, as the only non-negligible terms are the
three highlighted above:

= exp
Ç
iαµ√
nσ

− α2

2n
+ o(n−3/2)

å
(7.7)

We then substitute (7.7) in (7.5) and compute the n-th power:

P(Yn(x) = y) = 1
2π

∫
R

dα exp
Å

−iα
ï
y+

nµ√
nσ

òã
exp
Ç
iαµn√
nσ

− α2n

2n
+ o(n−1/2)

å
=

=
1

2π

∫
R

dα exp
Ç

−iαy −
�

�
��iαnµ√
nσ

+
�
�

��iαµn√
nσ

− α2

2
+ o(n−1/2)

å
=

=
1

2π

∫
R

dα exp
Ç

−α2

2
− iαy + o(n−1/2)

å
=

This is a gaussian integral, which evaluates, in the large n limit, to:

=
n→∞

1
2π

…
π

a
exp
Ç
b2

4a

å
=

1√
2π

exp
Ç

−y2

2

å
with a = 1/2 and b = −iy. The final result is the standard gaussian, as desired.

So, we showed that if Xi ∼ p(x) with finite variance σ, then the sum of n i.i.d.
random variables Xi converges in distribution to a gaussian:

lim
n→∞Yn ∼ N (0, 1)

148



By undoing the normalization, we have:

lim
n→∞Sn ∼ N (nµ,nσ2)

In particular, the sample mean distributes normally around the distribution
mean µ:

lim
n→∞

1
n
SnN

Ç
µ, σ

2

n

å
7.3 Subdiffusion and superdiffusion
Recall that, for Brownian motion, the final distribution for a particle starting
in x0 = 0 at t0 = 0 is:

W (x, t) = 1√
4πDt

exp
Ç

− x2

4Dt

å
Its variance, which physically represents how quickly the initial distribution
“spreads”, is linear in time:

⟨x2(t)⟩ = 2Dt

This is indeed a good model for many physical phenomena. However, there
are cases of anomalous diffusion, in which the “spreading velocity” scales
differently - as can be seen in fig. 7.1. For example:

• Subdiffusion. Sometimes particles tend to persist in the same state
for extended periods of time - meaning that the waiting time between
jumps has a distribution with a “long tail”, such as t−1−α with α ∈
(0, 1). This happens, for example, in the transport of charge carriers in
semiconductors, and monomers in polymer diffusion. Their paths satisfy:

⟨x2(t)⟩ = 2Dζt
ζ 0 < ζ < 1

• Superdiffusion. Here particles make jumps of large size with non-
negligible frequency, meaning that the distribution of displacements ∆x
has a “long tail”, proportional to |∆x|−1−µ for ∆x sufficiently large, with
µ ∈ (0, 2). If large jumps happen almost instantaneously, we talk about
“flights”, while if they happen with a fixed maximum velocity, they are
“walks”. In this case we have:

⟨x2(t)⟩ = 2Dζt
ζ ζ > 1

7.4 Levy Flights
Anomalous diffusion can be even more complicated, involving memory and
long-range correlations. In our discussion, we will limit ourselves to a case of
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(a) – Brownian motion.

(b) – Levy flight (superdiffusion). Note
how jumps are frequently of very large

size.

Figure (7.1) – Comparison between normal diffusion (a) and anomalous diffusion (b).

superdiffusion - the Levy flights - that can be described with a generalized
diffusion equation:∂tW (x, t) = Dµ

∂
∂|x|µW (x, t)

W (x, 0) = ρ(x)
0 < µ < 2

The meaning of the fractional derivative can be understood in Fourier space,
as a generalization of the transform for a derivative:

∂tW̃ (k, t)) = −Dµ|k|µW̃ (k, t)

Note that this is equivalent to:

∂t[eDµ|k|µtW̃ (k, t)︸ ︷︷ ︸
f̃(k)

] = Dµ|k|µ����
eDµ|k|µtW̃ (k, t) +����

eDµ|k|µt∂tW̃ (k, t) = 0

Meaning that the function f̃(k) is constant in time. Rearranging:

f̃(k) ≡ exp
(
Dµ|k|µt

)
W̃ (k, t) ⇒ W̃ (k, t) = f̃(k)e−Dµ|k|µt

As f̃(k) does not depend on time, we can compute it at any instant, for example
at t = 0, where f̃(k) = W̃ (k, 0) = ρ̃(k), and so:

W̃ (k, t) = ρ̃(k) e−Dµ|k|µt︸ ︷︷ ︸
W̃ (k,t|k0,0)

We interpret the exponential as the Fourier transform of a propagator. Multi-
plication in the Fourier domain corresponds to convolution in the space domain,
and so we recover the usual form for the solution of the diffusion problem:

W (x, t) = ρ(x0) ∗W (x, t|x0, 0)
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And for µ = 2 we know that:

W (x, t) =
∫

R
dx0 ρ(x0) 1

4Dt
exp
Ç

−(x− x0)2

4Dt

å
︸ ︷︷ ︸

W (x,t|x0,0)

For a general µ ∈ (0, 2), however, it is difficult to find analytically W (x, t|x0, 0),
except for a few cases. One of them is for µ = 1, where W (x, t) becomes a
Cauchy distribution, and we talk about Cauchy random flights: Cauchy Random

Flights

W̃C(k, t) = ρ̃(k)e−D1|k|t ⇒ WC(x, t|0, 0) = 1
2π

∫
R

dk exp
(
−x∗(t)|k| + ikx

)
=

=
1
π

∫ ∞

0
dk e−x∗(t)k cos(kx) =

=
1

πx∗(t)
1

1 +
Å

x

x∗(t)

ã2

where we set ρ(x) = δ(x), and x∗(t) = D1t, representing the typical length
scale. See the exercises for a full derivation.

Note that, in the case of Levy flights, the displacements do not follow a dis-
tribution with finite variance, as it has a “long tail”. Thus, the CLT theorem
does not apply, and in fact the sum of many displacements is not normally
distributed - for example, in the µ = 1 case it is a Cauchy pdf.

However, the Cauchy pdf has a key property in common with the gaussian:
it is a stable distribution. This means that a sum of two Cauchy random Stable distributions
variables follows again a Cauchy pdf, up to scaling and translation.

We argue (omitting the proof) that this property holds for all the distributions
in the general case µ ∈ (0, 2), which are called Lévy alpha-stable distri-
butions. In particular, these stable distributions behave like “attractors” for Generalized CLT

theoremthe sums of i.i.d. random variables with certain distributions, exactly like the
gaussian behaves for all random variables with finite variance. This leads to a
generalization of the central limit theorem, for which the sum of a number
of random variables with symmetric distributions having power-law tails (Pare-
tian tails), decreasing as |x|−α−1 for large x, with α ∈ (0, 2] (and therefore
with infinite variance), will tend to a Lévy stable distribution as the number
of summands grows2.

2∧B.V. Gnedenko, A.N. Kolmogorov. Limit distributions for sums of independent
random variables, Cambridge, Addison-Wesley 1954 https://books.google.com/books/
about/Limit_distributions_for_sums_of_independ.html?id=rYsZAQAAIAAJ&redir_
esc=y
See Theorem 5 in Chapter 7, Section 35, page 181.
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Part III

Gradenigo’s Lectures

152



Analytical index

B
Brownian motion 7

C
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D
Diffusion solution on R 23
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E
Equation

Continuity 9
Diffusion 10
Fokker-Planck 60
Langevin 61
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F
Fick’s Law 10
Flux 57
Fourier integral transform 24
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G
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H
Heaviside function 132

I
Integral
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M
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Method
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O
Overdamped limit 62
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Probability space 32
Propagator 26
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T
Translational invariance 24
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