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CHAPTER 1

The Diffusion problem

1.1 Introduction

In classical mechanics, if we know all forces F' that act on a certain particle,
along with its initial condition (e.g. position x(t = 0) and velocity v(t = 0)),
we can compute its trajectory x(t) V¢ by integrating the equations of motion.
This is indeed true even for ensembles of particles - but it becomes very imprac-
tical for macroscopic objects. For example, a drop of water contains something
in the order of 10?3 molecules, and so to completely describe its motion it is
needed to integrate six times that many equations (3 for position, 3 for velocity
for each single particle). Even if we had the computational capacity to do so, it
would not be possible to know the necessary initial conditions with the required
precision.

On the other hand, it is not very interesting to solve this kind of problem,
because one could not possibly understand the intricacy of this motion, and so
the task doesn’t give much insight in the relevant physics. In fact, often we are
most interested in the macroscopic properties of the object. That is the aim of
statistical mechanics.

1.2 Diffusion: a macroscopic approach

In this course, we will examine one of the most important problems in statistical
mechanics: the diffusion problem. Take a drop of ink immersed in water and
it will mix over time, apply heat to the edge of a bar and it will propagate to
the entire thing. Spray a bit of perfume and it will spread over the entire
room, place a sugar cube in a cub of tea and it will dissolve without the need
of stirring it. The diffusion mechanism is key to many aspects of everyday
life, and it is yet one of the most striking direct consequences of the invisible
microscopical motion of molecules. Thus, studying diffusion can provide a link
between these two very different worlds.

The first advances in the analysis of the diffusion motion were made in the 19th
century, and were all based on a macroscopic approach. For example Fick’s Law,
that roughly motivates diffusion as the motion of fluids from regions of high
concentrations to regions of low concentration, dates back to 1856.
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The link with the microscopical world, however, was made only in 1905, in a
groundbreaking article on Brownian motion published by Einstein - which also
served as a striking proof of the atomic nature of matter.

Brownian motion is the erratic motion exhibited by granules of fine powder
when suspended in still water. It was already known that this was due to
physical reasons, as repeated experiments ruled out every possible explanation
requiring living organism.

Einstein proposed a solution based on molecules, and statistics. If we assume
that water is composed of particles, the single grains of powder behave like large
objects hit by smaller particles. The number of hits on each side is almost the
same, so the total force which acts on the large object is almost 0. However,
if the grains are sufficiently small, the slight unbalance in the number of colli-
sions can produce a significant acceleration, leading to a kind of random motion.

For example, let’s consider a spherical grain submerged in the liquid. Let’s call
U the upper hemisphere, and L the lower one. Denote with N, the average
number of collisions per second per surface unit. Then the number of hits on
U is almost the same to that of L, up to a certain (binomial) error:

N,-U=N,-L£+/N,

Thus, the relative error is given by:

Note that if the grains are small, N, will be small too, and so the relative error
will be high.

1.2.1 The diffusion equation

Let’s try to give a quantitative description of this kind of motion. We start
by specifying the initial conditions as a starting distribution, i.e. a function
p: R? x R — R such that p(r, t) is the probability to find a particle in position
r at the instant ¢.

1. For a discrete, point particle we have p(r,0) = 53(r — 1), i.e. the particle
is at the starting position with certainty.

2. For some quantity of matter (for example a droplet of ink), we have some
uniform initial density, such as:

po It <R
p(r,0) = po(r) =
0 otherwise

Note that p(r,t) is a probability density, and not a usual density of matter.
The difference is merely of normalization. If N is the total number of particles
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in ink, then Np(r,t) is the density of ink particles at the specific position r
and time ¢, which will be denoted with p,, (7, t):

1:/d3 t
y rp(r,t)

N:/ d&*r Np(r,t)
Vv ——

density at r
The meaning of a point-wise density can be understood as a limit:

AN
Np(r,t) = density at r, time t = Al%o NG
Consider a patch of liquid of volume AV, that contains a number AN of ink
particles. By letting it shrink “enough”, AN/AV reaches a constant value -
that is the density in a macroscopically small patch of liquid. Of course, AV
cannot reach 0, because in that case AN = 0. So, the limit is to be interpreted
in a macroscopical sense (AV is macroscopically vanishing, AV | 0) and not in
a mathematical sense (AV — 0).

|

<

~ 10303 AV ~ 10~39m3 AV
Figure (1.1) — Density (ratio AN/AV) Figure (1.2) — Density for a patch
as function of patch size AV for a region centered on a point |r| > R. Here the
centered around the ink distribution p density is higher for high AV, as in these
(Ir] < Ratt=0). If AV is sufficiently cases the patch comprises also the ink’s
large, the patch comprises also some initial distribution (pg).

space without ink, and so the density is
lower.

We now want to compute p(r,t) for t > 0, given p(r,0).
We start by considering the continuity equation. The idea is that particles do
not move by “jumping” between far positions, but travel in a continuous way.

Consider a box of volume V| that contains a fixed number N of particles, with
(matter) density:

Np(r,t) = p(r,1)

Let A be a patch of V', with boundary dA. The number of particles inside A
at time ¢ is given by the integral of the density:

[, &% pulr.t) = Na(®) (1.1)

8
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And at a later time t + At:

/Ad?’rpn(fr,t+At) = Nyt + At) (1.2)

Let’s introduce a new quantity, the current j(r,t) at position r and time t.

Consider a small area dS centered on a point r, with A(r) L dS. The number
of particles flowing through d.S during an interval At is defined as:

Atg(r,t)-n(r)dS

and this can be used to compute j.
For example, for a uniform flow of particles with density p,, and velocity v, the
current is 3 = p,v.

Returning to the problem, we note that the change of N4 over time is explained

by the flux of particles through the closed boundary 0A, i.e. the surface
integral of the current j:

Na(t+ At) — Nu(t) / dSh - j(r, t)At (1.3)
Here we define, by convention, the sign of j(r,t) to be positive if the current
is outward, that is from A to V' \ A. So, a positive current means that particles
are leaving A, and this explains the — in (I=3).
Substituting (I0) and (I22) in (I23) we arrive at:
1 . N
[, @ 5 loulr 4 80 = pu(r, 8] = = [ dS (m)ji(r,) - ()t

Taking the limit At — 0:
/d3 pnrt / dSn - J(rt = /d?’rV Jj(r,t)

where in (a) we applied the Gauss divergence theorem.
Rearranging:

[, drlpar )+ V5,8 =0

This is the continuity equation in integral form. Note that it holds for any

choice of volume A C R®. So, knowing that 3 and p are continuous functions,

by the fundamental theorem of calculus we know that the same relation must
hold everywhere for the integrand, meaning that:

pp(r, ) +V-j(r.t)=0  Vr, Vvt (1.4)

That is the continuity equation in differential form .

Now we need a formula to compute the current j(r,t) produced by the diffusion
motion. If there are no other fields (EM, gravity, etc.), but we still observe a
non-zero j, where could it possibly be from?

9
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The only other relevant physical vector in this situation, i.e. not depending on
an arbitrary choice of reference frame, is the “spatial” rate of change of density,
i.e. its gradient Vp,,. In fact, it is observed that particles tend to move opposite
to that gradient - from regions where there are more particles to regions where
there are less. This can be summarized by Fick’s Law:

§(rt) = ~DVp,(r.t) (1.5)
Of course, there could be some other terms in this expression:

j(r,t) = =DVp,(r,t) + CV(Vp,) + ...

However, by dimensional analysis, 8’; Pn ™~ Pn/ Lk, where L is the macroscopic
dimension of the container. So, the higher order terms can be considered
negligible.

Substituting (I3) in () we arrive finally at the diffusion equation:

Knowing the initial density p,(r,0) and some macroscopical details for the
fluids (all contained in the diffusion parameter D), we can now compute the
density after a small interval At. For example, we can start by expanding
pn (T, At) around At = 0:

pu(r, At) = p,(r,0) + Atp,(r,0) + O(AL%)

Ignoring the higher order terms, we can use (ICA) and compute p,, (7, At). This
is the gist of the Euler algorithm for numerically approximating differential
equations.

This may be more or less doable depending on the form of D, that can depend
on both r and t. The r-dependence is characteristic of problems that are not
translational invariant (e.g. a crystal). In fact, if D does not depend on 7,
the diffusion equation becomes:

pu(7,t) = DV py (v, t) (1.7)

Because the only spatial derivatives are of second order, then if p(r,t) is a
solution, also p(r + R, t) is a solution, for any choice of R.

Note that (IZ7) is quite similar to the Schrodinger equation for a free particle:

h

2m

S0 =+ —V* ¢

The yellow term is analogous to D, and the only difference is given by the green
term. This can be resolved by a substitution 7 = it (passing to “imaginary
time”).

10
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Example 1 (Particle diffusing in d = 1):J

Consider the simplest case of a single particle moving in one dimension,
with D constant. Let p(z,0) = d(z), that is consider the particle as being
perfectly localized in x = 0 at the start.

The diffusion equation in d = 1 is:

p(x,t) = Dp(x,1) (1.8)

The macroscopic quantities of interest are the expected position and velocity,
defined as:

() = /+oo p(x, t)xdr diw)e = /+oo plx,t)xde

— 00 dt —00

From the normalization condition:
o0
/ plx,t)dx =1
—00

we note that p(£o0,t) = 0, and also p'(z,t) — 0 for |#| — oo (otherwise,
the density would diverge).

These limits allow us to compute the velocity by repeated integration by
parts:

d +o0 +oo +oo
fi? dt/ xt)xdx—/ p(xtxdx = D/ dz =
— 00
T=+00 d T=+00 d2
= xp(x,1) - (x) p(x,t) +D/ ( 2) dr =0
T=—00 dx T=—00 dz
~] ~; —

Note that a similar calculation can be done in the more general case of
computing the expected value of the time derivative of any function f(x):

- D/_OO p(z, 1) (ddi(Q )) da (1.9)

We found that the mean velocity is 0, meaning that the mean position must
be constant:

+oo
(@)= @hmo = [ _ dzap(@,0)=0
However, if we consider f(z) = 2, thanks to (ICU) we arrive at:

d 9 +oo ) 9 +oo
—(x%); :/ plx, t)x” de = D/ 2p(z,t)dx
dt —00 —00

As p(z,0) = d(x), we have:

+o00
(i(a:2>0 - D/ 26(z) da = 2D

11



And integrating with respect to ¢:
(z%), = 2Dt + (2*)y = 2Dt
This allows us to compute the variance of z:
2 2
Var(z); = (27); — (x); = 2Dt

So the width of the distribution of x, which is /Var(z), expands x v/ Dt.
The dependence on v/t is a defining characteristic of the diffusion motion.

1.3 Microscopical approach

Let’s tackle the diffusion problem with a different approach, studying the mo-
tion of single particles rather than changes of densities in an ensemble. The
correspondence with the results obtained in the previous section will be key to
understand the link between the microscopic and the macroscopic - that is the
main goal of statistical mechanics.

Consider a particle moving in d = 1. To simplify the problem, we allow only
discrete steps, both in time and position:

r, =il t,=n-¢e (1.10)

In other words, the particle may occupy only points in this defined lattice - and
nothing in between. We also look at the system evolution after discrete time
steps, each of length e.

We already discussed how the diffusion process is intrinsically stochastic, mean-
ing that the motion of grains is given by collisions at the microscopical level,
which are essentially random.

So, suppose that the particle lies in a certain known position at ¢ = 0. After an
instant, the particle may have moved to the right (with probability P, ) or to
the left (P_), or have remained in the same position as before (F;). As these
cases cover all the possibilities, it holds:

P, +P_ +P=1

Denote with w;(t,,) the probability that the particle lies at position x; at time ¢,,.
The probability for the next timestep is then given by the Master Equation:

w;(ty,41) = Pyw;(t,) + Pyw;_1(t,) + P_w;1(ty) (1.11)

In fact, if the particle were at position ¢ at time ¢,,, then it will remain in the
same position with probability F,. Otherwise, it could have been one position
left and moved to the right (P, ), or one position right and moved to the left
(P_).

Here we supposed that ¢ is sufficiently small, so that the particle will only take

12
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one step at a time.

Stochastic systems for which the state at a certain time depends only on the
state one instant before are called Markov’s Processes.

Note that, as the particle cannot “escape from the system”, its probability to
be in any position is conserved at any given time:

o0 oo [e.9]

Yo owiltpyr) = Y, wilty) =---= Y w(0)

1=—00 1=—00 1=—00

Suppose that the particle “always moves”, that is Fy = 0, and also that it does
so without any preferred direction (P, = P_ = 0.5). Then, the final position
¢ at time ¢,, is given by the number of steps to the right n, minus the number
of steps to the left n_ € IN:

Z>i=ng—n_

This process can be simulated by flipping a coin at each timestep: if it lands
on heads the particle will move to the right, otherwise to the left. So, denoting
the total number of steps as n = n, 4+ n_, then the probability for the particle
to be in position z; is given by a binomial distribution:

n 1 1 1 ({n n\ 1
wiltn) = (n+)gn+y@::2n(n+) - (n_>2n (112)

This can be generalized to the case where P, # P_:

w;lt,) = (n” )Pﬁ*Pf‘ (1.13)

Note that (I12) satisfies the Master Equation (1), that is:

1
wi(tny1) = §(wi+1(tn) + wi—1(tn))
We start by noting that if i =ny —n_ and n =n, +n_, then:

n-+1 n—1
= = 1.14
=" a =t (1.14)

And so:

iwﬁwm+wlmm=2ilKMZJ+<MZQ] (1.15)
2 2

Recall now the recurrence relation for the binomial coefficient:
n\y (n-— 1 n n—1
k)] \ k k—1

13
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which leads to the desired result:

1 n-+1
(T8) = 271—|—1(n+i+1> = wi(tn41)
2

1.3.1 Probability Generating Functions

Let’s introduce a useful mathematical tool to deal with the binomial coefficient.
Let X be a discrete random variables taking values in the non-negative integers
(N). The probability generating function” of X is defined as:

+oo

G(z) = E[z¥] = Z_:Op@)zx (1.16)

where p is the probability mass function of X, i.e. p(x) is the probability that
X =z (p(z) =P(X = 1))

G(z) is useful because we can retrieve p(k) for any k& € IN by simply differenti-
ating k times G(z) with respect to z and setting z = 0. In fact, by expanding

the sum in the definition (I18) and then differentiating: Probability
generation
2 d"
G(z) = p(0) +p(D)z+p2)z" 4+ = -5 G(2)] = p(k)

Note that G(1) = 1 because of the normalization:

+00 +00
G(1) = ;p(x)lx = Zop(w) =1

This suggests a way to use G(z) to compute also the moments of X. In fact,
if we evaluate the first derivative for z = 1 we get:

G'(1) = p(1) 4 2p(2)z + 3p(3) 22 + ... = Jrf:op(:c)xzx_l =
Z= x=1 2=
S ap(@) = (0-p(O) +1-p(1) +2-p(2) + - —E[X]  (L18)
r=1

However, the second derivative of GG evaluated at z = 1 does not give the second
moment:

G'(1)=2-1p(2) +3-2p(3)z + 4 - 3p(4) 2> + . .. =2 alr-1)s" p(x) =
= r=2 7=
=E(X(X -1))
More generally: Factorial moment
generation

G(k)<1) =EXX-1)...(X—-k+1)) =1E<()(X_'k)|>

'mNot to be confused with the moment generating function of a real-valued random
variable X (i.e., not discrete), which is defined as ]E(etX), with t € R

14



which is called the k-th factorial moment of X.

But how can we get the “usual” moments from 7 One possibility is to “com-
pensate” the difference between a factorial moment and a usual one by adding
other terms. For example, note that:

G"(1) = E(X(X —1)) = E(X?) — E(X)
and so:
G"(1)+G'(1) = (E(X?) —E(X)) + E(X) = E(X?)

A more clever way is to consider the operator §(z) defined as:

0(z) = zaaz
on GG. In fact:
o T +00 1 +oo
0(z)G(z) = vy S op@)z" =2 ap(x)" =D ap(x)z”
=0 =1 =1

And setting z = 1 leads back to the E[X]. If we apply 6(z) again, however,
something interesting happens:

020 = (:2) (:2) 60 = 2 3 ap(w)e® = ¥ a%p(@)=* (119
z Z) = Zaz Zaz Z—Zazx:1{l$p$2 —m:1$pl‘2’ .
Now setting z = 1 leads to E[X?]. In general:
0(2)*G(z) = E[X"]

Note how the exponent of z never changes, as it is lowered by 1 by the 0,, and
then rised back by the z factor. So, every new application of the 6(z) operator
merely brings down another x factor, rising the x exponent inside the sum -
which is exactly what we want to compute moments.

1.3.2 Moments of the diffusion distribution

Let’s focus on our specific (discrete) case, with the particle moving on a dis-
cretized line. At any given time ¢, we can compute the mass probability func-
tion W, : Z — Ry, with W, (x;) = w;(t,). In other words, this is the function
that maps every position z; to the probability of containing a particle at time
t,, (we focus on the spatial distribution at a fized time rather than the temporal
distribution at a fized position).

We are interested in knowing the shape of W; , that is its moments:

+o0 400
q = - q = - .1 q
<x >tn i:z_:oo th (%)xz (D) i:z_:oo wz(tn)<l 2) q€ N

The first moment (¢ = 1) gives the average position:

15
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+o00

(@), =1 D wilty)i=

1=—00

+00
=1 Y wit,)(2ny —n) =

1=—00
= 1(2(ny ), —n) (1.20)
(a)
where in (a) we used the normalization condition (Vn € IN,Y; w;(t,) = 1).

Thus, we found that the average position (z); of the particle at time ¢, is re-
lated to the value of n .

So, let ny be the random variable of interest. Recall that n is sampled
from a binomial distribution (CI3), and that n, = (n+14)/2 (I2) and so
1 =2ny —n.

Then, the probability generating function of n, is given by:

n n
W Zn) = 2w ()] = o prtptTt =
( ) (D) n;(} 1< n)}z_2n+*n (Cm3) =0 (Tl+> +
= (Pyz+P)"

where in (a) we used the binomial theorem.

We can now use the property (IZIR) of the probability generating function to
compute (n, ):

<n+>:5’w(z’n) B :”(P+Z+P—)nilp+ _ =n(P +P_)P;y =nP,
z z=1 z=1 \T/

(1.21)

For computing the second moment, we apply the 6(z) operator, as seen in
(CT9):
2 AN 0 ne1
(ny) = (28z> W(z,n) = zgzn(ﬂ_z +P )" P,

= 2(n(Pyz+ P)" 1Py 4+ znP%(n —1)(Pyiz 4+ P_)"?)

z=1 z=1

=nP (14+(n—-1)P,) - (1.22)
We can now compute Var(n ) recalling that:
Var[X] = E[X?] - (B[X))?
Thus:
Var[n] = (n}) — (ny)? = nP (1—Py) (1.23)

We now go back to (z), , recalling the relation (I20):

(@, =12}y, —n) =) nl2Py ~1) = nl(Py — P.)
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where in (a) we used P, + P_ = 1.
For the variance, recall that:

Var[aX + b] = o Var[X]
and so, starting again from (IZ20):

Vi — 41% V. — 4nl’P. (1 - P.) = 4nl*’P. P_
ar(z];, ar[n.] (z3) nl” P ( +) ne oy

Note that the variance is always proportional to time (n), even if P, # P_.
However, if we go back and compute the <$2>tn, we will note that it is not linear
in time:

(%), = Varlz], + (2)i, = 4nl*Py (1= Py) + (nl(Py — P))* =

n

= nl?>(4P_.P_ +n(P, — P_)?)

Let’s evaluate the previous quantities for the simple symmetrical case, where
P_|_ = P_ = 1/2

(ny) = (n2) = Z(n+1) Varln] = o

S ol 3

<x>tn = <x2>tn = nl? Var(x)t" = nl?

As expected, the average number of steps to the right is half the total steps (as
P, =1/2), and the average position is 0.

Alternative derivation for the * moments. These last results can be also
obtained in a simpler way.

The idea is to represent the final state of the random walk at time ¢,, as the
sum of n steps:

o(ty) =w tug+ - +uy,

Each step can be on the right or on the left according to some probability
distribution. In other words, u; is a random variable. If we suppose steps of
unit length symmetrically distributed (i.e. P, = P_ = 1/2) we get:

+1 p=1/2
1 p=1/2

Uy =

We can now compute the average position (first moment):

(x(tn)) = nfu) =0
1

(u) = 2(+1) + 5(~1) =0

And the second moment:

(b)) = (o + -+ u)?) = @D+ Y () =
Lot I e
! (ug)(u;)=0

{
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(F17 + 517 =1

(u?) =
Note that (u;-u;) =
So we showed that (x

I? factor from (I=24) is missing because the spatial step size is set to 1.

—~ [\3‘}—‘

u;) (u;) because u; and u; are statistically independent.

[\V]

)¢, is linear in the number of time steps (n). Here, the

1.3.3 Continuum Limit

Recall that t,, = ne. Inserting this relation in the results we got for the x
moments in the previous section (for the symmetrical case P, = P_) we get:

2
(x)y =0; (2% =In=—t, (1.24)
n n E
The analysis of the diffusion equation in d = 1 showed that, for a particle
starting at z(t = 0) = 0:
(z%), = 2Dt (1.25)

The correct continuum limit should reproduce the result of (I"23) from (IZ24).
Notice that if we simply let € — 0 and [ — 0, <z2> becomes undefined. There-
fore, we need to fix the ratio 21 during the limit. If we define this ratio
as:

2

l— =2D

€

then the limit of (I"2A) leads to (Z23) as desired:

2 2/e=op
@), = t, T2 opy = (47,
" € l,e—0

Note that [D] = m?s™ !, and so the previous expression is dimensionally correct.

We now know the basic shape that the distribution must have in the continuum
limit - but we still don’t know its explicit form. So, let’s start by considering
the spatial distribution at a fixed time ¢,,:

n! 1

Wi, (x;) = wi(t,) = (1.26)

For n = 0 (starting time), all the particles are at xy3. Then, after each timestep
the probability distribution “expands”, meaning that more and more positions
have a non-zero probability of being explored.

In particular, recall that:
1=2ny —n

Note how ¢ and n must have the same parity, as 2n is always even. So the
particle will always be at an even position (z; with ¢ even) after an even number
n of time steps, and at an odd x; after an odd time t,,.
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To proceed, we note that in the continuum limit, as the timestep e vanishes,
every finite time t will be reached after a really big number of steps. So, we
want to examine the asymptotic behaviour of (I"28) as n — oo. We start
by computing its logarithm:

Inw;(t,) = —nln2+Inn! —In (n;—z)! —In <n2—z>!

In this way, we can use the Stirling approximation:

Ink!=Ink+Ink-1)+---+mn2+Inl =
1
mklnk—k—i—iln(%rk)

Thus arriving at a complicated expression:

1
Inw;(t,) ~ —nln2+nlnn—wnw+ §ln(27rn)

n>1
n+i n-l—i) n+t4i 1 < n—l—i)
— 1 ——In|(2
214 2 )T oA T\

_n—zln<n—z)+n2—/{_;ln<zﬂn—z)

2 2 2

Let’s gradually simplify it. We start by collecting all the n:
1 n+ ’L) 1 (n — z>>
—In2+Inn— =1 — =1 =
n ( n2+nn 5 n ( 5 5 n 5
| ——t 1<7l> W ——1
=nln : - | =nln =nln
2y 55 n*—i" 1=’
2

IR Ty (i | DY (R PO (1.27)
U:) 2712 n4 (B 2n2 n4 ~ o '

where in (a) and in (b) we used respectively the following Taylor expansions
(asm — oo and so 1/n — 0):

(1+2)"=1+tnz+0@=?) In(1+2) =2+ 0@ (1.28)

Then we collect the i/2:
-3 () - (5)
2 2 2
Y e
2 1—i/n/ (a) 2

——Eln 1—1-%—1—0 ﬁ _ !
2 n n2) ) w 2

And finally we consider the remaining terms:

1 1 . .
— {ln(Qﬂn)—ln (27rn+l> —1In (27Tn 2)] =
2 2 2 2
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2
Inw;(t,) ~ (=22)+ (=9) + (C30) = ;ln <> -

And by exponentiating we get:

[2 i?
w;(ty,) 2V o exp <_2n> (1.31)

We now want to obtain a continuous pdf from the mass probability w;(t,).
Note that if we regard w;(t,,) as a function of position at a fixed time W, (z;),
and extend the domain to all R we get a really “bumpy” function, as it is
non-zero only on x; = [ -7 with ¢ € Z. However, if we integrate over every
small patch of W; (x;), we can “smooth” all the “bumpyness”, and get a nice
pdf - especially in the continuum limit.

Let’s formalize that more carefully. Starting from th(:ci), we can compute
the probability to find a particle in an interval I C IR by simply summing the
mass probabilities w;(t,,) for all the z; € I.

The idea is now to define a continuous pdf W (z,t) as follows:

A A
x—ﬂx+xy%> | < Az <1

W(z,t,) Az =P ($ € 5 5

That is, W (x,t,)Ax is the probability that a particle lies “near” a certain posi-
tion z € R at an instant ¢,, (i.e. within an interval I centered on z with width
Ax sufficiently small, but large with respect to the discretization). We will
then “cure” the discreteness of time by considering the asymptotic behaviour
for t — oo.

By expanding the previous expression we get:

Ax Ax , . Az Az fotaz/(2)
x—,x+}>%ﬂ’(ze[zo— + }): > w;(t,)

30T o7
2 2 (a) 21 21 imig—da/(21)

(1.32)

IP(a:e

where in (a) 4y is such that z; is closest to z;, that is iy = [z/] (recall that
x; =il =i =xz;/l).

Note that this specific choice of I contains Ax/l points (supposing Az > ).
However, depending on the parity of n (fixed by the choice of the instant
t,), only half of the positions x; can be explored, as n and j must have the
same parity. This means that half of the w;(t,) with x; inside the interval,

w;(t,) = 0. For the other half, we suppose that w;(t,) does not vary much

20



inside the small interval, and so we approximate their value with the center
point j = ig, i.e. wj(t,) = w; (t,). So, averaging over these two halves:

) ~ 50 (504 Gy (1)) = S 1) (1.3

We have now an expression for W(x,t,), which is continuous with respect to
x:
Wz, t,) AT = —w;(t,) (1.34)

If we now take the limit n — oo we can substitute (I=31) in (I=34), leading to:

1 /2 i2
W(x,t) = ﬂ %exp <_2n>

Substituting x = il and ¢t = ne we get:

[ 2¢e 2

As 27! = 2D:
2

Wiz, t) = \/éljrﬁ exp (—&) (1.36)

We can now compute the first two moments of x:

(x); = /]RW(x,t)m dz =0

(z%), = /]R W (x,t)2? de = 2Dt

This last integral can be done in many ways. For example, recall the gaussian

oo 2
I:\/?:/ e M dy
H —00

Differentiating (according to Leibniz integral rule) with respect to p:

integral:

8[ / 7‘uy2 2 1 e
== e ydy=—-54/—3 (1.37)
8/L R 2 ug
and so:
1 +00 2
2
= —— |dz =
) VarDi /_oo p( 4Dt>
1 +0o0 2 1 1
_ —na” 2 g ’ — ~\/7(aDt)® = 2Dt
VirDi an e dr] byt @ vampiz Y TP
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1.4 The Link between Macroscopic
and Microscopic

We will now show that the continuum limit of the Master Equation (1) pro-
duces the diffusion equation (IC8), in the case of constant D, thus establishing
a link between the interpretation in terms of densities and that in term of paths
of random motion.

Then, we will show that (IZ38) is the solution of that equation for a starting
distribution of dz (particle initially at 0), and derive the general solution for
any initial condition.

So, we start by recalling that, for a fine discretization, w;(t,,) is approximately
equal to the probability of being around a generic (z,t) (i.e. W(z,t)Azx), up
to a normalization constant:

A
W(zg,t,)Ax = P(x € [xg— Az /2,20 + Azx/2]) ~ 2—lxwi0(tn) ig = [Ax/l]

And so, with a slight abuse of notation:
wilt) ~ AW (2,t) i = |a/l],n = [t/€]

Substituting in the Master Equation (IT) leads to:
1
AW (z,t +€) :2{§(W(x—z,t) +Wi(x+1,t)) (1.38)

which means that an analogous Master Equation holds even for W (z,t), which
is a continuous pdf, and thus can be differentiated.

The idea is now to use Taylor expansions to express everything in terms of the
derivatives of W evaluated at the same point (x,t). So, we compute W (z,t + ¢)
in terms of W (x,t) (and derivatives) by expanding around e = 0:

2 92

_ 0 € 3
W($,t+ 6) - W(l’,t) + EEW<X?T) () + EﬁW(X,T> () + O(E )
(1.39)
The same is done for W (z 1, t) by expanding around [ = 0:
Wz +1,t) =Wz t)+ zﬁm ) Ea—ZW( )| o)
o e o ox X7 (z,t) 2 8X2 X T x,t
(1.40)

We then introduce the following notation for the space and time derivatives:

. 0 0
Wiz, t) = aTW(X,T)‘(x ) W/(.T,t) = &W(X,T)

(z,t)

so that a space derivative is denoted with a’ (a” for the second derivative), and
a time derivative with a (@ for the second derivative).
We can now substitute everything back in (IZ38). We start with the right side:

Wz —+1,t)+W(x—1,t) = 2W(x,t) + PW" (@, t) + 01"
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where the O(1*) is given by the cancellation of the odd powers (including I*).
Equating to the left side of (IZ38) leads to:

2 2
. . )
Wast] + W (2, ) + SW(a,t) = Whast + SW (2, 6) + 001"
Dividing by e:

: € . 2, 1
Wiz, t) + §W(m,t) = o Wz, t) + O <€
b

= DW"(z,t) + O(4eD?)

If we now take the continuum limit, then ¢, — 0 with the ratio D = [%/(2e)
fixed, both W (z,t) and the error term vanish, leading to the diffusion equa-
tion:

W(z,t) = DW"(z,1) (1.41)

Which is indeed the same? of (ITB) with D constant.

1.5 Solution of the Diffusion Equation

We want now to solve ([ZZ1), and show that the solution will be the same we
previously derived in (IZ38).
So, we start from:

W (z,t) = DO2W (z,1)

This is a second order partial differential equation. To be able to solve it, we
must first define its boundary conditions. In this case, we suppose that the
particle is unconstrained, and so the spatial domain coincides with IR.

As W(x,t) is a pdf, the following conditions must hold:

W(z,t) >0 V(1) /]RW(x,t)zl

From the normalization, it follows that W (z,¢) - and its spatial derivative
W'(x,t) - must vanish as |z| — oo, so that the integral does not diverge:

lim W(z,t) =0 lim W'(x,t) =0 (1.42)
However, it is not obvious that W(x,t) > 0 will always hold, assuming we
choose an initial condition W (z,ty) > 0. This will be obvious a posteriori -
and in fact can justified by the peculiar properties of this differential equation.

To solve (CAT), as the spatial domain is all R, one standard technique is that
of the Fourier integral transform, which allows us to “remove” derivatives by
replacing 0,9 — ikv, 0., — —kzw. Thus, if we can “remove” the second-order
space derivative, we will be left with a much more simpler first order differential
equation in the time variable.

2mmAlmost: here we deal with the probability distribution, while in (IC8) we have a physical
density p,,. Effectively the two differ only by a normalization factor, as previously noted
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Translational invariance. This approach is suggested by the translational
invariance of solutions of (). In fact, if W (z,t) is a solution, then also
W(x,t) = W(x — a,t) is a solution.

The generator of the translations is the momentum, and its eigenfunctions are
the plane waves, i.e. the Fourier basis. So, by expressing a function in this
base, we will harness the equation’s symmetry - simplifying the problem.

In other words, the Fourier basis diagonalizes the Laplacian operator which
appears in (IC4T):

B2pr(x) = My (@) Ae = —F2 op(x) = A ke R

In a general case, the Fourier integral trick can be tried for every variable,
starting from the one with the higher order derivative, and then the case which
leads to the most simplification can be pursued.

We start by rewriting W (x,t) as a (infinite) linear combination of vectors of
the Fourier basis:

dk
W(x,t) = ]R%e“f%k(t) (1.43)

where the 27 factor is just a normalization convention.
Let ¢r(z) = ¢*. Then, as the Fourier basis is orthonormal, the following
holds (recalling the Fourier transform of the § function):

* (K —k /
(oro) = [ drei(@lpp(e) = [ dee® D" —omi(k—k)  (144)
(B 2 = [ dkph(e)pn(a) = 278w o)
We then apply a Fourier transform to both members of (IZ23), by multiplying

g/
~ik'% and integrating over z:

/]I{W(x,t)eik,xdx:/ﬂ{(;i/ﬂ{dxei(kk/)mck(t)

If we now apply the ON relation (IZ4) we can solve the integral in the right
side:

by e

W(a,t)e ™ de = [ kot = K)e(t) = oyt
JoW e da = [ kol —k)ep(t) = et
And substituting & — k we arrive at an expression for ¢ (t):
en(t) = /IR de e *TW (2, 1) (1.45)

Starting from (IZ41) we can write a corresponding differential equation for the
coefficients ¢ (t) in the Fourier basis, and then solve it.

Braket notation. Let the solution be |W(t)), so that (z|W(t)) = W(x,t).
Then in (IZ3) we just did a change of basis (by using Dirac completeness):

(W () =1|W(t)) = /k k) (RIW (2))
ci(t)
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) and so:

where |k) are elements of the Fourier basis ((z|k) = e

() = (RIW ) = [ (kla) W (®) = [ dee ™ W(z,)

So the initial differential equation (I4T) is expressed in the position basis, while
the following equation involving ¢ (t) is expressed in the Fourier basis.

So, we start by differentiating (IZ3) with respect to ¢:
ik i e ik "
é(t) :/ dr e "W (x,t) = D/ e "W (z,t) da =
R (a) —00
/ KT | OO0 > —ikx /
(:)D t)e ’_OO—D/_OO&B(e Wiz, t)de =

= D (e M) Wl + D [ 92 Wa,t) do =
(c) —— o0 R ~———

_ikefikz _k2efik$
2 [T ke 2
= —Dk /_OO dze ™ W(x,t) = —Dk" ¢ (t)
Ck‘(rt)

where in (a) we substituted (IZ1), and in (b) and (c) we performed two inte-
grations by parts. Note that the W(x,t) and W (z,t) terms vanish because of
the boundary conditions (IZ2).

Summarizing:

&(t) = /IR dz e *TW (2, 1) = —Dk%ei(t)

This is a first-order ordinary differential equation, which can be solved by sep-
aration of variables:

d der(t
L n(t) = —Di2ep(t) ;s/ ) _ /—Dk2 dt = lne(t) = — Dk + C
dt Ck(t)
And rearranging;:
2
cp(t) = Ae”PFT (1.46)

To find the integration constant A we impose the initial conditions, i.e. that
¢ (t) be equal to a known ¢ (ty) at time t:

cx(to) L A PRt o 4 = ck(to)eDthO (1.47)
And substituting (IZ47) back in (I48) we arrive at the general integral:
ex(t) = ey(to)e PF 10 (1.48)
We can now go back to W (x,t) by plugging (I4R8) into (I43):

dk dk 2
W t) = [ 5 e™et) = [ o™ P (1) =
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dk ik — DK (t—to) / ik
_ - d y”/ t
( = ) 271' ye (ya O)

:/]RdyW(y,to)/leexp (—Dk2(t—t0)+ik(x—y)) (1.49)

Recall that:

/ toodk ak? vk 1 ib”
—€ = ex —_—
—c0 2T VAarTal P 4a

and so with ia = D(t —ty) and b = —(z — y) we arrive at:
dk 2 . 1 (x—y)°
P exp(=DEA(t — tg) + ik(z — ) = ————— _ETY
| 5 exp(=DR(t—to) +ik(x —y)) i o ( Dh—t)

Substituting back in (CZ29):

Wz, t) = (1.50)

(z —y)
\/47rDt—t0 / dy Wy fo) exp (_4D(t—to))

Note that with ty = 0 and W (y,tg) = d(y) we retrieve the solution (I=38) that
we already found.

1.5.1 Propagators

Suppose we know with certainty that the particle is in y = x( at time t = ¢,
that is:

W(y,ty) = d(y — 7o)

Then, substituting in (IZ50) leads to:

Wz, t t)—; M 1.51)
z, t|zg, tg) = DU 1) exp “AD{—ty) (1.

where with W (z,t|zg,ty) we denote the probability that the particle will be
around position x at time ¢, given it was certainly in xg at time ty. W (z, t|xg, tg)
is also called propagator, as it “propagates” the particle from (zg, o) to (z,t)
as a sort of continuous transition probability. This is much more evident if we
rewrite (I250) as follows (with y — x for simplicity):

W(x,t) = /]R dwg W (x, t|zg, to)W (20, to) (1.52)

Let’s explorer some properties of (IZ52).

1. ESCK property. Let’s propagate a particle from a starting point  ESCK property
(2, ty) to two different end points (z1,t;) and (xq,ts):

W(xy,t) = /]R dag Wz, ty]2g, to) W (20, to) (1.53)

26



Wz, ta) = /]Rdxo W (z2, ta|zo, to)W (20, to) (1.54)
We can also propagate to (z9,ty) starting from (zq,%;):

W (g, ta) = /]Rdl"l W (xa, ta|wy, t1)W (21, 11) (1.55)
Now, if we substitute (IZ33) in (IC53) we get:

W(zg,ty) = //]RQ dxy dwg W(xg, ta|ay, t1)W (21, t1 |70, 1) W (20, t0)

By comparing this expression with (I54), we find that:

W (xq, ta|wg, o) = /]R day W (g, to|ry, t1)W (21, t1|0, o)

That is, the propagator between two points A and B can be obtained by
multiplying the propagators between A — C' and C' — B and summing
over all possible choices of C'. This property is the Einstein-Smoluchowski-
Kolmogorov-Chapman relation (ESCK).

. Correlator. Consider two instants ¢; # ty, and suppose we want to
compute (x(ty)x(t1)), supposing that the particle started in x = 0 at
t = 0. Applying the definition of an expected value:

(x(ta)x(ty)) = //IRQ dxq dag P(2g, ty; 21, 1]0, 0) o2y

where IP(zo,t9; 21,t1|0,0) is the joint pdf of a particle being around x4
at t; and around z9 at ty, given the initial position in x = 0 at t = 0.
Recall from probability theory that:

P($2)t2;xlatl;0a0) = P($27t2;$1at1|0a0)ﬂj(070)
H)($27t2;x1at1;0a0)
= P ty;x1,11]0,0) = =
(x27 2,21, 1| ) ) 1[3(070)
_ Wiz, tolay, t)W (21, 4410, 0)WH6O]

WAO;0)
= W(xq, ta|zy,t1)W(x1,14]0,0)

Recalling the result in (IZ51) we can now compute:

(352—501)2 m%
EXP\ 1D, -t ) P\ T 1D

ArD(ty —t;)  VATDH

(@(ta)a(tr)) = [[ o dordeyaray

By changing variables (21 = y1, 29 — 1 = yo) We arrive at:

1 1

= iD=t VD e W e+ )

ol B
AD(ty—t,) 4Dt
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! ! /dy erXp __9N .
VAT D(ty — 1) VAT DE Jr -7 4Dt

2
. / dyy exp S R
R 4D(t2 — tl)

1 1
S D VT (2Dt /4rDEy) (\/FaDlty=1,)) = 2Dt

(0)

—
S
N

In (a) we note that by expanding y; (y; + y2), the term with y;ys is an odd
function integrated over a symmetric domain, that results in 0. So, only
the term with y% remains, allowing the integral’s factorization. Then,
in (b), we compute the Gaussian integrals, supposing t; < ty (so that
ty —t; > 0) and recalling:

+oo 1 2 2T
exp | ——az” | dx =1/ —
—00 2 a
+oo 2 1 2 . d +oo 1 2 . 27T1
riexp | —=ax” | = —2— exp | —=azx” | dox =1/ ——
—o0 2 da J- 2 aa

The case when t; > ty leads to a similar result, with ¢; <> ¢5. Thus, in
general:

(z(t1)z(tz)) = 2D min(ty, t5)

By using the propagator we can compute the probability of passing through a

set of points x; at instants ¢;: Probability of a
discrete path

I[)(xia tu'L - 07 cee ,TZ) = ]P(xnatna Tpn-1, tn—l; cee I, tl7 m()71"-0) -
n
= [ Wi, tilwi—1, tim1)W (20, to)
=1

This is the joint probability for a discrete trajectory, meaning that we care only
about what happens at certain discrete times.

This formula is useful to compute the average value of a generic function f of
the trajectory points:

x(t,),x(t,—1), .., x = . nd:c,-Wxi,i:ci_,i_ Ty Tyl -+, &
()t 1), oato) = [ (11:10 (o i, 1>f( 1o 0)

The need to extend this formula to an infinite number of intermediate points
- that is for a path in the continuum will lead to the notion of path integral,
that will be explored in detail in the next chapter.
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CHAPTER 2

The Wiener Path Integral

2.1 Average over paths

Consider an unconstrained Brownian particle, moving on the real line, starting
in zy at ty. By solving the diffusion equation we found that the probability of
finding the particle in [z, z + dz| at time ¢ > ¢ is given by the propagator:

P{a(t) € [, + dal z(ty) = 3} = W(x, tzg, to) dz =
1 _
= ——————exp _lr—w)” dx
VATD(t — tg) 4D(t —to)
(2.1)
By integrating (20) we can then find the probability of finding the particle
inside an interval [A, B] at time ¢:

B
]P{:c(t)E[A,B]]a:(tO):xo}:A de Wz, tlzg to) >t

We are now interested in computing the expected value (f) of functionals f
of the trajectory, i.e. of quantities depending on several (or all) points of the
trajectory x(7) of a Brownian particle.

e The simplest example is the correlation function, which is defined as
the product of the particle’s position at two different times ¢; < t9:

fz(t),z(t2)}) = z(t))x(ty) 4 <ty

e A more general (and difficult) case is given by a function of the entire
trajectory, such as:

f({x(T)i0<T§t})=g(/0tx(7')a(7)dr) a,g: R =R

In other words, we want to compute the average of a function f over an ensemble
of random paths. Every point of the path that is needed to compute f is a
dimension of the integral for the average. So, if we need the entire path, we
will need infinite points, leading to an integral over infinite dimensions - the
path integral. We will now formalize it one step at a time.
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2.1.1 Functions of a discrete number of points

Let’s start from the simplest case, and consider the correlation function:

f{z(t),z(t2)}) = z(t))z(ty) 6 <ty

To compute (f) we will need the joint probability distribution g(x1,xs) that
gives the probability of z(¢1) being “close to” z1 and x(ty) “close to” xq for
the same trajectory. Let us denote the three events of interest:

A Particle starts in xq at t
B: Particle is close to z1 at t; (z(t;) € [z1, 21 + dzq])
C': Particle is close to x9 at ty (x(ty) € [x9, x9 + dxs))

We are interested in the joint probability IP(C, B|A) (the order is defined by
ty > t; > ty). From probability theory:

P(C, B|A) = P(C|B, A)P(B|A)

We already know how to compute probabilities like IP(B|A), but not like
P(C|B, A). Fortunately, that is not needed.

Recall, in fact, that Brownian motion is a Markovian process, meaning that
the future depends only on the present state, i.e. the particle has no memory.
So, subsequent displacements are independent: the probability of the
particle going from z; to x9 is the same whether it has started at xq or at any
other point (. In other words, if we take the present state as the particle being
in x; at t1, the future (position at ¢y > t1) depends only on that, and not on
the past (position at ¢y). So:

P(C|B,A) =P(C|B)
leading to:
P(C, B|A) =P(C|B)P(B|A)
Inserting the propagators (221):
dlP; 4, (21, Talz, tg) = W(wg, to|zy, t1)W (21, t1 |20, 10) dTq dg

This is the joint probability we need to compute (f). Of course, nothing stops
us from considering N “jumps” instead of only 2:

dPy, ¢ (T1,. . 2n]20,t0) = W, ty|Tn_1,th—1) - W(x1, 81|70, t0) doq dag . . . dz), =
"o —ai1)” e d

_ _ St S — 2.2

eXp( X an ) e @2

Then, the average of a generic function f(x(ty),...,z(t,)) of the positions of
the particle at times t| <ty < --- < t, is defined as:

(f(z(ty), .., 2(t))w :/

R™ f(xb s 7'Tn> d]Ptl,...,tn (Ih s ,(L’n|l’07t0>
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2.1.2 Functionals of the whole trajectory

The quantity in (222) can be interpreted as the infinitesimal volume element
spanned by all the trajectories passing through a set of tiny gates, as represented
in figure 2.

The underlying idea is that probabilities satisfy the axioms of measures, that
is functions that assign a measure, i.e. a generalization of “size”, to all sets
included in a specific collection.

T A

[N, xn +daen]|[o222220 00

Zo
[z1, 21 + daq]

[z2, xo + do |FSSZZZZZ2] P | =

to t1 to In t
Figure (2.1) — All trajectories that pass through the set of gates [x;, z; + dx;] at times t;
(such as the x(t) here represented) contribute to the volume dP; _ ; (21,...,7y)

We now try to formalize this idea in order to extend the results of the previous
section to the case of functions depending on a infinite number of trajectory
points.

1. Space definition. Let 7' C R (index set), denote with R” the set of
all functions (stochastic processes) k: 7' — IR. The idea is that an
element of R” is a collection of random variables indexed by T'.

In our case T is a collection of time instants (e.g. 7" = [0, 400)) and a
generic element of R” is made of all the traversed points of a trajectory
at times T':

{z(t): teT} e RT

2. Probability measure on finite points. The expression in (222), as ob-
served, allows us to measure the volumes spanned by trajectories travers-
ing a set of gates. Let’s formalize this idea. Consider a finite set of times
T = {t;}i=1. n withn e N,t; e Rand t; <ty <...t,, each associated
to a gate H; = [a;,b;], with a;,b; € R and a; < b;. All the trajectories
R” traversing each H; at a time ¢; € T span a cylindrical set A of the
form:

A={z(t): z(t;) € Hy,...,z(t,) € H,} c R"
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Using (22) and integrating over the gates we can define the measure of
A-like sets as:

Piv(A) = [ APy, (@1l to)lg (21) .. Ly ()

where Iz (z;) are characteristic functions of the gates:

1 € H,
Iy (v) = ! '

K2

0 otherwise

In our case H; are just intervals, and so:

Pu(A) =P, _, ( /Hldm/ day - - / dx( m)

(2.3)
(25 — 24— )2
( )

3. Generalization on infinite points. Note that (233) holds for any n.
So, using A-like sets, we can construct a a—algebram F of RT. Then, by
applying Kolmogorov extension theorem we can extend the measure
Py, we just found to the entire F.

4. Probability space. We now have a set of all possible outcomes RT (in
our case, all the possible trajectories that can be produced by a Brownian
motion). We also have the collection of all events F, that is subsets of R
for which is meaningful to assign a probability measure Py : F — [0, 1].
The triad (IRT, F, Py) forms a probability space, that gives a rigorous
meaning to the concept of “computing the probability of a trajectory”.

The measure so obtained is called Wiener measure, and denoted as the

A) E/Adwx(T)

Then we can compute expected values. For example, if f({z(7): 7€ T}) is a
function depending on the points traversed at times in a set 7', then:

following;:

(w = [+ Fa@)dwalr) T =[0,00)

Note that the Weiner measure ezxists and it’s well defined (Kolmogorov’s theo-
rem), but we know it explicitly only in specific finite cases. So, to compute the
expected value of functionals F({z(t)}) over continuous trajectories we first
discretize the trajectory, and then take a continuum limat.

'nA o-algebra on a set X is a collection X of subsets of X that includes X itself, is closed
under complement, and is closed under countable unions
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1. Suppose we have a functional F({z(7): 0 < 7 < t}), and we want to
compute (F').

2. We discretize the problem by arbitrarily subdividing the time interval
[0,t] in n parts 0 =ty < t; < t9 < -+ < t, = t. Then we consider
an approximated functional Fy({z(tg),...,x(t,)}) (for example approx-
imating the path x(7) with a piecewise linear function, depending only
on x(tg), ..., x(t,)), so that:

P jim "Fy
where N — oo means that max At; — 0, with At; = ¢; —¢,_1. This limit
needs to be properly defined (by using the Weiner measure to define a
norm in a space of integrable functionals, etc.), but we will not do that
here.

3. Then the Weiner path integral is defined as:
(Fy = /T dy 2(MVF({z(r): 0 <7 <)) = lim "(Fy)y =

R N—oo
— ¢ Jim 7 /]R AP,y (1, Tylwo, to) Fn(a(to), - - -, 2(t)

Geometrically, we are evaluating F’ for every possible Brownian path x(7),
and then averaging all these results, each weighted by the probability of
the corresponding path.

Example 2 (Correlation function and ESCK property):}

As expected, the more general definition of the Weiner measure - involving
the continuum limit N — oo - reduces to (222) when evaluated for a function
depending only on a finite set of particle’s positions.

For example, consider the expected value of the correlation function (assume
the particle starting in 0 at time 0 for simplicity):

@t)e) = [, dwra o) = T=[01, 6 <t <t
= lim ” /]RN AP,y (21, -, 2x]0,0)x(ty)a(t,) =

where we chose the discretization so that t, = ¢ and ¢, = t5. Then, by
expanding the measure and applying the ESCK property we get (omitting
the limit):

= /]RN dxl .. dle'N W(xN’tN’xN—latN—l) . -W($1>t1|0,0)xkxn —
5) /]R2 day da, Wiz, ty|eg, ) W (2, t|0, 0)zgz),

where in (a) we used the ESCK property to compute all the integrals on dz;
with ¢ # n, k, which evaluate all to 1.

We note that the same result can be obtained by direct application of (222):

(el )alth) = [ oty W (s, tolat, 401V (ah, 1410, 0) %
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2.1.3 Change of random variables

In practice, to compute path integrals it will be useful to perform change of
random variables. The idea is that we know the pdf for an increment Ax;, and
so we can compute - when needed - the pdf of functions of Ax;.

So, consider a random variable X ~ ¢(z), with ¢(x) being a generic distribution
(e.g. q(z) = pe ™). Now consider a function y(z), e.g. y(z) = . Y is then
a new random variable, with a certain distribution p(y). We now want to
compute p(y) starting from ¢(z) and y(z).

Suppose that y(x) is invertible. Then, if we extract a value from X, it will
be inside [z, + dx] with a probability ¢(x)dxz. Knowing X, we can use the
relation y(z) to uniquely determine Y, that will be in [y, y + dy| with the same
probability. So, the following holds:

q(x) dz = p(y) dy (2.4)
We can compute dy by nudging y(z), and expanding in Taylor series:

y(z +dz) = y + dy + O(dy®) = y(z) + dzy/(z) +O(dz?)
d
Y

and so dy = dzy/(x). Substituting in (24) we get:

dx

w29

q(z)dz = p(y) dy = p(y(z))y'(z) dz = p(y) = q(z(y))

Consider now a more general change of variables y = y(x) (not necessarily
invertible), with  ~ g(x). We start from the expected value of a function f in
terms of ¢(x):

<f(y)> = /]Rdxf(y<x>>Q<x> =
:/Rdxf(y(x))q(x)/Rdzé(z—y(sv)zz

[\

=1

@/Rdzf(z)\/]Rdxq(x)cS(z—y(x)) (2.6)

J/

<6(Z—y($))>q($)

where in (a) we used the fact that 6(z — y(z)) = 1 only when z = y(x), and
it’s 0 otherwise, and so:

Fly@)) = [ dz f(2)3(= = y(a))

Of course we can rewrite (f) directly in terms of p(y):

(Fw) = [ dy F@pw) (27)

Comparing (28) with (227) and renaming y — z leads to:
p(2) = [ dzg(@)s(z —y(@)) = (6= = y(@))geo (2.8
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which, in general, is not the same as the previously obtained result:

p(2) # gla(z) 20

To retrieve this special case we must assume y(z) to be invertible, with inverse
2(y). This means that sgny’(z) = A, with A € R\ {0} constant.

We want now to compute §(z — y(x)) in this case. Recall that dog, if g is a
continuously differentiable function with g(zg) = 0 and ¢'(z) # 0Vz is:

d(z — xq)
19" (o)

d(g(x)) =

So, if we let g(z) = z — y(x), the only zero is at © = z(2), as then y(z(z)) = z.

So:

3(z —y(z)) = oz —z(2))

_— [ ~—
~—

Substituting back in (Z3):

= d(z —x(2)) _ . Sz —x(2) . _
P = (i o = f @)= et = @l )
dz(y)

which is the same rule found in (233).

2.2 Examples of path integrals

We now see some examples of explicit calculation of Wiener path integrals, that
will be useful for the upcoming applications.

2.2.1 Transition probabilities

Thanks to the Wiener measure we have a way to assign probabilities to paths
z(7). We can recover from this the transition probabilities we started from, by
considering the functional that evaluates a path at an instant t: z(7) — z(t) =
x;. Then, by applying (28) we can compute the distribution followed by z;:

pla) = Wz, 80,0) = (8(z = o(m))w = [, dwa(r) (e, —a(r) (210

(The starting condition z(0) = 0 is contained in the definition of the measure

So we can now write:

W, 10,0) = [ dwadla(t) — o) =

“ » Nﬁl dLUZ ]\il (xz - xi—1)2 6( )
= 1m - - - —
Nose Jrve MDAz TP\ T & T apay N
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where t,, =t, z(t,) = Tn11-

We already computed this result. In fact, recall that:

W (zy,t]0,0) =

If we set z; = 0 (for simplicity), we get:

1
VAar Dt

As an exercise to get some familiarity with Wiener integrals, we will now re-
derive this result, by evaluating the Weiner path integral in (210), with x; = 0:

W(0,t0,0) =

(2.11)

W(0,t0,0) = (6(0 — z(7)))w = /]RT dwaz(r)d(z(1)) = (2.12)

First, it is convenient to establish some additional notation.

Let 7 = [0,00). We denote with C{0,0;#'} the subset of trajectories in RY  Notation for path
starting from 2 = 0 at ¢ = 0, and lasting a time span ¢'. Then, C{0,0;2’,#'} is  ensembles

the subset of C{0,0;¢'} when even the end-point is fixed to be 2(t') = 2. The

following normalization property holds:

< > c{0,0;t} -1'(7')
We can then rewrite (212) as:

I = dyx(T

V7 Jero00 Y (7)
Geometrically, W(0,¢|0,0) = I; is the probability that a Brownian particle
starting at the origin returns in it after a finite amount of time t.

The standard way to compute a Wiener integral is to discretize it, and then take  Discretization
a continuum limit. So, consider for simplicity a uniform time discretization
{ti}i=1,.. n+1, with instants e-apart from each other, so that:

t

— ,=1,...,N+1
N+1 VZ ) ) +

ti—tiflEEZ

Note that the end-points are xg = x5 = 0.

We can rewrite (212) as the continuum limit of its discretization: 1. Discretized path
integral
— T (V)
I = 251(1) I (2.13)
N—o0
1 +00 +o00 400 1 N

I(N)E—/ d / d / d - =)’
1 (\/M)N—’_l oo T oo ) oo TN €Xp 4De i;()(xl+l ‘/L‘Z)

(2.14)

where we already computed the integral over dx . involving the d, by just
setting x4 = 0.
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Let’s focus on the summation in the exponential: 2. Matrix form

N

N (@1 — @) =27 + 3¢ — 22071 + 25+ 71 — 20129+ + TygT + TN — 2TnENTT =
i=0

=2(a] + - +a) — 2aimy + 22wy + - Fay_gay) =

N ) N-1
i=1 i=1

This is a quadratic form, i.e. a polynomial with all terms of order 2. So, it can
be written in matriz form:

N
= Z xkAklxl = CL‘TANCL'
k=1

for an appropriate choice of entries A;; of the N x N matrix Ay:

2 -1 0 0
-1 2 -1 .
Ak =2 A = =0k I+ 14+0) =Av=1| o . . . 0
-1 2 -1
0 0o -1 2
Substituting back in (214):
7(N) 1 /*00 q /+oo q a’ Aya
e — T - €T ex —
1 (\/47TD€)N+1 —00 ! —00 NP 4De
Recall the multivariate Gaussian integral: 3. Multivariate
Gaussian
/*OO P S5 (Vo™
xy---dryexp | — STy | =
. 1 N €Xp - ijity Vdet B
with B = Ay /(4De), leading to:
I(N) _ 1 v _ 1 \/47TD€N _
L@ (VD) [ det(Ay) [1h:]Y (VARDeNT Vet Ay
1 1
= 2.15
\/47TD€ \/det AN ( )

where in (a) we used the property of the determinant det(cA) = ¢" det(A) Ve €

R.

Now, all that’s left is to compute the determinant of Ap. Fortunately, as Ay 4. Determinant of
is a tri-diagonal matrix, there is a recurrence relation in terms of the leading 2 tfi-fifagOHal
principal minors of A, which turns out to be multiples of the determinants of a7

AN,1 and AN72-
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Explicitly, consider Ay:

2 -1 0 0
-1 2 -1
-1 2 -1
0 0o -1 2 NxN

and start computing the determinant following the last column. The only non-
zero contributions are:

2 -1 0 0
-1 2 -1 :
det Ay = E_l)(N_lHN(_lZ 0o . . .0 + (=1 (2) det Ay_y =
+1 -1 2 -1
0 0 0 -1 (N—1)x(N-1)
= (—1)2(]\]71)(—1) det Ay_9+2det Ay_1 = 2det Ay_; —det Ay_»o

(2.16)

where the terms in blue are just the alternating signs from the determinant
expansion, and the other colours identify the matrix entries that are being
used.

Then, it is just a matter of computing the first two terms of the succession
(|JAn| = det Ay for brevity):

2 -1
-1 2

A1 =2 |Ay| = =4-1=3

And now we can use (ZI8) to iteratively compute all |Ay|, e.g. |A3] =23 —
2 = 4. To find |Ay| for a generic N, we need to make an hypothesis, and then
verify that it is compatible with (218). In this case, note that |[Ay| = N +1
(%) for all the examples we explicitly computed. Then, by induction:

|AN+1|(EE)2-|AN|—|AN_1|(:)2-(N+1)—(N—1+1):2N+2—N:(N+1)+1

which is indeed compatible with (x). So, substituting back in (2Z15) we get:
(N) 1 1 1

I = =
! VarDe/N + 1 (a) /A7 Dt

where in (a) we used € = t/(N +1) = N+ 1 = t/e from the discretization.
Note that this result is constant with respect to € or N (recall that ¢ is fixed
beforehand) and so taking the continuum limit leads immediately to [; (Z13):

1 1
I; = lim =
N30 VarDt  \ArDt

which is coherent with the result we previously computed (211).
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2.2.2 Integral functional
(Lesson 6 of

Consider a Brownian trajectory z(7) (from now on, we will assume that all  28/10/19)
trajectories start in x = 0 at ¢ = 0), and a functional that weights every  Compiled: October

traversed point x(7) with a function a: R — R, and then applies another 13, 2020
function F': R — IR to the total integral:
t
Fla(r)] = F ( | am)z(r) d7>
For simplicity, we set D = 1/4, so that:
n ZL’ — T 1 n
dlPy, ¢ (w1,...,2,]0,0) = exP( Z = > H
=1 1 Z:1
This is equivalent to a time rescaling t — 7 = 4Dt.
We want now to compute (F):
I3 = (Flx(T = / dyx(r) Flz(T
2= (Fle()o = [, dwa(n) Fla(r)
Note: the next computations will follow the book. Prof. Maritan’s method
for evaluating I3 is quicker, but more advanced, and will be presented at the
end.
Then we start by discretizing, by choosing a time grid 0 = t; < t; < -+ <
tN =t
I3 = lim I ?()N) 1. Discretized path
N—oo integral

N _
(V) _ / oo day / e dry g (S Z xl v a; = alt;)
3 —00 \/7TAt1 —00 \/WAtN T @TiBb | Xp i=1 Z xlzx<tl>

i=1

This integral can be evaluated by transforming it to a gaussian integral that
we already know. So we start by changing variables:

) 2. Change of
Ti—=Tj—1 = Y; i=1,...,N (2-17) variables

Note that:

i

So, when we compute the transformation of the volume element:

O{xi}

det
Ny, }

= det

—_
= o O O

NxN
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as the determinant of a lower triangular matrix is equal to the product of the
diagonal entries.

All that’s left is to transform the argument of F. Let’s start by writing the
first terms of the sum and apply the change of variables:

Y 4wty = a1z Aty + agraAty + - - =

a1 (y1) Dty + as(yp + yo) Aty + -+ - =

N
Y1 (Z ajAtj) + Yo (Za At ) + - FyyanAty =
j=1

7j=2

N N
= Z"J (Z %’%‘) = Z Ay (2.18)

Substituting everything back:

](N):/ 1 / F A, N Y A = AL
3 —o0 1/ 7TAt1 —00 \/WAtN zzzl ii | XP z:zl Atz ! jZ:iaJ J
We can simplify this integral a bit more by rescaling the y;:
dz;
z; = Ay dy, = —*
7 171 7 AZ

As each y; is transformed independently, the jacobian is diagonal.

N 2

N)_/—i—oo le /+oo dZN F(Z < 2
= — ———F(zn 4+ t+zay)exp [ =D —
oo ANt T \JmAR Aty i—1 Ai At

This is the expected value of a function of the sum of N normally distributed
random variables {z;}. The idea is now to isolate one of them from the argu-
ment of F', integrate over it, and reiterate. This is done by changing variables
yet again:

3. Second change

n=2z1+ 2 N z1=n—¢& o det '88{{21, ?}} _ 1 =1 1 of variables
f = Z9 29 = g UE 0o 1
leading to:

N) /+oo dn /+ /—|—oo Z / dZN
- \/WA%Atl - \/WAQAt \/7TA2At3 \/ﬂ'A%\]AtN
m-¢* & X 7
ATt ANty = AL

Fn+z3+ -+ 2n)exp (-

Note how £ does not enter in the F' argument, and so we can integrate over it:

+o00 1 2
I :/ de _ __exp (_(772 ° 25 ) _
- \/WAlAtl \/WAQAtl AlAtl AQAtZ
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+oo £2(AlAt, + A3ALy) — E(2nA3AtLy) — [ nfA3ALy)
_/ exp — 3.9

Recall the gaussian integral formula:

+00 1)2 4. Gaussian
/ eXp<— a x2 + bx+e ) dx = \/?exp ( + c) (2_19) integral
a 4a

—00

which evaluates to:

1 772
I = ex —
(A2t + AZAt) ATty + ASAt,

and substituting back in ]éN):

_/+°° dn /+°0 dzs /+°O dzy
—o0 [ AIAL + mARAL T \[rA3At, T \[nAkAty

2 N 2
n Z5
Fn+z23+---+zy)exp | — -
b+ ) p( ATA + A5Aty i—ZP)A%Ati>

We can now reiterate this procedure until only one integration is left:

+00 2
/ dz 2) exp ( S — )
N> AQAt SN A7A

We are now finally ready to take the continuum limit At; — 0, N — oco. Note
that: 5. Continuum limit

t
AltlrgoA —/T a(s)ds = A(r) (2.20)

as the discrete sum goes from t; = 7 to t5y = t. Then:

R = lim ZAzAt _/td7—</:dsa(s))2

At—0

and so:

2
_ (N)_/“’O F(z) K2
13—]\}1_13(1”]3 =/ dz\/ﬁexp 7

And to recover D we can just substitute R — 4DR.

Alternative method

We consider now a different (quicker) technique to compute /3. We start again
from:

Iy = (Fla(r)])y = /C oy TV E ( /O a(P)a(r) dT)
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It is convenient to apply the change of variables we did in (Z7I8). We can do
before discretizing, by defining A(7) as in (2220): 1. Auxiliary
function A(T)

t
A(r) = / als) ds (2.21)
T
Note that A(7) = —a(7), and so the argument of F' becomes:

/Ot a(t)x(r)dr = — /Ot O A(T)x(T)dr

Integrating by parts, noting that A(¢) = 0 and x(0) = 0 leads to:

= - 7-7'0_’_/

And now we discretize the path over the instants 0 = t5 < t; < -+ < ty, so
that:

t x(t) x@i—l) _ 2. Path integral
/0 A( ) ( )dT - AltHEO Z A At; Ati o discretization
= lim Z A;( 1) = hm Z A;Ax; z; = 2(l;)
N—o0 ! i A = A(ty)

Substituting back (here D = 1/4 for simplicity):

— (N)
fa = i,

el ) (£50) ()

The idea is now to apply a change of random variable, rewriting the average
(F[x(7)])y (according to the distribution of paths) as the average (F(z))
where p(z) is the distribution followed by the argument of F':

p(z)

N
=1

So, we begin by inserting the appropriate ¢: 3. Change of

random variables

N N 2 N N
(N) _ dz; - (Azy) A\ [ B A,
I3 = /]RN (Zl:[ WATfZ') exp ( Zz:: AL, F Z:zjl A;Ax; ./]R dzd | = 7; A;Azx;

1 1

g

=1

Exchanging the integrals leads to:

N
F <; AiAflfi>>w = (F(2)p(r) =
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We can evaluate [. ?EN) by transforming it to a gaussian integral. First, we remove
the ¢ with a Fourier transform:

o 4. Fourier
27T5($) = /]R e da transform
which, in this case, leads to:
N dov N
4] (z -> AiAxi) = | —exp <ia (z -> AiAxZ))
— R 27 —
i=1 =1
Substituting back:
N N
dx; Ax
dz F(z)e'* / ex —ia Y AAx;
/]R / H /At ) P ; At Z Z
We see that the last term is similar to a multivariate gaussian with a imaginary
term, that we know how to integrate. We just need to remove the differences
in the exponential with a change of variables (as in (2172)):
;O\ 5. Change of
1 =420 =21 "2 =1 variables

Yo = Axg = 29 — 11

yn =Dy =Ny —2N
The volume element will be transformed by the determinant of the Jacobian:

-1

1 0
) -1
Oy ...an) _ [, 0m---yn)] .
J = det det — 22N =0 -1 1 0 - =1
(Y1 ?JN) ANzy...7N)
0o 0 O 1

where we used the fact that det A™' = (det A) ™', and that the determinant of
a lower triangular matrix is just the product of the diagonal entries.
The integral then becomes:

N

/]R%/dZF m/ (H dyl) ( Z—za%Aiyi>:
/ /sz iz [H/RM (_y_mAl%)]

The terms in the product are all independent gaussian integrals. Recall that:

6. Gaussian

2
‘/Ide e—iak2—ibk — / ™ eXp (24[) ) (222) integral
Z a
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So, with ta = 1/At; and b = aA; we get:

/ dy; y2 oA _ex _agA?Ati
R \/_ « ’Ly’L =¢ p 4

and substituting back in the integral leads to:

- 242

2
=[5 /sz mzexp(—ZAzAt>
s

Applying the continuum limit (N — oo, At; — 0), the exponential argument
becomes the limit of a Riemann sum, i.e. a integral:

7. Continuum limit

ZA At — AQ()dr - /dr(/dsa >z R(1)

N—oco JO

Substituting back:

I3=(F (/Ot a(7)x(7)>> = A}gnoo 13 / dz F(z / o CXP <—OjR( )+zaz>

All that’s left is to evaluate the last gaussian integral thanks to (2222) with
ia = R(t)/4 and b = —z, leading to:

1 4m 2 1 2
13:/]Rsz(z)% %exp <_R(t)> = \/m/IRsz(z)eXp <_R(t)>

So, we showed that:

(F (/OtCL(T)I(T) dT>>w =
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{Example 3 (Generating function):}

Let F(z) = e, Inserting in (2223) results in:

t o 2
(exp <h/0 a(7)z(T) dT))w = \/71T_R /]Rdz exp (_R + hz) = exp <h4R) = G(h)
(2.24)

where in (a) we used formula (219) with @ = 1/R and b = h.
Note that G(h) is the moment generating function (see (5) at pag.
[1R) of the integral:

I= /Ota(T)a:(T) dr

We can then retrieve the n-th moment of I by computing the n-th derivative
of G(h):
dn

G| ="

We can see this by differentiating the left side of (2224):
t T
a'(h) = ( /O a(r)z(r) dr exp (h /O az d7>>w

and then setting h = 0:

t
¢'(0) = ([ a(r)a(r) dr), = (D),
Then, differentiating the right side of (2224) we have immediately the result:
h W’R
_[ = ! h ’ = — E— ‘ —
D=6, = yren ("), =0
If we differentiate again we get the second moment:

2 2 2
G”(h) = Ijexp (T) };R2 exp <h4R> = G”(()) = ([2>w —

|

Consider now a generic odd moment:

((/Ot a(t)x(T) dT) 2k+1>w =0 vk € N

In fact, if we expand G(h), we get:

o= 58 1

Since all the powers are even, if we differentiate an odd number of times
and set h = 0 we are “selecting” an odd power - which just is not there -
and so the result will be 0.

On the other hand, an even moment leads to:

<</Ota(7)x(7) dT) 2k>w _ (g)k (22:2!!

(computations omitted).
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2.2.3 Potential-like functional
We consider now the following functional:
t

Flz(r)] = exp <— /0 dr P(T)x%))

As before, we wish to compute (F'),,. We start by discretizing the path over a
uniform? grid 0 =ty < ¢; <--- <ty =t so that At; =t; —t;_; = ¢ =t/N.

¢ 2 . (N) 1. Discretized path
142 Jepon o) = [, dr P ) = i 1 integral
4 —o0 4/TE —oco /TE P Rt € P, = P(t;)
(2.25)
The exponential argument is a quadratic form: 2. Rewrite the
9 9 1 9 9 9 exponential in
_E(P1$1+"'+PNxN)_E[%+$1 _M1 +r] + a5 —2xyw9 + -+ -+ matrix form

2 2
+...Q,’N,1+ZI}N—2ZEN,11}N] =

N 1 [ N-1 N
= —EZPZx?—f [2 Z x?+x?\;—22xi_1xi] =
i=1 €L =1 i=1
5 2 5 2 9 1 2 X
= — |21 €P1+E +- N EPN71+E + N 5PN+E —EZ%‘%‘A =
i=1

N
== > Aymz;
ij=1

where A;; are matrix elements of a matrix Ap:

1 1
Aij = 0ija; == (031 +0im) @i = Fe+ —(2 =0y

aq —e 1 0 0
—e ! as —e ! 0
Av=1 o 0
0 0 —e ! an_1 —e !
-1

0 0 0 —€ an
Note how we “split in half” the green term, making Ay a symmetric matrix.

. N
We can now rewrite [ i ) as:

N
N dz; \ —aTaya T
LE ):/]RN(H\/E>6 N ' = (r1,...,2N)

i=1
This is the integral of a multivariate gaussian, and evaluates to:
1 1
1N = _

N2(det AN)Y? (det(eAy))?

as for a N x N matrix we have det(eAy) = ¢V det Ay. This has the advantage  (Scaling the matrix
3 to remove
mThe same result can be proved without this assumption, but with a much more heavy  jonominators )

notation.
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of removing all denominators in Ap.

To compute this determinant we use a method suggested by Gelfand and Ya-

glom (1960). We start by denoting with D)

(V)

obtained by removing the first £ — 1 rows and columns from €A y:

the determinant of the matrix

ea, —1 0 0
-1 ey -1 O
(N) _
D=1 o 0
-1 anN_—1 —1
0 e 0 -1  eay
So that DgN) = det €Ay is the determinant we want to compute (because here
we remove 1 — 1 = 0 rows).
Expanding DIEN) from the first row we get:
-1 -1 0 0
0 €Af 42 —1
N
-1 anN_1 —1
0 0 0 -1 eay
N N 2 N N
j) “Lle(H)l (=1 )Dl(€+)2 = € <€Pk + E) Dl(ch)l - Dl(ch)Z =
N N
= (P + 2)D12+)1 - D/(<+)2

where in (a) we expanded the last determinant following the first column.
Rearranging:

(N) (N) (N)
pt) —op™ 4 p N

€

We introduce now the variable 7 = (k — 1)t/N, representing the fraction of
removed rows/columns in each determinant, rescaled to the final time ¢. Per-

(V)

forming a continuum limit N' — oo we can then map D;; N—) D(s). Then,
— 00

the relation (2228) becomes a differential equation:

dQD(T)
dr?

= P(r)D(7) (2.27)

In fact, note that the first term of (228) is a second derivative in the finite

difference approximation. This can be shown by Taylor expanding a generic
function f(x) to get the points immediately before and after:
1
fla+Az) = () + f'(x)Az + 51’"(93)(&70)2 +0((Ax)’)
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flo = A) = () ~ ' (2)Aa + 5 (@) (80)? + O((An)?)

Summing side by side, and denoting f(z) = f;, f(z — Az) = f;_1 and f(z +
Ar) = fiir

fivr+ fioy = 2f; + [ (B2)* + O((Ax)?)
Rearranging, shifting ¢ — ¢ 4+ 1 and ignoring the higher order terms leads to:

Jivo = 2fip1+ [i
(Az)?

1!
= fit1

Analogously, this can be seen by computing the second derivative as the deriva-
tive of the first derivative in terms of incremental ratios:

1" 1 (fle+Ax)— f(x) f(z)— f(z—Ax) _
F@) = Al;rgo Az ( Ax B Ax ) B
o LD~ 20(@) + o~ A
Az—0 (A;U)Q

Returning to the problem, we note that the determinant of the full matrix, in
the continuum limit, is given by:

(V)

det(eAy) = Dy’ —— D(0)
N—o00
(as 7= (k—1)t/N| =0). So, we just need to solve (Z27) and evaluate it

at 7 = 0.
To do this, we first need two boundary conditions, as (2227) is a second order
differential equation.

Noting that D](\],V) is just the last diagonal entry, we have:

DE\]]V)ZEGN:€2PN+1K—)1
[0.9]

e—0

As T = (k—1)t/N|,_, =t for N — oo, this means that:
D(t)=1

For the second boundary condition, we search a relation for the first derivative
at T =1:

dD(7) D -pY,
= lim ———=
dr lr=t N-ox €
D(N) can be computed directly:
N1 puted directly:
Py 162 +2 1
DE\]J\L)I _ | e 5 = Py_1Pye' + € (Py_1 +2Py) + 1
—1 PNE +1
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leading to:

dD(T) _ hm €2PN+1—PN_1PN€4—€2<PN_1+2PN)—1 :0
dr lr=t =0 €

Summarizing, we found that:
t
Iy = (exp (—/0 dr P(T).TQ(T))>w =

where D(7) is the solution of the differential equation:
d’D(7)

dr?
with the following boundary conditions:

1
D(0)

= P(7)D(7)

D(t) =1

D(t)y =40 —

T=t

Example 4 (P(7) = k?, free end—point):l

Let’s compute I, with the choice of P(r) = k. The differential equation
becomes:
d’D(7)
dr?

which is that of a harmonic repulsor. The solution is a linear combination

= k*D(r)

of exponentials:
D(r) = Ae*T 4 Be™FT (2.28)
Differentiating:
D(r) = k(A" — Be™7)

We can now impose the boundary conditions:

Dt)L£1= A+ Be ™ (a)

D(t) £ 0= KA — Be ™) (1)
leading to:

(@) + (b): 24eM = 1= A = ;e—kt

1
(a)— (b): 2Be M =1= B = iekt

So the solution is:

D(r) = ; 7 4 e M = cosh(k(t — 7)) (2:29)
from which:
; 1(N) 1 1
= lim = =
1T N /D(0)  y/cosh(kt)
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Fixed end-point

We consider now a small variation of I, where we integrate instead on paths
with a fixed end-point x(t) = x:

1, = (exp <— /O " P(r)a3(r) dr) 5z Z5(t)),, = /C — (— /0 ")) dT)

First, we rewrite the d in terms of a Fourier transform:

1. Fourier

+oo . t .
[le = / dﬁ P <exp <—/ P(T)ZE2 (7‘) dT) e—zam(t) >w transform to
—oco 2T 0 remove the
Then we discretize the path as before, with 0 = t) < t; < -+ < ty =1 end-point o

uniformly distributed (At; =t; —t,_1 = e =1t/N):
2. Discretized path

~ . (N
Iy = ]\;gnoo 1 i ) integral
. Cda o N daz, N N (2 — 2 q)?
TN / ao ;,,la(l'/ ) e N Pate S U gy
i Je 5" fox Z1;[1 — | exp 2:21 5 € Z; - Ty

where the red terms are the only differences from (2223). We can rewrite the
quadratic form with the matrix Ay as before:

3. Exponential

N
(N da dx; . . .
]zi ) _ 76%!%/ N H i exp(—mTANa: - Z(I:EN> argument in matrix
R 27 R™ \ ;2] Ve form
Also, we can express iaxy as a scalar product between & = (zq, . .. ,xN)T and

a certain vector b € RY with components h; given by:
ioxy =h'x h; = ;v (—ic)

So that we can now use the gaussian integral:

1 1 4. First N
/IRN Ve exp <—2:nTAw +b- m) = exp (2b : Alb) (27T)N/2(det A)*l/2 gaussian integrals

with A =2Ay and b = h:

r_ 1 N T T\
- W@N/w wep(-a’ Ay +h'e) =
1
=~ _exp hAlh 2N (2% det Ay) V2 =
(re)" :
TE

7}( (1 ) 1 > 1 ( 1 ) 1
ex 1o} A_ = ————— €X — A_ )
\/— det Ay p |~ (—ia)"(An )nN eNdetAN p 1 (An' )nN
I
0

where (AN') vy is the last diagonal element of the inverse matrix of Ay. Sub-
stituting back:

(N da 1
LE ) =1, ]R%exp (zax— Za (AN )NN)
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which is again a gaussian integral, and following formula (222) with a =
(Ax)yn/4 and b = —z leads to:

— 2 2
b A, (_ : > - L (_ g >
! 2 (AN)nw (An)ww (AN ) NN (AN ww

(2.30)

All that’s left is to compute (Ay')yy and take the continuum limit. Recall
from linear algebra that:
1
-1 _
A= Gl
where Cj; are the cofactors of A, i.e. the determinants of the matrices obtained
from A by removing the i-th row and j-th column. In our case:

C
AL _ _Unn
(AN NN det Ay

Before, we obtained det Ay by means of DISN), i.e. the determinants of the
(N) _
=

matrices obtained by removing the first £ — 1 rows and columns, so that D
N det Ap. This leads to:

N
€

(AN)vy = —77Cnw
p{™
For Cynx we have to compute the determinant of the (N — 1) x (N — 1) matrix

A&N‘”, obtained by removing the last row and column from Ap. Note that
A,&Nﬁl) # A(Nfl), as they differ for the last diagonal element which is:

_ 2 - L
(AN )y 1 vo1 = Pyoge+ - F (Ag\]r\iﬁj)vfﬁ = Pyoret - (2.31)

We proceed in a similar manner, defining ZA?,SN_I) to be the determinant of the

matrix obtained by removing the first £ — 1 rows and columns from eA,(kal)

(again, we multiply by € to remove denominators):

So D1 = VL det A&Nﬁl) = eNﬁlCNN leading to:

DEN_U

_ € 1 (nv—
(ANl)NN = DgN D= )

N-1

S
2
(@)

S

5. Last gaussian
integral

6. Gelfand-Yoglom
method
(bottom-top
variant)



For simplicity, it is convenient to define f)gN_l) = eD%N_l), so that:
5 (N-1)
_ D
(AN vy = ) (2.32)
Dy
Repeating the steps for the continuum limit, we get the same differential equa-
tion for D(T): Determinant as a
9 = 5 differential
aTD(T) = P(T)D(T) equation
However, due to (223T), the boundary conditions are now different:
DY = (Py_1 +2) = Py_1€® + 2 —0=D()
e—
2
~(N—1 Pn_9e” 42 —1
e 5 = e(Py_1Px_2€" +2(px_1 + Py_2)€" +3)
—1 PN_1€ —|— 2
~(N—1)  ~(N—1) ~
D - D dD
N-1 N2 _ 140 = (1)
€ e—0 dr lr=t
Then, substituting (2232) in (2230) we get:
(N)
R I D 1 1
LEN) =90 exp (—x —L ) Iy = =
_ ~(N—-1
(AN )nw Dg : \/EN det Ay \/D&N)
. 1 D(0
L= lim IV =~ exp (—gf D( >) (2.33)
N—oo WD(O) D(O)

Where D(7) and D(7) are solutions of the following differential equations with
the following boundary conditions:

_, N Dt)=0
D'(r) = P(r)D() s
dr = —1
\ T=t
p
" D(t) =1
D'(r) = P(r)D(r) o
=0
\ dr T=t

‘Example 5 (P(7) = k? with fixed end—point):}

Let P(1) = k%, with k € R constant. We already solved the equation for
D(7) with the right boundary conditions in (2229):

D(1) = cosh(k(t — 7))

For D(7) we start from the general integral (228) and impose the appropri-
ate boundary conditions:

D(t) = A" + Be ™ =0 (a)
| = kAN B = -1 ()



so that:

leading to the solution:
Air) = L (k=) _ —he-r)y — L _
D(r) = 2k(e e ) = k sinh(k(t — 7))

Finally, using the result we found in (2233):
2 t 2
(exp (—k’ /0 z°(r)drd(x — x(t))))w =

_ B 2 t 9 ) B
a ~/C{0,0;xt,t} eXp( k /0 x (T) dr dW'r(T) =

k 2
= - —k th(kt
ik <P (et coth(kt))

2.3 Properties of Brownian Paths

The Wiener measure allows us to compute the probabilities of paths produced
by the diffusion process, and also highlight some of their defining character-
istics. We now show that all Brownian paths with non-zero Wiener measure
(i.e. paths that “can happen”) are everywhere continuous, but nowhere
differentiable.

2.3.1 Continuity

Consider a particle starting in x = 0 at ¢ = 0, and traversing N points
{x;}i=1,. n such that all increments Az; = x; — z;_; are independent and
described by a gaussian pdf. The density function for such a trajectory {z;} is
the usual product of transition probabilities:

N N 2

dﬂ)tl,.-~,tN (®1,...,an) = (1_[1 W) exp (— ‘ 4D£tl> Al’iziﬁi_ﬂii_ll
1= 1

(2.34)

We now show that, taking the continuum limit max; At; — 0 leads to paths
{z(7)} that are almost surely continuous. In other words, for any interval
T C R, the subset N C R” of functions that are discontinuous has 0 Wiener
measure.

Mathematically, we want to show that, as At; — 0, the probability that Az; is
close to 0 approaches certainty:

lim P(|Az;| <e)=1 Ve>0
At;—0
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This is just the probability that, during time At;, the particle makes a jump of
size lower than e:

P(|Ax;| <€) =Pz, —e < x; < mj_q +elx(ti_q) = x;) =
/ i-tedzy (2 — wi21)°
—_ e _———— p—
v 1—c JArDAL P ADAL,

[T dAg, (Ax;)

@ J-c VArDAL 4DAt;
where in (a) we translated the variable of integration Azx; = x; — x;_1.
With another change of variables:

(Az)? Az; ~
1 V 1

_ AL
Pz <= [ i e ™ (—)

And taking the continuum limit leads to:
too dz 22
lim P(|A / ) =1
aim Pdzi <o) = | ¢47T—D6Xp( 4D)

2.3.2 Differentiability

we get:

With a very similar calculation (here omitted) we can also show that:

lim
At 10 \| At;

meaning that Brownian paths are almost surely everywhere non-differentiable.

>k:>:1 Vk >0

Nonetheless, it is sometimes useful to consider “formal derivatives” of a Brow-
nian path, that acquire a definite meaning only when considering a finite dis-
cretization. For example, we can start from (2234) and rewrite it as:

N N 2
dlPy yeonst (ml, s #UN) = <| | : > exp (— E At; (Z) )
LretN i1 AT AL; 4D i1 At;

Then, in the continuum limit A¢; — 0, the sum in the exponential argument
becomes a Riemann integral:

Aml> ¢ (dxz> _
Z“( L) e b lG) e

N e’
& (r)

where t = . Substituting it back leads to:

dz,, (1 H \/% (—41D/0tj32(7') d7'>

This expression has no rigorous meaning in this form (&(7) does not exists!)
but can be formally manipulated into other expressions that have a definite
meaning, thus proving useful for the discussion.
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CHAPTER 3

Diffusion with Forces

We want now to generalize the framework we previously obtained to the case
of a diffusing particle subject to external forces, e.g. a drop of ink diffusing
through a water medium in the presence of gravity.

To do this, we first return to the beginning, deduce a Master Equation for
a more general evolution, and then choose the right probability distribution
reproducing the behaviour in presence of forces.

3.1 Fokker-Planck equation

So, let’s start by considering a particle moving on a uniform one-dimensional
lattice (z; = i1, t,, = n-¢€), and satisfying the Markovian property, meaning
that the probability W;(t,.1) of being at the position labelled by i at the
next time-step t, .1 depends only on the current state ¢,,, that is on the current
probabilities W;(t,,) Vj and on the current transition probabilities W;;(t,,) from
j to e

+00
Wiltny1) = D Wi(t)Wj(ty) (3.1)
Jj=—00
Previously, we assumed that:
Wij(tn) = 851 Py + 0541 P-

Which means that the particle only jumps from adjacent positions, one step at
a time, and cannot remain at the same place. This Master Equation leads, in
d = 3 and in the continuum limit, to the usual Diffusion Equation:

0
&W(m7 t|£l307 tO) = VQW(:L.’ t|£130, tO)

We now consider a more general case, where we drop the discretization of the
space domain, allowing jumps of any size in R. Then (81) becomes:

+o00
W(x>tn+1)dx = / dZW($,tn+1|$—Z,tn)W(£E—Z,tn) (32)

—00
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The integrand is the probability of the particle being in [z — 2z, — z + dz] at
time ¢, and making a jump of size z to reach [z,z + dz] at time t,,.,. By
summing over all possible jump sizes we compute the total probability of the
particle being near the arrival position.

If we require jumps to be independent of each otherm, as it is physically evident
by the problem’s symmetry, then the jump probabilities W (z,t, 1|z — 2,t,)
depend only on the jump size z.

Assuming a isolate system, as the particle cannot escape, probability is con-
served:

|

/IRde(x’tn—'_l):/]RdyW(y’tn)
- d/dW ga|T — 2 b)) Wz — 2,t,) =
B:'z)/IRZRx (@, th1lz — 2, t,) Wz — 2,1,,)
: / dz/ dy Wy + 2, tq1ly, t) Wy, t,) =

f(/dzwﬁztml% ) (faywet))  vieR

where in (a) we changed variables z +— y = z — 2z, with dy = dz, and in
(b) we used the independent increments property (7 is a arbitrary constant).
Comparing the first and last lines leads to:

J Wy + 2 bl t) = 1

Intuitively, if the particle cannot disappear, it must make a jump.
Here on, for notation simplicity, we denote:

W(y + 2y tn+1|y> tn) = W(+Z|y7 tn)

Starting from (B2) and taking the continuum limit in time we can write a more
general diffusion equation. We start by constructing the difference quotient:

Wiz, t,11) —W(z,t,) = / dz W(+z|x — 2z, t,)W(x — 2,t,) — W(x,t,) =

= /]Rdz W(+z|z — 2z, t,)W / W(+z|z, t,L)W(x,tn) =
= [ dz[Wirzle - )W(x—z,tn)—W(+z|x,tn>W(x,tn)} -
FZ(Z_Z) F,(x)

—/ dz [F(x — 2) — F,(z)] =
0 2 0
(T)/IRdZ [W_Z%FZ(x)+282[FZ(x)]+_M] =
2
= - fde g @) + 5 [ e DR @)+ =

'WThis is a stronger requirement than the Markovian property. In fact, independent
increments imply a Markov process, but the converse is not true. See http://statweb.
stanford.edu/~adembo/math-136/Markov note.pdf
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0
o [\(/}R dzzW(+Z|$,tn)>lW(xvtn) +
()
1 0
+ 3922 [\</]R dzzW(—FZ!SC,tn))lW(w’ tn) | 4
o (2,t,,)

where F,(z) is the probability of a jump of size z from the position z. In (a)
we expanded F, about z, and in (b) we exchanged the order of integrals and
derivatives. Then we define the k-th moment of the jump pdf as follows:

(s t) = [ dz W (2o 0)
This allows us to rewrite the above difference in a more compact form:

Wiaetn) - Waty) = 3 S0
k=1 + O

(:U/k(x7 tn>W($7 tn))

Physically, as probability is conserved, by the continuity equation, the change
in probability density equals the divergence of a flux, which is just the x

derivative in this one-dimensional case. So, if we extract a derivative, we can Flux
write the flux explicitly:
) +o00 (_1>k 8k_1
= o= — 1 (@, )W (2, 1))
0

=——J(x,t
where J(z,t,) is the outward flur at x, meaning that if J > 0, then W (z,,,,1) <
W (z,t,) (the particle escapes from x to another place), and otherwise if J < 0
we have W(x,t,,.1) > W(x,t,) (the particle is sucked in x).
If we integrate both sides over x and apply the probability conservation we get
the boundary conditions for the flux: Boundary

9 conditions for the
LV t) = Wit do = [ de (2 Ja,1,)) flux

+o00

—00

1-1=—J(x,t,)

This means that, in a isolate system, the flur at £00 must be the same.
Finally, normalizing by the time interval we get the complete difference quo-
tient, which will become a time derivative in the continuum limit.

W(SL‘, tn—H) _ W<=T7 tn) — é i (_1)k ak_l ,U,k(]?, tn)W(Iu tn) (3 3)
tn—i—l — 1y Ox k=1 k! 8xk_1 tn+1 —1n
Letting t,,1 —t, = ¢, in the limit € — 0 the left side will be W (x, ).

All that’s left is to find an explicit definition for the jump pdf W(+z|x,t).
Previously, we assumed a gaussian pdf for the displacements:

1 (Az)?
z ex —
VarDe P\ 7 4De
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With this choice, the first two moments become:
pr =0 pp=2De
And the variance:
Var(z) = ug — 1 = 2De x €

However, for a particle subject to a force we would expect to have a preferred
jump direction, leading to a constant velocity motion in the direction of the
force. So we require a different pq:

() = = [ W (+zla,t) x ef (@)

We still want to fix the variance to be proportional to €, as it is expected in a
diffusion process.

An appropriate choice for such a distribution is given by:

W(zlo ) = 1 7 z—ef(x,t)

= = (3.4)
eD(x,t) eD(xz,t)

with F, D: R — R functions, satisfying certain conditions, and with a physical
meaning that we will now see.

First of all, we check the normalization:

1 ;/ dz W(+z|z,t) =
R

1
e P 2 _J
VeD(z, ) /IR g VeD(x,t) ) @

where in (a) we changed variables:

_Z_Ef(x>t) d

= - z=+/eD(z,t)dy (3.5)
eD(z,t)

Then we compute the first moment:

So, in order to have the right normalization and the desired (z) we need:

JrRdy F(y) =1
JrdyyF(y) =0

o8

Jump distribution

1. Correct
normalization

2. First moment o<
force



Both conditions are satisfied, for example, by all even normalized functions.

For the second moment: 3. Variance x time

z—ef(x,t)

ol 1) = o [ az2p | 20D
VeD(x,t) 'R eD(z,t)
— D 20(y) =
S [ Ay (ef(@.t) +y\/eDla, 1)’ F(y)
= /m dy FW)[€f? + y* De + 2ex/eDTy] =
= &5 4 De [ dyy’Fly) = €1+ Dely?) iy
And so the variance becomes:
Var(z) = iy — p1f = eD{y) ) o< €

which is proportional to € as desired. For notational simplicity, we introduce a
new function D: R — IR such that:

Var(z) = 6D<y2>F(y) =2D(x,t)e = po(z,t) = € f* 4+ 2D(x,t)

We note that higher order moments are all of order 0(63/ %). For example, the 4. Vanishing
third moment is: higher moments

1 3 z—ef(x,t)
7 Y Sy TN o (G0
palo) eD(z.1) o D (1)

S S et + D 1) F(y) =
= [ dy (12 + P (D) + 32V eD + 38 f Dy ) F(y) =
=@+ (D)’ + 3 FDUP) py) = O(M?)

Substituting back (B3) in (B3) we arrive to:

_ 1 &2
W(l‘, tn—i—l) W(xatn) — _g [W(xvtn) Nl(xvtn) ] 4= d . [ N2(x7tn) W(w,tn) 4
€ ox € 20x €
N—— N——
f(z.t) ef2+2D(:c,t)
83 M3($? tn)
g@ [W(w,tn) c + ..
0(;/2)
Taking the limit ¢ — 0, we are left with:
oW (z,t 0 1 9 Fokker-Planck
D) W 0]+ 3 DG O (0, 1)] = i
0
= - | f@ W (.t) = o (D, )W (2, 1)) |



This is the Fokker-Planck equation, describing the diffusion process in the
presence of a force f(z,t), and a diffusion parameter D(x,t).

Note that, in absence of forces f(z,t) = 0 and with a constant diffusion
D(x,t) = D we retrieve the usual diffusion equation:

2

0 0

3.2 Langevin equation

The Fokker-Planck equation involves probability distributions, meaning that it
describes the behaviour of ensembles of trajectories at once. However, we can
find an equivalent description by focusing on a single path.

We start with a Wiener process, that is a stochastic process with independent
and gaussian increments and continuous paths. Considering a time discretiza-
tion {t;}, the evolution of a single trajectory is described by:

2(tip1) = x(t;) + Da(ty) (3.6)

where each increment Ax(t;) is sampled from a gaussian pdf:

2
Az;(t;) b _ (A2)
) DA, P\ T 4DA,

To simplify notation, we change variables, so that:

AB® Az Az
— =—=AB=
2 4D ~ V2D
If z ~ p(z), and y = y(x) ~ g(y), then by the rule for a change of random
variables we have:

In this case:

AR 1. (AB)*\ dAz L (AB)?
~N ———— @X — — X —_
JarDAL O P\ oAt ) dAB T R P\ aa,
V2D

Note that now (AB?(t;)) = At;, leaving out the D - so, in a sense, it is the
“standard” Brownian path, and any specific Brownian motion can be obtained
by rescaling it.

Substituting in (80) and rearranging we get:

#(tit1) —x(t;) = V2DAB(1;) (3.7)

We want now to form a time derivative in the left side, in order to arrive a
(stochastic) differential equation for paths. To do this, we first extract a At;
factor from AB(t;) by performing another change of variables:

AB(t;) = Ati£(t;) (3.8)
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so that Az; = V2DAt;, and all the randomness is now contained in the
random variable &, which is distributed according to:

1 A\ dAB;  [At At; o B
£(t) ~ zmtiexp<— m) dg(ti)—\/%exp(—Qsi) & =€)

——
At;

(2

Substituting back in (872) and dividing by At; leads to:

x(tipq) — z(t;
H—l) ( Z) — \/ﬁﬁ(t,)
At;
And by taking the continuum limit At; — 0 we get the Langevin equation
for a Brownian particle:

i(t) = V2DE(t) (3.9)

We can see £(t) as a highly irregular, quickly varying function, which, in a
certain sense, expresses the result of Brownian collisions at a certain instant.
In particular, the following holds:

(€M) =0 (&) =o(t—t)

meaning that the values of £(¢) at different instants are completely independent.

Note that, as we saw previously, Brownian paths are not differentiable - and so
&(t) does not exist, and this is just a formal equation, with a definite meaning
only in a given discretization. Also, note that (t) is a random variable, and so
this is an example of a stochastic differential equation. It is not clear how
to find a solution to such an equation, or even how to define what a solution
should be - and this will be the main topic of the next section.

We can rewrite (Bd) in a more rigorous form by “multiplying by dt”, i.e.
performing the change of variables (B3), which - in the continuum limit - is
dB = £ dt, leading to:

1 dB?
dz(t) = v2DdB dB ~ ———¢e¢ e
®) V2 dt Xp( 2dt>

Before moving on, we want to generalize this equation to the presence of exter-
nal forces. As we saw previously, this just results in adding a constant velocity
motion to the particle, leading to the full Langevin equation:

(t) = f(x,t) + /2D(x, t)&(t)
2
dz(t) = f(x,t)dt ++/2D(x,t)dB dB ~ \/ﬁexp (_CQIB(;t> (3.10)

The physical meaning of f(x,t) and D(x,t) can be more clearly seen by com-
paring (BI0) to the equation of motion of the Brownian particle.

Consider a particle of mass m immersed in a fluid, with a radius a that is much
larger than the surrounding molecules (typically ~ 107 to 1077 m). The forces
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acting on it will be that of wviscous friction —vy7, eventual external forces F
(e.g. gravity), and a rapidly varying and random term F, ., encompassing
the effect of the large number of collisions (~ 10'?/s) with the smaller fluid
particles:

mr(t) = =7 + Foyy + Fnoise(t)
Dividing both sides by ~:

F, t F it
@T(t) = —p+ ext(r7 ) + n01se( )
g g g

(3.11)

Assuming a spherical particle, v is given by Stokes law to be 67an, where 7 is
the viscosity of the surrounding fluid.

Note that, if we ignore the external force and the random term, the equation
becomes:

dr(t)
= — Lot
dt mv( )
which has solution:
t
7(t) = exp (—) 7(0) B = mn
B ’Y

Tg is in the scale of 1073 s, and represents the timescale of reaching equilibrium,
i.e. 0 velocity. So, for Brownian motion to happen, F) s is necessary. Also,
if we are interested in the motion on the scale of seconds, we can neglect the
acceleration term. This is the overdamped limit (in analogy to a damped
oscillator with high loss of energy due to attrition, so that it quickly reaches
equilibrium without ever “overshooting”). Given that assumption, (BI) be-
comes:
= Fext + Fnoise
v v

Which, for a particle moving in one dimension, reduces to:

F, Fooi

l’(t) — ext + noise
Y Y
N~

N——
f(zt)  \/2D(zh)E(t)

Comparing with (BTM) gives the physical meaning of f(z,t) and D(z,1t).

3.3 Summary

Summary of the previous lectures. We considered a more general stochas-
tic process, a Markov Process, when the future only depends on the present.
We wrote a Master Equation, and taking the continuum limit we get a second
order partial differential equation, with two coefficients depending on the first
two moments of the transition rate: f and D. We would want them to repre-
sent the force and diffusion rate, but we can’t find their physical meaning. So
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we consider the Langenvin equation, reaching the desired physical meaning.
There, the increment depends on a deterministic term f and a noise term:

de(t) = f(a(t), ) dt + 2D((D), D dB(t) = to

g

If we discretize this equation, passing to finite differences, we get:

2
Ax(t) = f(x(t),t)At + /2D (x(t), DAB(1) AB@)”ﬁ“p(_gi)

This is needed because dxz(t) /dt is ill-defined (as we saw in the previous lec-
ture). Note that Az(t) = x(t + At) — x(t).

We want to show that this kind equation leads to the same Fokker-Planck equa-
tion that we saw previously, and that was derived from the Master Equation.
Then we would like to examine how much the stochastic amplitude (coefficient
of dB(t)) is related to temperature. In fact, we know already that f depends
on Fo, with Fi.y = —VV. We would like that, at constant temperature, the
pdf of the stationary state will tend to the Mazwell-Boltzmann distribution:

P(z,t) — 1eXp <—V(I)>

3.4 Stochastic integrals

We arrived at the Langevin equation:

X = Fle.t) + /2D, D) (3.12)

where £(t) is a “rapidly varying, highly irregular function”, i.e. such that for
t # ¢, &(t) and £(t') are statistically independent. As (£(t)) = 0, this means
that:

(€(Et)) = o(t =)

Equation (B12) does not make much sense, as #(t) does not exist anywhere.
Even changing variables to dB (i.e. “multiplying” both sides by dt) and inte-
grating, we are left with the following equation:

z(t) =x(0)—|—/0tf(x(7'),7') d7+/0t\/2p(x(7),7> dB(7)

It is not clear how the last integral is defined, as it involves a stochastic term
dB.

So, before tackling the full problem, we take a step back and study the theory
behind stochastic calculus. Let’s introduce a generic integral of that kind:

S, = /0 G(r)dB(r)

Intuitively, we could see this as an infinite sum, where each term G(7) is
weighted by the outcome of a random variable B(7).
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So, to compute it, an idea is to first introduce a time discretization {t;};—o._
with ¢,, = ¢, leading to:
n
Sn=>_G(m)[B(t;) - B(ti-1)]  tia<7m<t (3.13)
1=0
and then take the continuum limit for n — oco. This, however, proves to be
more difficult than expected, for the following reasons:

e First of all, the increments B(t;) — B(t;_1) are chosen at random. This
means that S, is a random variable. In fact, we could see S; as the
sum of points from G(7), each weighted with a randomly chosen weight.
So it is necessary to define what it means to take the limit of a sequence
of random variables S,,. As we will see, there is no unique definition.

e It is not clear how to choose the sampling instants 7; for G(7) in the
discretization (B13). We could hope that in the limit of n — oo, any
choice would lead to the same final result. This would be indeed true
if B(r) were a differentiable function - except it is only continuous and
nowhere differentiable. So we need to pay attention to the specific (and
arbitrary) rule to be used in computing the discretization.

3.4.1 Limits of sequences of random variables

Some basic definitions. Recall that a probability space is defined by a triple
(Q, F,P), where Q) is a set of outcomes (sample space), F is a o-algebra on
(), containing all possible events, that is sets of outcomes, and P: F — [0, 1]
is the probability measure. Then, a random variable is a measurable function
X:Q — S, with S denoting a state space.

For example, let () be the set of all possible results of rolling two dice, i.e. the
set of ordered pairs (x1,x9) with 1,29 € {1,2,3,4,5,6}. Then F is the set of
all possible subsets of () (including both Q) and @) and P: F 5 f — P(f) is
given by:

P(f) = g

where |f| is the cardinality of the set f.
A random variable can be, for example, the sum of the two dice:

X(w)=x1+ 25 Yw=(21,29) € QD

Then, we can compute the probability of X assuming a certain value by mea-
suring with IP the preimage set of X:

P(X =2)=Pwe Q| X(w)=2) =P({1,1}) = 316

For discrete one-dimensional variables such as these all of this formalism does
not lead to much gain, as there is an immediate and natural choice for (QQ, F, P),
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which is usually denoted by the saying “random”. However, in more complex
cases it becomes imperative to precisely define (), F and IP, so to avoid am-
biguous results (see Bertrand’s paradox).

Consider a sequence {X,,},en of random variables in a certain probability
space (Q, F,IP). Suppose that X is another random variable, and we would
like to give meaning to the concept of X,, “tending to” X:

X, — X
n—o0

There are several possibilities, here stated from the weakest to the strongest:

1. Convergence in distribution. In this case, we simply require that the
distribution of S,, approaches that of S as n — oo. Let [}, and F' be the
cumulative distributions of S,, and S, respectively. Then:

X, L, X o lim F,(z) = F(x) Vz € R|F is continuous at z
n—oo n—oo

(The cumulative distribution, or cdf, is defined as Fx(z) = P(X < z)).

Note that, as we are merely comparing functions, there is no need for
X,, or X to be defined on the same probability space. Also, here the
focus is on integral properties of the random variables, so there is no
guarantee that sampling X,, and X will lead to close results, even for a
large n. For example, consider X,, to be a sequence of standard gaussians,
which obviously converges to a standard gaussian (X) in the distribution
sense. If we sample a number from Xy, and one from X, they could
be arbitrarily far away from each other with a non-zero probability, that
remains the same for all n. If we want to exclude that possibility we need
a stronger requirement, which leads to the next definition.

2. Convergence in probability (Stochastic limit). If the probability of
values of X,, being far from values of X vanishes as n — oo, then X,
converges in probability to X:

X, L5 X & lim P(|X, - X|>¢) =0
n—oo n—oo
Expanding the definition, this means that:
Ve > 0,0 > 0,3N(€,06) s.t. Vn > N, P(|X,, — X| >¢€) <6

In other words, the probability of “a significant discordance” between
values sampled from X,, and X vanishes as n — oo. Intuitively, X,
and X are strongly related, i.e. they not only distribute similarly, but
also come from similar processes. For example, let X be the true length
of a stick chosen at random from a population of sticks, and X,, be a
measurement of that length made with an instrument that is more and
more precise as n — co. Then, for large n, it is clear that X, will have
a value that is really close to that of X. In this case, we say that X,
converges in probability to X, as n — oo.
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3. Almost sure convergence. An even stronger limit requires that:
X, 2o X & P (lminflv € 0: X, (@) - X@)| <e}) =1 Ye>0

Here, the liminf of a sequence of sets A,, is defined as:

(0.9]
liminf A, = (J [ 4,

N=1n>N
A member of liminf A,, is a member of all sets A,,, except a finite number
of them (i.e. it’s definitively a member of the A,,, as it is € A,, for all
n > 7). So the term inside the parentheses is the set of all outcomes
w € O for which X, (w) is definitively close to X(w), i.e. it covers all
events resulting in a sequence of X,, that converges to X.

If we take X,, and X to be real-valued random variables, then the defini-
tion is simpler:

Xy =5 X P (we: lim X,(w)=X(w) =1
Or, in other words:

lim X,(w) = X(w) Vwe O\ A

n—oo

where A C () has 0 measure.

Almost sure convergence vs probability convergence. The difference
between the two definitions is subtle, and can be somewhat seen from the
following example, taken from http://bit.1ly/2u2E9Rk and http://bit.1ly/
2Zy66vU.

Consider a sequence {X,,} of independent random variables with only two pos-
sible values, 0 and 1, such that:

1 1
For € > 0:
L p<e<i
P(| X, >2€e)=4q" B
0 otherwise

As n — oo, P(|X,,| > €) = 0, and so X, RN
n—o0

However, X,, does not converge almost surely to 0. Consider a realization of
the sequence X,,, i.e. the measured outcomes of all X,, during “one run” of the
experiment. This will be a binary sequence, like 000101001 . ... Now, consider
an ensemble of such sequences. What is the average number of ones in them?
We can estimate it by summing the probability to have a 1 in the first place,
in the second, and so on:

= 400

S|~

o0
>
n=1
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This in fact implies, by the second Borel Cantelli theorem®, that the probability
of getting X,, = 1 infinitely often (i.0.) is 1, and so X, cannot converge almost
surely to 0.

‘miSee a proof at http://bit.1ly/2tcfZU4 The main idea is that, given a set of in-
dependent events (X, = 1), the sum of their probabilities diverges, then surely an in-
finite number of them do indeed occur. Formally: if :zol P(X, = 1) = oo, then
P(lim sup, o0 {X,, = 1}) = (O Upsy {X, = 1}) = P({X,, = 1} L0.) = 1

It can be proven that almost sure convergence implies convergence in probability,
which implies convergence in distribution. However, for our purposes we are
interested in another kind of convergence:

e L7 convergence:
L1 ' ay _
XnmX@nh_{gOﬂXn—X\)—O geN
Note that this implies convergence in probability. In fact:

X_X'n !

) (3.14)

P(IX - X, >€) = ([x_x 5e) < Tx_x |5
N—

%,_/
0<o<1 N

where I is a characteristic function, i.e. the random variable that is 1
when |X — X,,| > € and 0 otherwise - so that the second term is always
> 1 when it is not killed by the first one. Then, by substituting I with
its mazimum 1 we get a greater term:

1
B < (X -X,|9)5 ——=0 Ve>0
€

n—oo

where we used the linearity of the average to extract the constant €?, and
then the L? convergence (assumed by hypothesis).

Also, LY convergence implies the convergence (in the usual sense) of the
g-th moment:

q
X, —— X = lim (| X,|9) = (X9 (3.15)

n—oo n—oo
If we choose ¢ = 2, we obtain mean square convergence:

m.s. . 2\
In this case it is easy to prove (BIH) by using the Cauchy-Schwarz in-
equality:

(E(XY))* < B(X*)E(Y?)

If welet X = X,, — X and Y = 1, and assume that X,, converges to X
in mean square, we obtain:

0 < (E(X, - X))* < E((X, - X)*)E(1) -0

n—o0

67


http://bit.ly/2tcfZU4

Holder inequality. Cauchy inequality is, in this case, a special case of
the more general Holder inequality. Consider a measure space (S, %, i)
(where S is the space, £ a o-algebra and p a measure), and two measur-
able functions f,g: S — R:

1/
Ifaly < Uflall, WM, = ([ 1-Pan) ™

To compute a stochastic integral, we will proceed like the following:

e Discretize the integral as a finite (Riemann) sum, obtaining a sequence
of finer and finer random variables {S,, },eN

e Use a mean square limit to compute the limit S of the sequence {S,,}

3.4.2 Prescriptions

All that’s left is to choose a rule for the mid-points in the terms of the dis-
cretized sum. As we will see in the following example, there are several different
possibilities, each leading to different results.

{Example 6 (A simple stochastic integral):}

Suppose G(7) = B(7), and consider the following integral:

s:ABummﬂ

If B(r) where differentiable, then we could simply change variables and
solve:

dB(1) d 1

t t  B*(t)— B*0) dB
s= | B = Zdr = B(r)| =

— -\ =\ 3=
0 2 ! dr

However, here B(7) is a rapidly varying irreqular function, which is nowhere
differentiable.
So, following our plan, we first discretize:

Sp =Y B(1;)[B(t;) — B(t;_1)] th=0;t, =t t,1 <7, <t; (3.16)
=1

We now need a rule for choosing the 7;. The simplest possibility is to fix
them in the “same relative position” in every interval [t;_1,¢;], that is:

Depending on the value of A, the limit S will be different. We can quickly

check this before computing S, by focusing on the expected values. In fact,

we know that if S, ——— S, then (S,) —— S in the usual sense. So, we
n—oo n—oo

compute the average of 5,,:

n n

(Sn) = 2_(B(r)(B(t;) = B(ti-1))) = >_((B(r;)B(t;)) — (B(7;) B(ti-1)))

=1 =1
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We already computed the correlator function for the Brownian noise B(t):
(B(t)B(t")) = min(t,t") (3.18)

And so, as t;_1 < 1; < t;, we get:

Substituting the choice for 7 (817):
n
(Sn) = A (6 —tina) = My = N
i=1

Which does not depend on n, making the limit trivial:
(S) = lim (S,) = M

This dependence on the prescription of 7; is an important difference from
ordinary calculus, meaning that many common results cannot be directly
translated to stochastic calculus.

In practice, there are many possibilities for A\. The two most common are:

o

= Ito’s prescription

Stratonovich’s prescription (also called middle-point prescription)

D[

Leading to, as we will see:

BX1)-B0) _t _|
Sn m.s. S = , 2 , 2

The Stratonovich prescription gives exactly the same result as ordinary cal-
culus. However, note that it involves a dependence on the future, i.e. the
next step of a path depends on the point that is a half-step later. This
has no a real physical meaning (in a certain sense, it “violates causality”).
That’s why many physicists prefer the Ito’s prescription.

Let’s explicitly compute both results.

Ito’s prescription. We want to prove the following result:

n 2 2
> Bt (B() - Blti-) 2 7 O-FO L @
Denoting;:

we can rewrite (BI0) as:



First of all, we split that product in a sum of terms, with the double-product
trick:

ab = L[(a+b)? = a® — b

2
So that
n 1 & 2 2 2
Su= Y BiaAB =0 [(Bii+AB) ~B2, —(AB)?] =
i=1 i=1 TN
B}
LT p2 2 o] _ 1 9 1 &
Y | BBy - (8B)*| = (B -
2;[ 1—1 ( z) 2( 2%:
1, o 13
= —(B*(t)—- B - (AB))
S(B0=B0) 5 3
Now (B19) becomes:
B2(t)— B%0) 1 B*(t)— B(0) ¢
<)2( 52 )7 ()2 <)_2 th =1t tp =0

Applying the definition of mean square limit, this is equivalent to showing
that:

2
PO ey - [P ]

( )mo (3.20)
1=1
Expanding:
] n 2 n 2 | [n 2
4<[—2<A31~>2+t] ) = <[t;<AB@>2] >@4<[21<A AB >] ) =

where in (a) we used t = -1 At;, and in (b) (2, a;)* = >ij a;a;. We can
rewrite the sum highlighting the case where i = j:

(&) = liwi )+ (0t~ (AB,[at, — (AB,)?)

=1 i#j

(3.22)

Noting that the AB; come from independent gaussians, we have that the
expected values integrals factorize:

1 AB;)?
/dAB “dAB, AH T exp(—(QA;))
™ i

In other words, this means that the average of the product is just the product
of the averages:

(At — (AB,)*)(Bt; — (AB;)?)) = ((Bt; — (AB;)*)){(At; — (AB;))) =
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= [t = {(AB))][At; — ((AB))*)]

We already computed the second moment of that gaussian:

dAB; AB;
(05 = [ Spreastes (<5 ) =

and so:
((At; — (AB)?) =0

So we are left only with the first term of (B222):

1; ([At; — (AB) 1; —2M¢, ((Af}) %) +(ABY)
l (3.23)

Recall that, for a random variable z sampled from a gaussian N(0,0):

on (2n)! o n=1

441 _ o 4 _
Uﬁ—SO' n=~2

In our case, this means that ((AB;)*) = At?, leading to:

=3

M\»—l

When taking the limit of the mesh (n — 00), the number of summed terms
become infinite, but also the size of each of them vanishes:

max At; —— 0
i n—00

To resolve that limit we need to use the fact that the end-point is fixed
(t,, =t) and so:

| , 1(& WAL n /
52%35 > At =3 i:ZlAti ;Atj §§<mlaxAti)m>O

1=1
N———
t

This proves (B=20), and so the desired result (319).

Stratonovich’s prescription. In this case, we want to show that:

n—00 2

Note that now we need a set of middle points in the mesh, which leads to
some complications.
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One trick is to simply double the “resolution” of the discretization, and
choose the middle points to be the odd indices. We then define:

2n

San =Y Boj_1(Ba; — Ba(i_1))
=1

with ty;_1 = (tg; + ta(;—1))/2, while the ty; may be distributed arbitrarily.
The full computation is very long and tedious, and not much enlightening,
and is therefore omitted.

A shorter way to compute that, but not as rigorous, is by stating that:

)+ B(ti—l)

n
Z (B(t;) — B(ti-1))

However it is not obvious that is possible to approzimate a midpoint of B
with an average, as B(t;) are all random variables. In fact, it is possible to
show that the two expressions have the same distribution, but they are not
the same random variable! In any way, if we do this, the thesis immediately
follows:

l\'J\H

i B2 2 1))

3.4.3 1Ito’s calculus

In our calculations, we will be usually concerned with the following kinds of
stochastic integrals G(t):

1. /OtF(B(T))dB(T)
2. /Otg(T) dB(T

3. / 7)dr (usual integrals)

These G(t) are called non-anticipating functions, because they are indepen-
dent of B(t") — B(t) for ' > t, meaning that they do not dependent on what
happens in the Brownian motion at times later than ¢ (i.e. they do not depend
on the future). So, by using Ito’s prescription (I.p.) in the discretization and
mean square (m.s.) for the continuum limit we get:

t n
| F(B(r)dB(r) 2 3" F(B; 1)AB,
i=1
Note how F'(B;_1) and AB; are independent of each other, simplifying the cal-
culations. (Note that the Stratonovich prescription here causes troubles during

evaluation, as it introduces some interdependence between different terms).
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3.5 Stochastic Differential Calculus

3.5.1 Ito’s rules of integration

We now consider a more general stochastic integral, and show that, using Ito’s
prescription:

t L Lp. - k
| HBO.HEBM)* 2 > H(Biy, i) (AB:) =
JOH(B,7)dB(1) k=1
=\ H(B(r),7)dr k=2
0 k> 2

This leads to the following “rules” for Ito integrals:

dB n=1
(dB)n =3Ndt n=2 (3.24)
0 n > 2

We already showed an example for k£ = 1, and we now proceed with the other
two cases.

Example 7 (Integral in dB?): ‘

Consider a non-anticipating function G(7), and the following stochastic in-
tegral:

t
1= [ G(r)aB ()

With non-anticipating we mean that G(7) does not depend on B(s) —
B(1)Vs > 1, i.e. it does not depend on the future. Discretizing:

m.s. ms. 9
I'= lim I, = lim Zl G(ti_1)AB;
1=

For simplicity, denote:

We want to prove that:
t 9 2 [t —
/O G(r)(dB(r)* £ /O G(r)dr = lim ;Gi,lAti

Applying the definition of a mean square limit, this is equivalent to:

)

n n 2
<(Z Gi_1AB] =" Gz‘—lAti) ) —0
=1 i=1
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Expanding the square as a product of two sums over ¢ and j, and then
highlighting the case with ¢ = j:

n 2

(S G AI8BY —at)| ) = 3 (G [(AB)? — ALIG, 1[(AB,)* — AL]) =
ij—=1

1=1

= i(G?—l[(ABi)Q — At +2 fj_( Gi_1[(ABy)® — At)G,_y [(AB;)* — Atj])
= 1<j

(3.25)

As i < j, note that the yellow term does not depend on AB; = B; — B;_; =
B(t;) — B(tj_1). In fact, as G is non-anticipating, G;_; depends only on
the previous steps. Thus, the yellow and blue terms are independent of each
other, and so we can factorize the average:

@28) = SGA(AB)? — M) +23 (Gi[(AB)? — MG;_1) ((AB,)? — Aty)
i=1 1<J

Recall that:

=0

((ABj)? — Atj) = ((AB;)*) — At

and so only the first term of (8723) remains. Again, noting that G;_; does
not depend on AB;, as it is non-anticipating, can factorize the average:

= (ﬁ: GI[(ABy)” — At)*) = an (G2 ) ([(ABy)* — At*)  (3.26)
i=1 i=1
Gy

Expanding the stochastic term:

((AB;)” = At;]”) = ((ABy)" — 2At;(AB;)?) + At =
= ((AB;))*) =2At; (AB;)?) +At? = 2At7
hv—’ B\/—/
3(At;)? At;

And substituting back into the sum and taking the limit completes the proof:

(swis) —QZGQ AL <2(maXAt>ZG2 1At ——2.0- /G2 )dr =0

i— 1<j<n

This proves that (dB)* = dt.
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Example 8 (The case with n > 2):J

We want now to show that:
t m.s.
n _ 1 . . n _
| coaB @) = dim > Ga(aB)" =0

By definition, we want to show that:

. 2
((Z Gi—l(ABi)n) ) ——0

. n—00
i=1

Expanding the square, and factorizing the averages (as G is non-
anticipating) leads to:

(GF1(AB;)*™) +2 i<Gi71Gj,1<AB¢>”<ABj>”> =
=1 1<J

Il
WE

1=1

n 2
<<Z GH(ABZ-)”> )

G2y ((AB)™) +23 (Gior Gy (AB)™ (AB;)™

i<j

I
M=

@,
I
—_

(3.27)

Now, recall that the p-th central moment of X ~ N (u, o) can be computed
with Isserlis theorem, resulting in:

0 p is odd
E[(X —p)] =
o’(p—1)!I' pis even
where pl! =p-(p—2)----- 1 is a double factorial, that can be rewritten in

terms of factorials as follows:

2k k1 p = 2k even

p!' =< (2k)! 3.28
(2’%)' p=2k—1odd (3.28)

So, if m is odd, the blue term in (B=27) vanishes. Let’s suppose, for sim-
plicity, that G is bounded, i.e. |G(7)| < K V7 € R. Then:

@20 = 3 6L (8" (2n— 1)t = 37 Gy (g 2t < K0!

i=1 i=1 2"n! Ci=
K*(2n)! ( nl) “
< .
< irgnﬁgxn(At) ;Atz —= 0
——

t

On the other hand, if n is even, the blue term in (8227) is not null. However,
the same argument for n odd can be applied to the first term, which vanishes
in the limit. So we only need to study the blue term:

n

(B22) =2 (G;_1G;_1(AB;)"){((AB;)") (3.29)
<K
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Here, as n is even:

n n n!
(AB)") = (Bt:)"(n = 1)1t = (at:)"? (25 — 1)1 = O /22”/2(71/2)!

And so:

2
. n! - n/2 , ,n/2

(n/2 i<j
) n 2 2(n/2-1) n
2 (n/2) [T i<j
—_———
<t’

{Example 9 (Other cases):}

Ito’s rules allow us to consider even more general integrals. For example:

/O " G(r) dB(r) dr = 0

In fact, as (dB)* = dr, dBdr = 0 because (dB)" = 0 Vn > 2.

Example 10 (Integration of polynomials):}

By using Ito’s rules we can find a formula for integrating powers of the
Brownian motion:

IRECORES

We first differentiate a polynomial, and then recover the rule for integration

by performing the inverse operation.
Recall that, in general, a differential is the increment of a function after a

small nudge of its argument:
df(t) = f(t+dt) — f(t)
The same holds in the stochastic case. In particular:

d(B(1)" = [B(t+dt)]" = (B(1)" = [B(t) + dB(1)]" = (B(1))" =

=3 (Z) (@B (BO)"™* - (B®)" =

(@) k=0
= By + 3 (Z) (AB(1) (B(O)"™ — (B =
c=1
dt
= naBO) B0y~ + " s s+ o
k=1 ~ ~ k2
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where in (a) we used Newton’s binomial formula, and in (b) the previously
found Ito’s rules for integration (B=24). Letting m = n — 1 and isolating
dB(t) leads to:

m(m—+ 1)

(m+1)(B)™ dB(t) = (dB(0))"™ " - ==

(B()™dt

Finally, dividing by m 4+ 1 and integrating leads to the desired formula:

RO m+1 A G e M IO G
_m—|—1<B mﬂ‘ m/ )" dt =
(Br)™" = (BO)™' _m

— e -5/ "B at

And in the case m = 1 we retrieve the previously obtained result:

_ 20y _ B
/OB(t)dB(t):B() 5O _

T
2 2

Example 11 (General differentiation rule):}

Because (dB)2 = dt, when computing differentials from a Taylor expansion
up to O(dtz) one must compute even the terms of order dB%. For example,
consider a generic function f(B(t),t):
a0 = 2 arr 2 apy ¢ 100 (1O pe
’ ot 0B 2012 20B*——
\/—’ dt
o((dt]?)
Of 2
dtdB(t) +0([dt]") =
* g L0 04
of ., 0f 1 02f
dt + == dB(t dt + O([dt]?

3.6 Derivation of the Fokker-Planck equation

Starting from the Master Equation and taking the continuum limit we arrived
at the Fokker-Planck equation:

0 0
E flz, )W (x,t) — %W(x t)D(x,t)] (3.30)

At the same time, if we consider the dynamics of a single path, adding a stochas-
tic term to the second law of motion, we arrive at the Langevin equation (in
the overdamped limit):

da(t) = f(x(t),t) dt + /2D(a(t), ?) dB(t) (3.31)

7

Wi(x,t) = —




We want now to show that these two formulations are equivalent, by deriving
(8230) from (B=3T). The main idea is to introduce a test function h(z(t)), and
compute its expected value at the instant ¢ over all possible points that can be
reached by the trajectory x(t), thus obtaining a value that will depend on the
global probability distribution W (x,t). Then, we can use Langevin equation to
describe the dynamics of each single path. In this way, we will obtain a relation
between a quantity involving W (x,t) and the parameters f(z,t) and D(x,t)
appearing in (B231), which will hopefully be (B330).

So, let’s start by computing the average of h(z(t)) at a fixed time:

(h(z(t))) = /]R dz W (z, t)h(z)

As we seek to construct a time derivative, we start by differentiating:

dlh(z(t))) = <88t/]Rdx W(x,t)h(x)) dt = dt/]Rdx W(z, h(z)  (3.32)

And then dividing by dt leads to:

d

—(h(x(t))) = /]R da W (z, t)h(x) (3.33)

However, we could also start by differentiating h(z(t)):

dh(z(t)) = h(z(t) + dz () — h(z(t)) = (3.34)

o W (a(t)) dz (t) + ;h"(x(t))[d:v (£)]* + O([d (¢)]°) (3.35)

where in (a) we used a Taylor expansion for the first term. From (BZ31), and
applying Ito’s rules, we can obtain explicit expressions for the [dz(t)]™:

dt 0
[da(8))? = f2[dt]* 4+ 2D [dB(1))* +fvV2D dB(t) dt

[de ()] = O([de]*)

And substituting in (B233) leads to:

dh(z(t)) = h'[f dt + V2D dB] + ;h”2D dt + O([dt]*) =
= dt[W f+ h"D]+ h'vV2DdB

Taking the expected value:

d(h(z(t))) = (At [k f + K"D]) + (K'V2D dB) =
7 (dt[1'f + 1" D)) + (V2Dh') (dB) =

——
0

= (dt[W'f + K" D))

where in (a) we used the fact that D(xz(t),t) is non-anticipating, allowing to
factor the average.
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Dividing by d¢ and expanding the average leads to:

:/ de W (z, O)[1 (2) f(z,t) + b (2)D(z, )] =

—/ dz W(x,t)f(z, t)h +/ dz W (z,t)D(z, t)h" (z) =

W ooy,
W—W /dxh— WD) =

—/dxh [ 5 (W (2, )D () - O W@ (3.36)

i

where in (a) we integrated by parts the first integral once, and the second one
twice.
Finally, equating (8233) and (B=38) leads to:

/d:r— (,1)h /dxh [ (W(x,t)D(x,t))—aa(W(m,t)f(:c,t))

Xz

As this relation holds for any test function h(x), it means that the integrands
are equal. So, by collecting a derivative, we retrieve the the Fokker-Planck
equation (B230):

QW(&: t) = _9

9]
ot or f(iE,t)W(;E’t) - 7(W<$,t>D($’t)>

ox

3.7 The role of temperature

From physical observations, we expect the amplitude of stochastic oscillations
in Brownian motion to be dependent on temperature - as it is a direct effect
of collisions with molecules in thermal equilibrium. So, we want to derive an
explicit relation between the diffusion parameter D and T.

We start by assuming that, for ¢ — oo, the particle will be at equilibrium,
meaning that its distribution will be given by the Maxwell-Boltzmann:

BV (z)
Z

(&

—BV(x
W(x,t)mPeq(x): Z:/]Rd:ce Vi), f=—

Recall the Fokker-Planck equation:

0 9,
. 57 (D@ W, 1)

o =5, Ox

5 flz, )W (x,t) —

From the Langevin equivalence, and some physical reasoning, we found that:

f(:L‘,t) — Fext — _lav(x) = 67?7]@
gl v Oz

Where F. is an external conservative force with potential V(x) acting on
the Brownian particle, assumed to be a sphere of radius a moving through a
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medium of viscosity 1. Assuming D(z,t) = D for simplicity, the Fokker-Planck
equation becomes:

ot Oz ’yax+ ox

oW _ 0 [WroV oW

Here we are interested in the particular solution W (x) that will be reached at
the equilibrium, as it does not depend on time. So:

ow™
o !
Meaning that:
W (x)al + Daﬂ = constant Vo (3.37)
v Or Ox

As this relation holds for any x, we can examine it in the limit x — oo to find
the value of the constant. In fact, as W*(x) is a normalized pdf, we expect:

. OW*
w, Or x—oo
And so the constant in (Bz37) must be 0, leading to:

oW* _ 1 0V 1 oWt ol (W) 1oV

or D or W 0r | o vD Ox
Integrating, we find:

InW*(x) = _lev(I) +c= W) = Kexp (—VlDV(ac)) = ;exp (—BV(x))

And by comparing the two functions we obtain the desired relation:

1 1 kpT  kpT
=D="2"=-"0F

BZE:kBT v 6ma

This is indeed the same relation that Einstein found when examining Brow-
nian motion (fluctuation-dissipation relationship, 1905). As D(z,t) o< T, the
amplitude of stochastic oscillations (from Langevin equation) is proportional

V2D « VT.

3.8 Harmonic overdamped oscillator

Using the framework developed in the previous sections, we now tackle a more
general setting, that of a particle moving in a harmonic potential and subject
to thermal noise. This will be useful to model the local behaviour about the
minima of any potential - as they are approximately harmonic.

So, consider a particle of mass m moving in one dimension through a viscous
medium and immersed in a harmonic potential. To model the random collisions
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with the other (much smaller) particles in the fluid we add a stochastic term
V2D~€. The equation of motion becomes:

mE = —yi — mw’z + V2D~ (3.38)

As m/~ is much smaller than the timescale we are interested in, we can neglect
it, reaching the overdamped limit:

2
=" 1 \VaDe
Y

——
k
And multiplying by dt:
dz(t) = —kx(t)dt + V2D dB(t) (3.39)

As usual, we introduce a time discretization {¢;},—; .. Letting:
r(t) =wy; DAvy = x — xiq; B(t;)) =By Aly=t;—t;
we arrive to:
Az; = —ka;_1At; +V2DAB; (3.40)

Note that we evaluated the potential term —kx(7) at the left extremum of the
discretized interval [t;_1,1;], following Ito’s prescription.
To solve (B339) the plan will be the following:

1. Use the discretization to find the infinitesimal probability P ({Az;}i—1 )
of a discretized path, i.e. of a path traversing all gates [x;, z; + dx;] at
successive instants 0 =t < --- <1, =1t.

2. Find the probability for a continuous path dP = P({x(7);cp04}) by
taking the limit n — oo.

3. Find the transition probabilities that solve (B=39) by using a path integral
to evaluate:

W (i, ti20,0) = (3@, —a(r)hw = [ 0w —a(r)) dP

In other words, this is the fraction of paths (from the set RT of all
continuous paths happening in the timeframe [0, ¢]) that start in z( at
instant 0, and reach z; at instant .

To find P({Az;}i—1,. ) We start from the joint pdf P({AB;},—; . ,) that we
already know, and perform a change of random variables according to (820).
In practice, start from:

dAB; " AB?
P(ABy,...,AB,) = exp | — !
( 1 n) Z’l;[l vV 27TAtz ( ZZE:I 2At1>
1



Then insert AB; in terms of Azx; from (BZ0):

' V2D

and then multiply by the determinant J of the jacobian of the change of vari-
ables to find the desired new pdf:

P(z1, @9, ..., x,) = P(Az) ) P(Axg|Azy )P(Azs|Azy, Axy) - - - =
n dA.I'Z " 1 <AZ’Z + k’.’lfi_lAti)2
- ex J
1 e (- X g0 (M7
-1
v2D 0 0
7 — det J(ABy,...,AB,) _ det O(Axy, ..., Axy,) x 2D
O(Axq,...,Ax,) J(ABy,...,AB,) : B
* . % V2D s

The elements under the diagonal are, in general, non-zero derivatives. However

as the matrix is lower triangular, its determinant is just the product of the
diagonal elements. Substituting back:

n dAz; 1 [ Az; + kx; 1AL\
P(Azq,...,Ax,) = (Z>ex - ( ! ! Z)
(Any n) 1;[1 VDAt ) 7P ( ; 2t V2D
(3.41)
Taking the limit n — oo:

dP =P(z(7)) =

t dz(1) L
(TF N/ThIT dT) exp (_4D ; (x4 k;l-)Q dT)

where we used:

1 N (A:z:- At-)2
Az + kry_ At = iy gy Bl
ﬁti( Zj Ti—q z) ﬁti ﬁti T ffj

— s (i 4 kx)? dt
n—oo
Expanding the square in (B=2I):

-~

Az? k& o )
dP = ¢ — AT N
H \/47TDA P ( Zl 4DAti) P ( 2D 2 i) xl) P ( )

1=1
7
A
Wiener measure (dzyy) stochastic integral

~
normal integral

(3.42)
Let’s focus on the stochastic integral. We already know that, for Ito’s integrals

the usual rules of calculus do not apply. In particular, we can’t just do

S ! 2*(t) = 2*(0)
i;flfi—lAl’i — /o o(r)da(r) # ————
So, more in general for a differentiable function h(x)

/0 ") da(r) £ h(@(t) — h(z(0)) (3.43)
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The idea is now to start from the right side and use Ito’s rules to correct the
left side, so to have a usable identity for integration. As always, we start by
discretizing time {t;};—1 _,:

n n

h(z(t)) = h(x(0)) = X _[A(x(t;)) — (@ (ti—1))] = > Ab;

In the limit, ¢; = ¢,_1 + dt, and so the Ah; are differentials of h:

dh 1d%h . 5
Ah; = —Ax; + = —5 Az Az
= IZ+2dI? z; + O(Azj)
Now:
_ dAB;

Az; AB; + O(AB?) ~ V2DAB,;

~ dAx;

And by Ito’s rules, AB? = At; and AB;' =0 for n > 3. So:

1
Ah; = h'Az; + 5h” Az?
~—~
2DAt;

And substituting back in (B23) leads to:

h(z(t)) — h(z(0)) = zn:(h;AxZ + h"DAt;)
i=1
Rearranging:
i hiAz; = h(z(t)) — h(z(0)) — D i h'At;
i=1 i=1

In the limit n — oo, the sums become integrals:

t / t !
/O B da(r) = h(:z:(t))—h(a:(O))—D/O B dr (3.44)

We can finally apply the result (824) to our case, by setting h'(x(7)) = x(7),
so that:

2
= [ v
Substituting in (824) leads to:
3 {L'z — .’L’2 ZL’Z . ZL’2
;xiilA% — /Otg;(T) da(r) = (1) . (0) B D/Ot - “)2(0) s
-

And substituting this result back in (B822) leads to:

P = d k_[ai = a5 Dt Kt d
L= doywexp ~35D 5 — exp ~1D OZL‘ (r)dr
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From this expression we can compute transition probabilities. Let T = [0, 1]
and R” be the space of continuous functions 7" — IR, then:

W (i, theo,0) = (3@ —a)w = [ 4 6z, =) dP =

k 2
Ty —

2
Zo

CFR I, on 28/10

=e _k 2t~ - Dt_ L e —k—x% coth(kt)
“P\ T |2 |} a@Dsinn(ke) "V \ 4D

(3.45)
Exercise 3.8.1 (Some more integrals):}
Check that:
W(l‘, 0‘33‘0, 0) = 5($ - .To)
Hint. Start from the case z( = 0. Using (B23), after some algebra:
k koot
W(z,t[0,0) = exp | -t 3.46

(=,1/0,0) 2nD(1 — e_%t) ( 2D 1 — e_%t> ( )

And then show W (z,t]0,0) Py d(z). The general case follows by translat-
_>

ing that solution.

Alternative derivation The same result can be found solving the Fokker-
Planck equation for the transition probabilities W (z, t|xg,0):

_ 2 (o s 02w

Wz, t|zg,0
(2, t|zo, 0) ox ox

(3.47)
A quick way to solve this differential equation is to note that {AB;} are all i.i.d.
gaussian variables, and so x, which is a sum of AB; must have a gaussian pdf.
So we can make an ansatz for the solution:

L exp (—a(t)oz:2 + b(t)a:)

W (z,t|zg,0) = 20

(3.48)

Where a(t) and b(t) are the gaussian parameters, and Z(t) the normalization
factor. All that’s left is to substitute (B2R) in (BZ1) and solve for a,b, Z.
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3.8.1 Equilibrium distribution

As before, we expect the equilibrium distribution to follow Maxwell-Boltzmann
formula:

1 mw?a?
Weq(2) =  exp(=BV (x)) =  exp (— 5T ) z = [ exp(=V())
(3.49)

Starting from (B20) and taking the limit ¢t — oo:

. |k k 2>
tlggoW(x,ﬂ0,0)— 27TDeXp< ok (3.50)

Comparing (329) with (8320) we find:

mw? - k mw?

2%pT 2D 29D
So we obtain the same relation between D and 7" that we found in the general
case.

3.8.2 High dimensional generalization

We can generalize the previous results to the case where AB; = (AB}, . .., ABY¢ )T
are d-dimensional vectors, following a multivariate gaussian distribution:

P(AB;..... ﬁ ﬁ dB} (_AB?)

AL Ay 2N,

As different components of the same AB; are independent, by Ito’s rules of
integration:

dB{dB) = 6,3dt;  dB*dB/dB] =0
We then need to write d different Langevin equations, one for each component:

da®(t) = f*(x(t),t) dt + /2D, (z(¢),t) dB(t)

More in general, the stochastic term could be:

Zga/ﬁ dBﬁ( )

and in our case g, = 2\/2Da5a5.
The Fokker-Planck equation then becomes:
. 9 g,
Wiwt)= 3 o0 (fale 001V (2,1) + 5 Dol )V (2, 1))
= o Ox

And the joint probability for a discretized path:

n d n d «a a 2
dAx Ax; — fiL1AtL;
lP(Aa:l,...,Aa:n):HHmep< oy B Z)>

i=1la=1
And taking the limit n — oo:

P(x(7)) = ﬁ ( ddacch) ) exp (- zd: 1 /t(ia . a)2 dT)
ot \ VAT dr[1a=1 VD, = 4D, Jo
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3.8.3 Underdamped Harmonic Oscillator
If we do not ignore the inertia term in (B238) we are left with:
m& = mv = —yi& + F(x) + vV2DE

This second order (stochastic) differential equation can be written as a system
of two first order equations:

de =vdt
dv = (—’Vv + M) at+ V22 B
m m m
This leads to a generalization of the Fokker-Planck equation, named Kramer
equation:
. F ’D
W(x,v,t) =V, [(W - > W(x,v,t)+ %VUW(Q:, v,t)] + V. (—vW(x,v,t))
m m m

In the limit ¢ — oo, the distribution at equilibrium will be:

1 2 knT
W(x,v) = 7 &P (-5 [m”;H + V(“’)]) D= %
(Lesson 14 of
18/11/19)
Compiled: October
3.9 Particle in a conservative force-field 13, 2020

In last section, we examined a particle of radius a immersed in a harmonic
potential U(x) = muw?az? /2, moving through a medium with viscosity 7 and
subject to thermal fluctuations of amplitude proportional to v/2D, so that its
dynamics are described by the following stochastic differential equation:

2
dr = —kxdt++v2DdB =" v = 6mna
Y

The solution, expressed as the transition probability between any two given
points, is a path integral:

x? — a:% kt

W (x4, t|zg,0) = exp (— 1D k+ 2) (exp (— /Ot V(x(T)) dT) d(z(t) — x))w
(3.51)

with V(z(7)) = k*2*(r)/(4D). The average is computed with the Wiener
measure:

B ¢ dz(7) 1t
(= [ (po m) oxp (~ 35 [ ) ar) £Ga(r)

with R” being the set of continuous functions ' — R, and T = 0, ¢].
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We want now to show that, in the more general case of a particle immersed
in a generic potential U(z), a path integral similar to the highlighted term in
(82aM) will appear. Of course, the function V' (z(7)) will be different, but it will
be proportional to U(x) - as it is evident in the harmonic case.

So, let’s consider a particle in a 3D space r = (xl,wg,xg)T, immersed in a
conservative force-field F(r) = —VU(r) with potential U(r), and subject to
thermal noise. The Langevin equation becomes:

F(r)

dr = f(r)dt+Vv2DdB  f(r) = .

v = 6mna (3.52)

with B = (By, By, Bg)T being a d = 3 vector with gaussian components:

1 AB?
AB, ~ ——exp| ——— a=1,2,3 3.53
o« Vanbt Y ( 2At ) (3.53)

As different components are independent, the joint pdf for the vector AB is
just the product of the three terms in (BZ53):

2
AB~ 1 e IABI
(27rAt)3/2 2At

As before, we introduce a time discretization {t;};—¢ ., withty =0and t, =1t
fixed, so that (B52) becomes:

Ar; =r(t;) —r(t;_1) = fi_10t; + V2DAB;

where the force f(7) is evaluated at the left side t;_; of each discrete interval
[ti_1,t;], following Ito’s prescription.
Then, starting from the joint pdf of the {AB;}:

n 3 n )
AB; AB.:
dP (ABy,...,AB,) = ]] d;ﬂ exp (_ ) I z‘|| )

we perform a change of variables by inverting (B52):

-1

C_Ari— fiaAt ({ABT} oy | 3/2
AB; = V2D - ' a{mf} B '6{AB?} = (2D)

This leads to the joint pdf for the increments {Ar;}:

2

dP(Arl,...,Arn)z( ik >Xp 1 g A= fioa,

11 4D 2 At

i=1 (4n DAt i=1
(3.54)

Expanding the square in the exponential:

2
[[A73]]

1 n
_w;[ At; +

Fioa| at, — 287 fH]
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allows to recognize the d = 3 Wiener measure in (854):

n 3 r n r 2
v (H &’ Ar; [-L;”i;”])'

L (anDat P2

d?/vr

.exp<—4§) gj\fi_l\fm +ﬁ E_:f _1- A7 )

h\,—/h\,—/

[Ige@lFar [ ) -arr)

(3.55)

Let’s focus on the stochastic integral (the one in dr(7)). For this we need to
generalize to d = 3 the integration formula we found in the previous section.
Consider a multi-variable scalar function h(r): R*> — R, r — h(r). As before,
we start from the difference:

h(ry) = h(rg) = h(ry) = h(rp—1) + h(rn_1) = h(rn_2) +- -+ h(r1) — h(rg) =

= 30~ h(ri-1) = 3 80 (3.56)

In the discretization, r; = r,_; + Az, with Az = (Az;,Az?, Az}). Each
differential Ah; is then:

Ah; = h(r;) — h(ri_1) = h; —hj_y =

— b + 23: [ J h(ri_1)| Az + ! 23: ih(r )| AzfA? 4+ —
(@) 1—1 = or® i—1 ) 9 el 8xaaxﬂ i—1 i i
3 [ o 3 5
= —h(r;_ } Ax{+ D h(r;_ At 3.57
(®) 0;1 Oz i) agzl [83:“83:6 ( 1)] (3:57)

where in (a) we expanded the first term in Taylor series about 7;_1, and in (b)
we used Ito’s rules, and in particular the fact that:

Nef A} = Nt;2D3y 5
Substituting (BZ31) back in (B58) leads to:

n n 3 o 3 82
h('rn Z = Z Z 8x z 1sz +D Z a z lAti
=1 i=1a=1

T

and then, in the continuum limit:
t t
h(r(t)) — h(r(0)) = /O Vh(r) d&r+ D /O V2h(r(r)) dr

Rearranging we arrive at the desired formula for integration:
t t
/0 Vh(r) - dPr = h(r(t)) — h(r(0)) — D /0 V2h(r(r)) dr (3.58)
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Thanks to (BX58) we can solve the stochastic integral in (BZ53):

t
| f@)-dr()

Inserting f(r) = —VU(r)/v and applying the formula leads to:
[ #r)-dr(r) = —i/OtVU(r(T)) @r(r) =~ UG (1) ~ UG (0) = D [ FPU(r(r) dr
Substituting back in (8353):

4P =dipresp (=5 [ 1F12dr+ 55 |2 Ur(©) - V)] + 2 [ F2U(r(r) dr]) =

zd%wexp<—4; {nfu - v2U]>exp (—Q[U(r(t»—mr(e))})
VTr)
(3.59)
where:
N va% f>P—2DV - f

Using the just found measure dP we can compute path integrals, and in par-
ticular transition probabilities:

W (r, trg, 0) = /]RT AP §(r(t) — 1) = (8(r(t) — 7(0)))y =
1

— [ divresn (=5 [ Virm)ar) stro) —ryexp (=50 - Vi) ) =

= (exp (=55 [0 V) d) 8l (0) = o ex (55 (U - Vo))

This expression is indeed similar to that derived in the specific case of the
harmonic oscillator (BA1), meaning that the techniques we used to evaluate
previous path integrals can be useful in much more general cases.

This observation has indeed a deeper meaning, as we found a way to describe the
dynamics of conservative systems with a path integral. We already know that
the behaviour of these systems can be also described with partial differential
equations (e.g. the Fokker-Planck equation). So, there should be a link between
path integrals and PDEs, that will be explored in the next section.

3.10 Feynman-Kac formula

It is possible to use the machinery of stochastic processes and path integrals
to solve certain partial differential equations, which - as we will see - are of
fundamental importance in Quantum Mechanics.

In this regard, a very important result is offered by the Feynman-Kac for-
mula. The main idea is to use a Brownian process to simulate many paths,
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and express the solution of the differential equation as the average of a certain
functional computed over all these paths.

More precisely, consider the following partial differential equation (Bloch’s equa-
tion):

O Wg(x,t) = DO*Wg(x,t) = V(e)Wg(z,t) DeRV:R—-R (3.60)

The Feynman-Kac formula states that the function Wg(z, t) that solves (B50)
can be found by computing a Wiener path integral:

Wy(x,t) = (exp (— /Ot V(x(r)) dT) S(x(t) — o)y (3.61)

Note that this result can be generalized to more dimensions - but we will limit
ourselves to the d = 1 case for simplicity.

Proof. We now show that (B61) indeed satisfies (B80). As usual, we start
by defining a time discretization, {t;};—o 51, so that g =0 and ¢, =7 is
the instant at which we wish to evaluate the solution Wg(x,t). Then (BH) at
that instant will be obtained by the continuum limit of the discretized average

¢n+1(x):

Wp(z,t) = nlggo Vny1(2)

n+1 dz; n+1 (xl _ xi—l)Q n+1 5
b @) = oo (I ey ) o0 (= X par — 22 86V () ) onss =)

1
(3.62)

Note that ¢, 1(z) is the average of a functional over all paths that arrive in
at the instant ¢, making exactly n + 1 steps from their starting point 0. In the
following, the intuition is to see these paths as being generated, i.e. evolving step
after step from 0 to z. For example, suppose we want to approximate (362).
We would start by choosing an ensemble of paths arriving to x after n + 1
timesteps, compute the functional on each of them, and average the results.
However, we could also do it in another - a bit stranger - way. Consider the
same ensemble of paths we already (supposedly) generated. From each of them,
remove the last step. We now have a set of paths that arrive close to x, and
will arrive exactly there if we let another timestep pass. However, we decide
to compute the functional on each of these paths and then average the results,
before letting them arrive at their destination. So, in a certain sense, we will
estimate the value of the functional “a timestep in the past”. Of course, we
can repeat this process, removing more and more timesteps at every iteration.
At the end, we will have a sequence of numbers detailing the “evolution” of
the functional from the start to the end. Turns out that the rule for such an
evolution is exactly (B®0). So, to prove Feynman-Kac, we just have to find
that rule - meaning how to relate v, 1 to its “past” ,, (in the continuum limit
n— 00).

This is just an informal intuition, that will only be useful as a guide for the
rest of the proof. So, let’s go on.
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For simplicity, we choose the time discretization as uniform, so that At; = €
V1, and:

t
n—+1

thrr=Mm+1le=t=e=

We then rewrite (BH52), highlight the last term (the one with the x, 1) and
integrate to remove the ¢:

2
exp (_(:C—xn) - eV(ac)) (3.63)

Now, with some algebra, we recognize in these integrals a term 1,(x,,), indi-
cating the expected value of the functional over all paths reaching z,, (which
is close to the end-point z) at timestep ¢, = t —e. We start by rearranging,
putting the integration over dz,, at the front:

o) = | ji%e o (_ . 4Den) - GV(”:)) |

1 . - (I Li— 1
" VdrDe JrR*! (1;[ 47TD€> P <_Z:Z:1 ADe EZV 2

(3.64)

Now we change all the x; in the second line to y;, and then add a ¢ (with its
integral) to connect y, to x,, which appears in the integral in the first line. In
this way we will highlight the desired ¥, (x,,):

dz, (z — 2,
(B1a) = /IR r exp (_éﬂ% — EV(ZL‘)> :

dy; "y — i)’ .
'/]Rn (i—l \/M) exp (_1_21 T aiDe ei:Zl V(%)) 6(Tn, — Yn)

And so:

bunie) =V [ (Y )

This is relation between v, () and its “past” ¢, (z) that we were searching
for. Now, to retrieve (B®0), all that’s left is to put (B®68) in differential form.
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We start by simplifying the integral, making it similar to a gaussian with a
change of variables:
2 2

r—x,)" 1 2z r—2x
—(4])::—2:%2:—\/#; T, =+ V2Dez; dzx, = V2Dedz

which leads to:

. 2
Upi1(z) = e—eV(m) i \(/iz_ exp ( ) Uy (x,, + 2V2De) (3.67)

As n — 0o, z — 0. We will not prove this, but note that:

L= Ty \/g
€ 2D
where the first factor is a wvelocity, which must be physically limited, and so
n—+o0=¢e¢—0=z—0.
This means that we can expand ,, in Taylor series about x:

Un (2, + 2V/2D€) = U, () + 2V2Dey) (x) + 2* Deyiy(2) + O(%*?)

Substituting back in (B%61):
d 2

Yna(@) = eV [%( ) /IR T P (—2) +V2Devi(a) [ ﬂiﬂzexp(—;%

1 0

" dz 2 2
—l—Deq/Jn(:B)/lRmz exp | —— +0(€)

(. J/
v~
1

z=—

(3.68)

as the integrand is just a standard gaussian (@ = 0, 0 = 1). Note how the
error term is of order 62, as the first non-null integral in the series will be that
with z%:

0 k odd

/ dz zk(2De)k/2¢(k) _
| n
2 1*(k— 1)l k even

Expanding also the e~V term:

eQVZ(x)
2

eV =1 —eV(z) + + O(€%)

Finally, substituting back in (BB5Y), expanding the product and ignoring all
terms of order 2 or higher in e:

o1 (2) = (@) + Detfy(z) — €V (@) () + O(€%)
Rearranging:

%H % "
¢ Dwn - V¢n

And when € — 0 the first term becomes a time derivative, leading to Bloch’s
equation, and proving Feynman-Kac formula:

O Wg(x,t) = DO2Wg(z,t) — V(z)Wg(x,t)
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3.10.1 Application to Quantum Mechanics

It is possible to map the Schrodinger equation to the Bloch equation (BH0),
and then use Feynman-Kac formula to solve it.

Recall the time-dependent Schrodinger equation for a particle immersed in a
d = 1 potential v(x) and described by a wavefunction i (z,t):

2
MO, 1) = — 0B, 1) o), 1)

This is already similar to (B360), except for the presence of a complex coefficient
i. We can remove it with a change of variable t — it, leading to:

2

ih(i)=v(x,it) = 71 zb(:v it) = —27;7/6%7,0(%2‘15) + v(x)Y(z, it)

Defining ¢ (z,it) = ) (x,t) and multiplying both sides by — 77! leads to:
d 9% . v(z) »
() = — —sid(a,t) — —L(x, ¢t
which has the form of Bloch’s equation:
0 O . A h v(x)
£ 0ast) = D) = V() L v ="
3.11 Variational methods
Consider a particle subject to an external conservative force F(r) = —VU(r),

moving through a viscous medium and subject to thermal noise. The probabil-
ity density for a path x(7) can be derived from (B19), after “dividing by the
volume element” and taking the limit n — oo:

dP
Ofr(r)) = & =
dVv
— exp (— ip @ [Lar (<) = 20w0 ] - - U(r(O))]) -
v(r)
Lot 1 IR0
= exp <_4D ; dr #2(7) 1Dk dT ”H +fV F] +2DV/( 0 d3r-F(r)>
%)

(3.69)

with f(r) = F /v, and v = 67na (n being the medium viscosity, and a the
particle radius). If we change variables in the last integral:

" o dr(7)
/T(O) d r-F(r)—/O dr F(r)- -2

we can rewrite (B09) as a single integral:
1t
Qlr(r)] = exp (‘41)/0 dTL(r(T>)) (3.70)
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with the function L: R — R, r(7) — L(r(7)) defined as:

2
L(r(r) = r2(r) + H”j” + 229 Fir(r) - 2Fir() () =
—'r"T—F(T(T))Z 2 . r(T
= 4y - EEE 1 229 o (3.71)

Classical path.

Consider the classical limit D — 0. Then the V - F' term in (BZZ1l) vanishes,
and as —1/(4D) — oo, there will be only one path with non-zero probability,
i.e. the one r.(7) for which the functional vanishes:

2

P _,

"'"c<7-) - ~

/Ot d7 L(1o(7)) = 0 = /Ot dr

We can then compute that path. As the integrand is a non-negative function,
for its integral to be 0 it must be 0 V¢, leading to:

dr.  F(r.)

dr v

which is just the equation of motion from classical mechanics.

Let’s now use the form (BZ70) to compute path integrals. For example, consider
a transition probability:

W (ry, t|ry, 0) = dr(7) exp (-42 /Ot dr L@«(ﬂ)) (3.72)

S

/C{rOaO;rtat}

v~

Q[r(7)]

Let’s define the functional:

Str(n)] = [ dr Lir()

Given the form of (BZ72), the path r.(7) that minimizes S[r(7)] will give the
greatest contribution to the path integral. The parameter D modulates the
relative contributions of paths. If D — 0, r.(7) will be the only contributing
path, but if D > 1, many different paths will have a significant contribution.
Suppose that r.(7) is indeed important, meaning that D is sufficiently small
(more precisely, that S[r.(7)])/D > 1). Then, we write any generic path x(7)
as the most important one x.(7) plus a “deviation” y(7):

2(7) = 2(r) + (2(r) — z(1))

yE,T)

Note that as the end-points of every path are fixed, y(0) = y(t) = 0. Then,
we expand in series the functional:

Sla(r)] = Sle(r) + y(r)] = Slae] + 55lwe,y] + 5,05l ] + -
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where the § terms are the variations of the functional®. For example, the first
variation S|z, y] is given by, measures how much S wvaries to first order when
changing y(7). As x. is a minimum of S, it is also a stationary point, meaning
that paths close to @, do not change the value S[x.] to first order. Applying
the definition of the first variation, this leads to the Euler-Lagrange equations
for determining x..:

_ OL(r(7)) _ d 9L(r(r))

| .
IS[xe, Y] = 9. oL =0 i=1,2.3

Then, note how all other terms of the series involve integrals of y(7), which do
not depend on x - as y(7) starts from 0 and returns to 0 at ¢. So:

Sla(r)] = Slwel + 505l y] +

(. J/
-~

h(t)
Substituting back in (BZ72):
Wy thro, 0) =~ exp(h(t) exp( — 15 Slael ) = @ty exp (35 [ dr Lire(r)))
ry, tlrg, —\4Dexp exp| =550 | = exp | =5 J, 47 Lire(r
(1)

The function ®(t) is called fluctuation factor, and its computation is not trivial
in the general case. However, if we are dealing with transition probabilities, we
can use the normalization condition to find it:

/1R3 ErW(r, tlr,0) =1

{Example 12 (Simple integral with variational methods):}

An example will hopefully clarify the essence of the variational method.
Let’s start with a already known integral, in the d = 1 case:

B ¢ dz(1) I _
W (x,t|zg,0) = /]RT (g \/m) exp (—4D [ () d7> Sz —(t)) =

(3.73)

1 (z — )
VAan Dt 4Dt
Let’s compute it again, this time using variations. In this case we are
interested in the functional:

t
Slz(7)] = /0 #2(7) dr (3.74)
To minimize it, we solve the Euler-Lagrange equations:

4 0S(z) _ 0S(x,)

=0=>0-2¢,=0=73.(r)=0

dr 0Oz Ox
’nSee www2.math.uconn.edu/~gordina/NelsonfAaronHonorsThesis2012.pdf for a re-
fresher
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Integrating two times:
T(T) =a=z.(1) =ar+b

The boundary conditions are path’s two extrema:

2(0)=b=0; w(t)=at+ay=2=a= I;IO

leading to:

r— Ty

xc(T) = I + ¢

T

So the path minimizing S is just the straight line joining zy to x. We can
now express any path z(7) as a deviation from the x.(7):

x(1) = x.(1) +y(r)  y(0)=yt)=0 (3.75)

This is a change of variables for (B73), from z(7) to y(7) (z.(7) is a fized
path). As this is just a translation, dz(7) = dy(7) and the path integral
becomes:

W ta.0) = [, (H m)é@(@—msm(r)w(m:

B €{0,0;0,t} ( 11 m) Slae(r) +y(7)] (3.76)

To compute S, first we differentiate (B=73):

and substitute in (BZ72), leading to:

St = [ dr (et = [ 20 dr+2 [ o ar+ [ 5

Note that the middle term vanishes. We can see it by integrating by parts:

[ aemae)ar = wry@], - [ wryrar =0

as y(0) = y(t) = 0 and Z.(7) = 0. Going back to (B=70):

W(l‘,t|l’0, - / ( H \/m) 5(y(t) - 0) exXp <_41D

As x.(7) is fixed, we can bring it outside the integral:

1 t

= exp <_/0t:1'72( )/ (H \/m) d(y(t) —0)exp <_4D A 92(7)d7>

o(t)
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We recognize the remaining path integral as a function ®(¢) of time only,
and finally:

t 1 2_ 2 t
W(a:,t|a:0,0):(1>(t)/0 dra2(r) = (t)exp |~ 15 <‘” tfo)/o ar| =
t

= ®(t) exp <—(I4Dt0)>

To find the remaining ®(¢) we can now use the normalization condition:

+o0 ]
/ de W(z, t|zg,0) =1

—00

In this case, this is just a gaussian integral:

(z — x0)? B 1 1
/Rdx D(t) exp <_4mo> = O()VArDl = 1 = d(t) = WiEoT

And so we retrieve the correct result:

2
W (x,t|zy,0) = ! eXp<_($—fco)>

VAar Dt 4Dt

Gaussian integrals. There is another, more specific, way to interpret the
results we discussed in this section. Instead of working in the continuum, we
could use a discretization, and see path integrals as (BZ7Z3) as integrals of a
highly dimensional gaussian. For example, in the case just examined, we have:

W (2, tlzg,0) = lim "Iy

n )2
. /w(Hm) Xp( ; ar >5(5”’_x")

Performing the integration over the dz,, we can remove the ¢, leaving only a
multivariate gaussian:

I — ﬁ dxz exp Zn: i Li— 1)
"R \/47rDAt L VAT DA, = 4DAt,

This is a gaussian in the form of:

B =005

1
/]R” d"x exp (—QwTAaz + bT:c> (3.77)

Note that removing the 0 inserts a linear term in the exponential, here high-
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lighted:

o (Z’l — l’i_l)Q m%b + 2$nxn—1 + x?L—l
_|_
ADAL, ADAL,

zn: — T 1)2
= 4DAt,
and so b # 0.

Recall that to solve (B=Z1) we proceeded with a change of variables, x = x.+ vy,
where @, is the minimum of the gaussian (see 10/10 notes). This leads to a
result that is proportional to the exponential evaluated at @,

n O i )_ (2m)"/ (1 7P =il )_
/]R”d acexp( 2:1: Ar+b x| = det(A)eXp 2bA b) =

3 (27T)n/2
~Jdet(4)
OF (x)

Z; ‘m:a:

exp <Statw [—;CBTACI: +b- m} )

Stat, F(x) = F(x.); x. such that

=0 Yi=1,...,n

c

So, in the discrete case, the same variational result just derives from choosing
the best set of coordinates to describe the multivariate gaussian.
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CHAPTER 4

Variational Methods for Path
Integrals

4.1 Variational methods
(Lesson 15 of

{Example 13 (Overdamped harmonic oscillator with variational methods):} 21/11/19)
Compiled: October

Consider a particle immersed in a harmonic potential U(z) = mw?2?/2 and 13, 2020
subject to thermal noise, moving in a viscous medium. In the overdamped
limit m /vy — 0 (where v = 67na, with 1 the medium’s viscosity and a the

particle’s radius), the equation of motion becomes:

dz(t) = —ka(t)dt + V2D dB(t) k=——
A path {z(7)} solving that equation has a infinitesimal probability given
by:

B L da(r) 1t 9
dP = (Tg+ Toha dT) exp (_4D A (T + k) dT)

as we already derived. We are now interested in computing the transition
probabilities:

W (z,t|zg,0) = /IRT d(z(t) —x)dP

Following the variational method, we arrive to:

W (x, t]z0,0) = D(t) exp (—4;5[%(7)]) (4.1)

where S is the action functional for the harmonic potential:
t
Sl = [ Lbaydr L w) = (@ + ka)?

and z.(7) is the path that stationarizes S[z(7)], meaning that 6S[z.(7)] = 0
and so it satisfies the Euler-Lagrange equation:

d oL

|
0=
v, dt Oi

= (i, + ka,) — 2(F, + ki) = 2(k*z. — &)

Le

o
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as:

oL _
or
OL )

9% = 2(& + k)

So, to find z.(7) we need to solve:

2k(& + kx)

T, = k2:cc
xc(0> = o
z.(t) ==

This is the second order ordinary differential equation for an harmonic re-
pulsor, which has the following general integral:

2.(7) = A" + Be™*T

Imposing the boundary conditions leads to:

|
rg=A+B B=uxy—A
O' = { it 0 okt =zt — g = A[e* — 1]
r = Ae*t 4+ Be Ft re = Ae”"" + B
kt —kt kt —kt —kt
Lo Te e :(xe —zg)e _ T — e
G2kt H ekt—Qe_kt2 2sinh(kt)
B A z — zpe
= Tn — = —_—-—
0 2sinh(kt)

Then we evaluate the action at the stationary path z.(7):

t t 1 t
Slz(1)] = /O (& + kz)2dr = /0 kA2 dr = 4k2A2 27| =

2k 0
o2kt _ okt
= 4kA® ——— - = 4kA sinh(kt) ¢ =
oK
(x — a:oefkt)Q w k(r— xoefkt)Z 2 2k(x — a:oefkt)Q
_ ot — —
4Sinh(kt) ekt _ e—kt e—kt 1— e—th

Substituting back in (E):

W (x,t|zg,0) = D(t) exp <_2D(1—k6_2kt)[x _ er—ktF)

All that’s left to find ®(t) is to use the normalization condition:

—_—
k —kty2
(v —zpe "] )

2D(1 — ¢ 2k

!
1:/dw,t ,O:CIDt/d _
[ W (a, 1]20,0) <>Rxexp<

T
:cID(t)\/Z:CD(t) 2”D(1k ):>CI>(t):\/2:D\/ﬁ
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And so the full solution is:

k (z—zge )2

k
Wee o 0) =\ 5 g o <—1_>>

[k
t—00 2D exp( 2Dz> )

As before, we can compute the t — oo with a Maxwell-Boltzmann distribu-

—_

tion e ?U®) obtaining:
k k 1 kpT
2 B
fmwx——a: = D= =—=—"—"—= Dy=kgT

as we previously derived.

If we do not consider the overdamped limit, however, the equation of motion
is given by:

mi = —yx — mw?z 4+ v 2D~

This can be rewritten as a system of two first order (stochastic) differential
equations:

dv (1) = —lU(T) dr + 12D

m m

dB

It is convenient to “symmetrize” the system, by adding a stochastic term also
in the first equation:

dz (1) = v(r)dr + 2DV dB
V2D
V4B
m

dv (1) = —lU(T) dr +

m
and then we’ll consider the limit D — 0.
First, as usual, we discretize, with {¢;},—~¢ ., and t, =0, t,, = ¢, arriving to:
ACL’Z‘ — Ui—lAti —|— V QﬁABZ
AUZ' = —lvi,lAti + l V 2DABZ
m m
Where the velocity is evaluated at t;_; as per Ito’s prescription. As AB; and

AB; are independent gaussian increments, their joint distribution is just a
product:

) " dAB; dAB LWAB! 1AL
dP (ABy,ABy,...,AB,,AB,) 2 :
(ABy, 15 ns <H V21 At /2T A ) ( A 21';1 At; )
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As done previously (see 14/11 notes), to get the distribution for Az; and Av;
we make a change of random variables:

with jacobian:

det

det

O{AB;}
o{Ax;}

0{AB;}
o{Az;}

leading to:

P ({Ax;}, {Avi})

P ({x(7),

v(m)}) =

AIE,L‘ — Ui—lAti
V2D
ABZ = <AU2 + l’Ul‘,lAtZ)
m

m
YV 2D

= (2D)™"/?
_ —n/2
R (A
—det‘a{ABi} = (Lvep) = Ty2D
i=1 VAT DAL, \/47TDAti72/m2

1 m? <Avi + V/mvilAtZ)Q
cexp | —= At;| ] -
! ( 2 527D [ At Z

n 1 <AIZ — UilAti>2
: oY | (BT ) Ay ) =
exp( 229D [ At :
" dAZL‘Z dAUZ

I1

1 VAT DAL, \/47rDAti’y2/m2

1=

.exp( D2z[(m’z 7%_1)2&4).

.exp( 422 [(i‘f vi_1>2Ati]) (4.2)

Taking the continuum limit n — oo leads to:

t

dz ()

do(7)

T=O+ \/47Tﬁ dT \/47T_D dT fy2/m2

- exp

(_

2
m
4D~

i Oth[ (1) + Lo }

4D

In the limit D — 07, 1/(4D) — o0, and so the gaussian pdf for the AB;
becomes infinitely thin, and the only path with a non-vanishing probability will
be the one where:

/Oth[j:

As any > 0 value will lead to exp(—
the discretization becomes:

1

\ 47TDAtZ

1

4D

(

Aty

Al’i

—o(n)? =0

o0) = 0. In particular, the i-th factor of
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1 1
= ———exp <—A(Axi - vi_lAti)2> — §(Az; — v;_1AL;)

VArDAt; 4DAt; D0

where we used a limit definition for the §:

. 1 2
lg% T &P (—4€> = i(z)

with € = DAtz and z = AiL‘z — vi—lAti'
Substituting back in (£22):

” dA
P ({Az},{dvi}) = | T] dda; 6(Ax; —viy At;) -
i=1 \/47rDAtZ7 /m?

'eXp( 4DV & 1[< 7”“) AtiD

Now consider the discretized transition probability:

Wz, Un, tplzo, vg,0) = /]R"xIR” dP ({z;,v;})d(z, — x)o(v, —x) = (4.3)
dA
— [ [T ases 5w —via) Ui
REXR™\ =51 \/47TDAtﬂ /m?

2 n 2
m Av;, vy )

cexp | — + —v,_ At | )o(v, —v)o(z, —x

p( 4D72;[(Ati mzl z]) (n )(n )

Let’s focus on the integrations over z;:

i=1
= /IR” dAzq ...dAx, §(Azy — vyAty) ... 6(Ax, — v,_1AL,)d(z, — T)

We then perform the change of variables Ax; = x1 — xg, with xy constant, so
that dAzxy = dz;. Then we integrate over dxy, eliminating the first 6 and
setting ©1 = xg — voAty:

/IR” dzq dAzy ... dAx, §(z1 — xg — veAty)I(Axeg — v1ALy) . .. 0(Ax,, — v,_10t,)0(z, — ) =
/IR"* dAxy ... dAx, (9 — xg — VoAty — v1Aly) ... §(Ax,, — v,_1AL,)0(x,, — T)

Repeating these steps for all the other variables except the last one, we arrive
to:

= /]Rdflfn 0 (an — Xy — Z UilAti> (5<In — LU) =9 <I‘ — Xy — Z vilAti>
=1

i=1

In the continuum limit, this becomes:

5<x—a:0—/0tv(7)d7')
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Substituting back in (E=3) and finally taking the limit n — oo:

t du(r) m® ot AN
W(:E,v,t\xo,vo,O):/RT TE+\/W exp (_Wy/o (U(T)—i-mv(T)) dT)

S(0(t) — )8 <x _my— /Ot o(r) dT)

We can now use the variational method to compute that integral. So, let v.(T)
be the path, starting at v(0) = vy that stationarizes the action functional:

Slu(r)] = /Ot (#(r) + %(T))QdT

m

so that 0S[v.(7)] = 0, and also satisfies the constraints imposed by the 9:

’u(t)év $—£L‘0£/0t1}(7')d7'

Then, the path integral is given by:

2

W (x,v,t|zg,vg,0) = D(t) exp (—47;)7 /Ot (@C(T) + ;vc(7)>2 dr) (4.4)

All that’s left is to compute v.(7) and evaluate the integral. This is a problem of
constrained optimization, for which we use the method of Lagrange multipliers.

Brief refresher of Lagrange multipliers. Suppose we have two functions
F.¢g: R> = R, with F(z,y) being the function to maximize, and g(z,y) =
¢ € R a constraint. A stationary point (zg,yg) of F' subject to the constraint
g(z,y) = c is such that if we move slightly from (z(,y,) along the contour
g(z,y) = ¢, the value of F'(x,y) does not change (to first order). This happens
if the contour of F' passing through the stationary point F(x,y) = F(zg,yp) is
parallel at (xg,yg) to that of g(z,y) = ¢, meaning that at (z,yg) the gradients
of F and g are parallel:

VeyF =AV,,9 AER
(Here we assume that V, ,g(zg,yp) # 0). Rearranging:

Vay(F(2,y) = Ag(z,y)) = 0

Together with the constraint equation g(x,y) = ¢, we have now 3 equations
in 3 unknowns (z,y, \) that can be solve to yield the desired stationary point

(70, Y0)-

In this case, we have functionals instead of functions, and functionals deriva-
tives (i.e. variations) instead of derivatives. So, to find the stationary points

of:



subject to the constraint:

t
/O wir)dr=z -z,  (b)

we need to solve:

<’U(7‘) + ;U(T))Q — )\U(T)} dr=0

N J/

L(v,0)

5/(;

And applying the definition of first variation (the § above) leads to solving the
Euler-Lagrange equations:

oL _doLi .,
ov dr 00 V=V, B
Expanding the computations:
7\ d . i} 7V2 A
2 (vc + Ew) e A — I [2 (vc + Evcﬂ = 0= (1) = v.(1) <E> —3

The homogeneous solution is again a combination of exponentials:
v.(T) = Aexp (—17') + Bexp (17'>
m m
And for the inhomogeneous general integral we just need to add a particular
solution, for example the one with constant velocity v(7) = const = ¥.(7) = 0,

given by:
2
-3

Then, we need to impose the boundary conditions:

v.(0) = vy v.(t) = /Otv(T) dr = (z — xg)

So we have 3 parameters (the two constants of integration A, B and \) and 3
equations. After finding all of them, we just need to evaluate the integral (2=2)
(computations omitted).

4.2 Diffusion with obstacles

(Lesson 15 of

Consider a particle in a potential U(z) (fig. B0, with a local minimum sepa-  21/11/19)
Compiled: October

rated by a barrier. In the classical case, if the particle’s energy is sufficiently 13, 2020

low, it can become forever trapped inside the minimum. However, in the pres-
ence of thermal fluctuations there may be a possibility of escape - a sort of
classical tunnelling.

T

Figure (4.1) — Potential graph
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We first consider an easier problem, that of the diffusion process on a compact
domain [a, b], representing the boundaries of the potential well of fig. B, We
then suppose that the particle cannot escape from the left side a, but it can do
so - and always does - from the right one b. This means that a is a “reflecting”
boundary - i.e. if the particle hits x = a it “bounces back”), while z = b is
an absorbing boundary, that is a particle reaching b can be “absorbed by the
7 and disappear from the system. In the more general case, the
probability of reflection at x = a or absorption at x = b will not be certain,
but will depend on the particle’s energy.

environmen

Recall the Langevin equation:

dz(t) = Mdt—i— V2D(z,t)dB F(r) = -U'(z); v € [a,0]  (4.5)
f(vt)

This is equivalent to the Fokker-Planck equation:

éV[/(gv,15|ato,0) = 0 [f(a:,t)W(x,ﬂxO,O) — 8(D(:E,t)W(x,t|a:O,O))} =

ot Oz O
J(z,t)

. | U'(x) o (kgT \_
T s W(l"at’ﬂ?oao)—ax(,YW(-??,WEO?O)) =

~—~—

A(z) D
(4.6)
= —0,[A(x)W (w, t|zg, 0)] + 2[D(x)W (w, t|g, 0)] (4.7)

where we inserted D(x,t) = D = kT /v (derived from the equilibrium limit).
J(z,t) is the probability flux coming out from z at instant ¢.

To solve (E) we need a precise mathematical description for the reflecting and
absorbing boundaries:

e In x = a, the reflecting boundary condition means that:

J(a,t) = A(a)W(a,t|zg,0) — [0, D(x)W (z, t|xg, 0)]]1=4 20 Vit
(4.8)

As every particle that goes in a¢ immediately comes out after being re-
flected, the inward flux and outward one are the same, and so their sum
is 0.

e In b, however, the absorbing boundary condition means that the proba-
bility to find the particle here is exactly 0:

W (b, t|z0,0) = 0 (4.9)

As z € [a,b], the domain of equation (E) is not isotropic anymore - meaning
that the solution W (z,t|zg,0) will depend on z, making the problem much
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difficult. The idea is then to translate the problem from finding the full transi-
tion probability W (z, t|zg, 0) to finding a simpler, but still interesting, function,
that depends on less parameters.

One possible choice is given by the survival probability, i.e. the probability
that a particle starting at a given point z will still be inside the interval [a, b]
at a later time ¢:

b
Gla,t) = [ dyW(y,t]z,0)

Note that we keep the starting time fixed at 0, and integrate over all the possible
destinations of the particle - reducing the number of variables from 4 to 2.
Note that generally G(z,t) # 1, as the boundary in b offers a possibility of
escape, leading to a wiolation of the conservation of probability. In fact the
condition (B9) W (b, t|xg,ty) = 0 does not mean that the flux here is null.
Recalling the definition of J(z,t) from (E8):

0, t0) — Ox(D(z)W (2, |70, 10))| 3= =
_(8 D , L[, tO) - D(b)aww(x7t|x07t0)|w:b 7& 0

Now, we need to translate (E) to a differential equation for G(z,t). We can
start by evaluating the time derivative of G(x,t):

0
&G x,t) / dx —W (', t|z,0) (4.10)

We could use (B2) to expand the 8tW(x’, t|z,0) term - but this does not really
work:

—G (z, 1) / d’ [0 (A )W (2! |z, 0)) + 0% (D ()W (2, |z, 0))]
To reconstruct derivatives of G(z,t) in the right side, we would need to bring
the d  out of the integrals - but this is not possible, as 2 is the variable of
integration. One way to solve this would be to somehow move the derivative

from 0 to 0.
To do this, we start from the ESCK relation:

b
/a dzy W(zg, ta|zy, t1)W (21, t1]x0, to) = W (w9, ta|z0, t0) to <ty <ty
Differentiating with respect to the middle time ¢;:

b
/a day [W (w1, ti]wg, to) Oy, W (g, talx1, t1) + W, tolzy, ty) Of W(wy, t1]xo, t9)] =0

We then use (B22) to expand the highlighted term:

b
/adxlW(x17t1|$07t0)3t1W($2,t2|$17t1)+

b
+/a day W (@, toly, t1) [0y, Alx)W (21, 11|z, to) + 05, D(w)W (21, 81|70, )] = 0
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And then we integrate by parts the second term, to move the 9, and 8% )
derivatives:

b
/adxlW($17t1|$07t0)3t1W(I2,t2|$17t1)+
xlzb xlzb

+ Wy, tao|zy,t1)[0,, D(x1)W (21, t1 |20, t0)]

r1=a r1=a

—D(z1)W (21, t1]20, 10)[0p, W (22, ta|x1, 11)]

—A(z)W (21, t1|z0, L)W (22, 2|21, 11)

:Clzb

Tr1=a
b
+/a day [A(z)W (21, 11|20, 1), W (w2, tal1, t1) + D (@)W (1, tr]zo, t)]07, W (w9, talr1, 1) = 0
In the limit t, — 0, W(l‘l, t1|l’07t0> = (5(1’1 — x0)5(t1 — to) This makes all the

boundary terms vanish (given that zy # a,b), and allows to compute the other
integrals (with z; = 2y and t; = 1), leading to:

) ok
W (xg, ta|mg, tg) + Alz0) 5—W (22, t2| 20, ) + D(30) =5 W (29, t2|T0,10) = 0
8150 0360 8230

Rearranging, and dropping some subscripts:
O, W (0, t|g, to) = —A(0) Dy, W, t]g, tg) — D)0z, W (w, g, t)  (4.11)

This is the backward Fokker-Planck equation, as all derivatives are with
respect to the starting time or position - meaning that it can be use to “retro-
dict” the past given the future. This could be used for computing 0;G(x,t) -
but first we need to express the derivative J; in terms of the derivative 9; that
appears in 0;G(z,1).

Supposing that A(x) and D(x) are time-independent (as we implicitly did in the
previous notation), then (E=7) is an autonomous differential equation, meaning
that the solution does not change after a time translation:

Wz, t|xg, tg) = Wiz, t —tg|xg, 0)
Differentiating with respect to ty:
Oy W (, t|zo, to) = Oy W (1|0, 0)|,_ 1,0t (t—t0) = =0 W (z,t — tg|g, 0) = =G, W (x, t]xo, to)
Substituting this relation in (E-11) we get:
OW (@, |z, to) = A(0) 0, W (2, t|zg, to) + D(w0) 0z, Wz, tzg, t)  (4.12)
Finally, we can use (B12) in (E10):

0
&G z,t) / da’ 0, (2’ t|x,0) = (4.13)

/ da’ [A(2)0,W (2, t]z, 0) + D(2)02W (2, t|z,0)] =

= Az /dext|x0)+D 32/dext|:z:O)

G(xyt) G(I,t)
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= A(2)9,G(x,t) + D(2)02G (x, 1) (4.14)

We have now a differential equation for G(z,t), and we need to translate the
appropriate boundary conditions (E8) and (E29). The latter is immediate:

W(b, t|1‘0, 0) =0 VtVz, € [CL, b] = G(x7t)|x:b =0 (415)

However, the analogous of (ER) requires a bit more work. So we start again
from the ESCK relation, and differentiate with respect to the mid-time:

b
@/dmwyﬂ%ﬂwwﬂ%mzawanmm:o
a
Expanding the left side:
[ ay Wy, 71, 0) 0,0 thy, 7) + W tly,7) B (g 7l )] = 0

We can now use (B-1) for the term highlighted in yellow, and (2Z2) (also called
forward Fokker-Planck equation) for the term in green, leading to:

[}y = Aw)3, Wty 7) — D)W Gy, D)W 7, 04
[y -0, AWW (5, 71X,0) + D)W (3, 7l W (&' 1y, )

We now integrate by parts the first term, moving the 9, and (‘95 derivatives
away from W (z' tly,7):

— AW (', tly, )W (3, 71, 0) | _ﬁ / dy [0, A()W (y, |, 0)]W (' tly, 7) +

y=b y=>b
+W(a' tly, )8, D)W (y, 7|z, 0)]|  +

y=a Yy=a

— D(y)W (y, 7|z, 0)[0,W (z', t]y, T)]

b
— [ ay B D)W 7l OIW !ty ) — [y, (AW (e, )W (! tly, 7) +

b
+ /a dy 05 [D(y)W (y, 7|z, 0)]W (2, tly,7) =0

The highlighted terms cancel out, leaving only boundaries:

— AW (', tly, YW (y, 7]z, 0))y:a — D(y)W (y, 7|, 0)[3, W (2, ]y, 7)] yib+
W1y, )10, D)W (0| =0

Now W (b, t|zy,0) = 0 (B9), and also W (z',t|b, 7) = 0, as a particle starting in
b escapes immediately from [a,b]. This makes all the boundary terms vanish
at y = b, leaving only:

+A(Q)W (2, t|a, 7)W (a, 7|z, 0) + D(a)W (a, 7|z, 0)[8yW(x’, tly, 7)]
_W($/7 t|a7 T) [8yD<y)W(y7 T|l‘, O)Hy:a =0

ly=a
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Collecting W (', t|a, 7) allows to recognize a J(z,t) term:
D(a)W (a,7|z,0)[8,W (', tly, 7)]|y=a+
—H/V(a:/,t\a,T) A(a)W (a, 7|x,0) — [0,D(y)W (y, 7|z, 0)][y=a| =0

(. J
~

J(a,T)

But recall that J(a,7) = 0V as per (E9). So only a term remains:
D(a)W(a,T|:v,0)[8yW(x',t|y,T)]|y:a =0= W(a,7|z,0) =0V 8yW(x',t|y,T)|y:a =0 Vr
Finally, by integrating the second term:
K@@memﬂ:@ﬁmmmmWﬂ:@a%ﬂ
And evaluating at y = a leads to:
0,G(2,8)|yea = 0 (4.16)

which is the last boundary condition we needed for G(x,t).
So, the problem now becomes:

9,G(x,t) = A(2)0,G(x,t) + D(2)92G(x, t)

0y G (2, 1) g=q = 0

G(z,t)]p=p =0

We can make one last simplification by removing the time coordinate. Let’s
introduce T'(z) as being the lifetime of a particle starting at x - meaning the
amount of time needed for that particle to “disappear” by reaching b (so, in
this case, T'(x) coincides with T, (b, z), i.e. the time to the first visit of b). The
exact value of T'(x) will depend on the particle’s path, making 7T'(z) a random
variable. Note that:

G(z,t) = P(T(z) > t)

That is, the survival probability is the probability that the particle has not yet
reached b during the time interval [0,¢], which is equivalent to saying that its
lifetime is greater than t. Denoting with Py, (7}) d7T, the probability that a
particle will visit b in the time range [T}, Ty, + dTp], we have:

+o00 t
Glat) = P(T(@) > 1) = [ Pro(Ty)dTy = — [ Pey(T})dT;

Differentiating with respect to t:
G (x,t) = —Pry(t)

As we need a function, and 7T'(x) is a random variable, we consider its average,
i.e. the mean time of arrival at b Ty(z):

E@EUW»EKWWM@&:—AWWQ@ﬂ&:
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- —tG(x,t)\:m + /0 G dt = (G) (4.17)

(a)

In (a) we used that ¢{G(x,t) vanishes at ¢ = 0 and also at ¢ = 400, because

the particle will eventually reach x = b if given infinite time to do so. It is not

clear if G(z,1) == 0 faster than t — oo, so that tG(z,t) == 0. Here, we
—00 —00

will just assume it, as it is physically reasonable.

Then, we need to translate once again everything to expressions involving 7j,(x).
Fortunately, this time it is much quicker. To get the differential equation, we
just integrate (B12):
+o0 400 9 +o0
/O dt0,G(x,1) = A(z)d, /0 G(z,t) dt + D(x)0? /O G, t) dt
And applying (ET17) we get:
t=-+o0 9
G(az,t)‘t_o = G(z, +00) — G(x,0) = —1 = A(2)9,Ty(x) + D(2)9>Ty()

as G(x,4+00) = 0 (no particle lives eternally) and G(z,0) = 0 (as a particle
does not “disappear” immediately for = # b). Similarly, integrating (Z18) and
(213) leads to:

A(2)0,Ty(z) + D(x) 0o Ty(x) = —1
Ty(z)|p=p = 0
ame(w)lmza =0

This is a linear ordinary differential equation. We start by letting f(x) =
0, Ty(x), leading to:

fla) =0
First consider the homogeneous equation:
A(z)®(z) + D(z)®' (2) =0

This can be solved by separation of variables:

4 @ A  Ay)
AP+ DY — 0= - L= n|d :—/ 2W) 4
P =% p 4z = In|®(z)] s D(y) YT

where zg is a fixed point € [a, b] (it does not matter which one). Exponentiating:
v Aly)
D(x :exp(— dy)k‘
(@) o D(y)

Where k = €° will be fixed by the boundary condition f(a) = 0. First, we
need to find the general integral of the inhomogeneous equation - for example
by using the method of variation of parameters.
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Refresher of variation of parameters. Consider the following Cauchy prob-
lem:

y' = A(t)y + b(t)
y(to) = vo

Suppose we know a solution ®(t) of the homogeneous equation y' = A(t)y.
Then & = A®. We search for a particular solution for the full equation in the
form @(t) = P(t)c(t). Substituting in the equation:

Dt d®=APc+ D = ADc+ b= =D b

This can be integrated to find ¢, and then ¢. Then, the general integral will be
the sum of the homogeneous solution ®(t) and the particular one @. Imposing
the boundary condition will lead to the general integral:

-1 t —1
o(t) = O(1)D(ty) Lo + D) /tocp(T) b(r) dr (4.18)

Applying formula (EIR) leads to the desired f(z):

f(x) = ®(2)®(a) - 0+ D(x dzCID() [ ! }:

D(z)
—on(- %Dydy% o (+

ZA(?/)
zo D(y)
__:Jc < zA()

B aD P\TL D

Recall that f(z) = 9,Ty(x), with T,(b) = 0. So, to find Tj(z) we need one last
integration:

1) = [ du ) +e

Imposing Ty(b) = 0 leads to:

Leading to:

:/bxdyf(y) /dy/y dz exp (—/Zyd’u gig) (4.19)

4.2.1 Escape from a potential well

Let’s now use (E29) to solve the problem we started from. So, suppose to have
a potential U(z) with a local minimum at = = ¢, and a local maximum at
x = d, with ¢ < d. Consider a particle starting at x = ¢. We wish to compute
the average first visit time of d, denoted with (T'(¢ — d)). This can be done by
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redefining the system as the half-line [—oo, d], with © = —o0 being a reflective
boundary, and x = d an absorbing one. We can do this because we are not
interested in the behaviour after passing d, but just in the mean arrival times.
So A(z) = —0,U(x)/7. Supposing to be at equilibrium, D(z) = D = 1/(yB).
Letting a = —oo and b = d leads to:

Ty(z) = /xddy/_yooﬂvdzexp <—/Zy—dva”[{y(v>7@) _
= 5VAddyLymdzeXp(ﬁ[U(y) -U2)) =

d d
=By /x dy ™) /_ yoo dze PV = gy /x dy PUGHEW)

s

W)

It is not possible to evaluate this integral in the general case. However, in the
limit 5 — oo (T'— 0) we can use the saddle-point approximation.
Recall Laplace’s formula:

/ber(x) dr ~ 21 M f(xo)
a M=too M| f"(xo)

where f'(x9) = 0 and f"(z) < 0.
For the integral in dz, f(z) = —U(z). We search for a maximum of f(z), i.e.
a minimum of U(z), which is z = ¢. So:

/y eIV gy = 2T HU()
—00 BU (C)

This is a constant, and can be brought outside the integral over dy. Then, by
applying Laplace’s formula once again:

d o
dy SUW) SU)
/c BlU" (d)|

as now f(y) = U(y), and U has a local maximum in y = d. Finally, this leads
to:
2m
Tu(e) =, —rmeexp (31U () ~ U(0)) (4.20)
U™ (e)|U7(d)]

Note that the mean transition time from ¢ to d diverges exponentially as the
barrier’s height U(d) — U(c) rises. Equivalently, the escape transition rate
1/Ty(c) — 0.

4.3 Feynman Path Integral

We finish our discussion about the diffusion formalism noting several correspon-
dences with quantum processes.
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Recall the Schédinger equation:

P w2 92
ihaw(x,t) = —%ﬁw(x,t) +V(x)p(x,t) =

= H(x, 02, t)(z, 1)
where H is the Hamiltonian operator:

2
H(x, a2, t) = —h—ai + V(x,t)

2m

If we consider a free particle (V(z,t) = 0), the Schrodinger equation becomes:

h
Opp =iz -Opb (x,0) = d(x — ) (4.21)
m
which is very similar to the diffusion equation:
oW (z,t) = DOW (z,1) W (z, t|zg,0) o = 3z — ) (4.22)
In fact, we can map (6224) to (E=22) by defining a quantum diffusion coefficient

Doy = ih/(2m).

Does this mean that all properties of the diffusion equation - and its solution
- can be mapped to the quantum case? Unfortunately, the answer is a bit
complex.

Recall that the solution of (A=22) for a particle initially starting in xq at t; is:

W (| t)—; G (4.23)
B D —tg) T\ 4D(t — to) '

By substituting D <> Dy we can construct the analogous quantum solution:

— 2
P(x,t) = _2m exp ( m @_m) (4.24)

An(t—to)ih "2 t—t

Note that now the exponential argument is complexr, making basic properties
of (A223) not-trivial. For example, if ¢ — ¢(, the exponential in (E=23) tends to
ao:

tligt W(ZL‘,t|IEO,t0) = 5(1; - ZL'())

giving back the starting distribution, as expected.

The same, however, does not happen for (E=24), given the presence of the i.
Nonetheless, it is true that in the limit ¢t — ¢, (E224) is a infinitely oscillating
function, meaning that it is 0 almost everywhere. This can be proven by using
more sophisticated techniques, such as the stationary phase approrimation.

What about path integrals? If we start with the usual definition and make the
substitution D <> Dy we get:

P, t) = (O(2(t) —2)h)w =
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¢ x(T x(1)]?
:/IRT H+\/%J\)Ad7_exp <_4D1QM /Ot {ddg-)} d7'> d(z(t) —x) =

=0
t (T i tda(r 2
— /IRT H+ \/ZliD(QﬁeXp <h;m/0 [ddg— )} d7'> d(z(t) —x)

Note that now trajectories are weighted by a complex number. This means
that they are not probabilities - and in particular, we cannot use Kolmogorov
extension theorem to prove the existence of such a measure as the continuum
limit of a measure defined on discretized paths.

However, we note that in the limit 7 — 0, the integral can be approximated
with the saddle-point method, which returns the classical trajectory - the one
where the phases oscillate slowly.

In fact, it can be proven that Q)M cannot be derived by statistical mechanics

7"

alone: quantum “noise” is very much different from thermal “noise”!

Consider now the more general case of non-zero potential:

9
ot

wlnt) = ig02u(e, )~ Uy )

which is just the quantum evaluated version of the Fokker-Planck equation:
oW (z,t) = DO2W (z,t) — V()W (z,1)

with the substitutions:

ih
D= Dpyyy = —2 4.9
_>.QM o (4.25)
1
V -V
)

The solution we obtained from discussing the diffusion process is:

W (. tlr,to) = {exp (— /Ot V() dr ) 8(a(t) — ) =

= [ H de ( 4D/ dT—/tV(x(T))dT> 5(x(t) - x)

Applying (E235) we arrive to the Feynman path integral:

o= [, H deep( /td [552;7)—1/(3;(7))])5(x(t)—x)

(4.26)

To compute it we can resort to variational methods. We define the action
functional S as:

S = /Ot dr L(i(r), 2(7))
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Note that the Feynman path integral weights every trajectory with the following
quantity:

exp (;S ({x(T)}Te[o,t}))

Then, according to the variational method, we can approximate ¢ (z,t) by eval-
uating it only for the most contributing trajectory, i.e. the one that stationarizes
S: 0S5 = 0, implying:

Yo' Br T At O lu,
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Baiesi’s Lectures
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CHAPTER 5

Gaussian integrals

5.1 Moments and Generating Functions

Consider a continuous function f: R — R, z + f(x). The n-th moment of f
about a point ¢ € R is defined as the integral:

o
= | _(@=0"fa)de
Moments provide a way to quantify, in a certain sense, the shape of f. For
example, if f(z) is a linear density ([kg mfl]), then the 0-th moment is the
total mass, the first one (with ¢ = 0) is the center of mass, and the second is
the moment of inertia.

Moments are especially useful if f(x) is a probability density function (pdf),
i.e. a non-negative normalized function. In this case the first moment about 0
is the mean:

[e.e]
m=[ af@dr=EX]=p X~f
where X is a random variable sampled from f. Note that, if not specified, a
moment is intended to be centered around ¢ = 0 (it is a raw moment or crude
moment).

The central second moment, that is uy with ¢ = p is the variance:

o
| = wPf@)dz = E[(X —p)?) = Var[X]
A moment-generating function of a real-valued random variable is a certain
function f: R" — R, @ — f(x) that can be used to compute the moment of
the distribution where X comes from.

More precisely, for a random variable X, the moment-generating function M x
is defined as:

My (t) = E[e¥], teR (5.1)
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In fact, recall that:

2 2
=X
Hence, as the expected value is a linear operator:
2 2
t"E|X
MX(t) = E[etX] = 1_|_tE[X] + 2[|] + .=
t* s
:1+tu1+7+...

Note that the distribution’s moments are the coefficients of the power series
that defines M (¢).

In fact, the more general definition of a generating function is that of a
power-series with “hand-picked” coefficients a,,, such that by simply knowing
the function one can compute a,, in an iterative way.

To recover a certain p,, we start by differentiating My n times with respect to
t, such that the first n — 1 terms vanish:

d" nn—1)...1 n+1n...2
- t_(')un—i_((n—il)'wnﬂ—i_

=1

Then, by setting ¢ = 0, all x, with » > n vanish, leaving only the desired pu,,:

dn

WMX(t)Lf:O = HUn
Finally, we note that a moment-generating function can be constructed even
for a multi-dimensional vector X = (Xj,... ,Xn)T of random variables, by

simply taking a scalar product in the exponential:

Mx(t) =F (etTX) teR"

5.2 Multivariate Gaussian

Consider now a normal pdf in d = 1:

, 1 (z—p)°
f(w,%(f)—\/%aexp(—%z)

We denote a random variable sampled from f(z;u,0) as X ~ N(u, o).
Suppose that we have multiple random variables {X;};—; _,, each normally
distributed (X; ~ N (u;,0;)), with covariance matrix ¥ € R™*" defined as:

Y = BI(XG — pi) (X — py)]
Their joint pdf is given by a multivariate normal distribution :
1

1 _
i) = oo (5@ - )" - )
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5.3 Moments and Gaussians

We want now to compute the moment generating function for a multivariate
gaussian, that is the value of the integral:

My (t) = /]R T, X)) d (5.2)
Let’s start from the easiest case, and work our way out to the most general one.

Recall that the gaussian integral, i.e. the 0-th moment of a normal univariate

o
/ exp (—gx2> dx =4/ gw
—00 2 a

Proof. The integral as is can’t be computed in terms of elementary functions.
However, its square can be calculated:

([tvo (57)) = [Cte [ v (St +)

Transforming to polar coordinates:

27 00 2 o0 2
= / d@/ dr exp (—%“2) r=-=" exp (—gr2> ‘ ==
0 0 2 a 2 0 a

and we arrive at the desired result by simply taking the square root.

distribution is:

Consider now the integral of the multivariate case, with g = 0 (meaning we
applied a translation from the general case):

1
Z(X) = /IR” d"x exp <—2mT21m)

Notice that the inverse of the covariance matrix 1 = A is a symmetric
positive-definite matrix, thus can be used to define a quadratic form:

n
ij=1

The integral can be computed by applying a change of variables, rotating x
such that A becomes diagonal:

y=0x: O0ecR™; 07=07"" det(0)=1

where O is an orthogonal matrix, with a set of orthogonal eigenvectors of A as
columns, such that:

OAO™ ! = diag(ay, ..., a,)
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with a; being the eigenvalues of A.
Note that, as det(O) = 1, the volume element in the integral does not change.
So, by substituting;:

e=0"y, ' =y (0" =y'0

in the integral, we get:
Z(A) :/ d"yexp (—1yTOAOTy> :/ d"yexp lzn: y‘2 =
R" 2 R" 2 = @it

= 11 [ dvios (~ga?) = @02 [La 2 = (2m)" 2 (det(4)) 12
i—1 7R 2 i=1 (a)
(5.3)

where in (a) we noted that the determinant of a matrix is the product of its
eigenvalues.

We are now ready to consider the more general case of (522), by simply adding
a linear term in the exponential of Z(A):

Z(A)b) = /OO d"x exp (—;A(a}) +b- a:) b-x=)> buz; (5.4)
e i=1

To compute this integral, a trick is to translate the maximum of the exponential
to the origin. So we start by differentiating:

0 <1 ) L .
or, §A(a:) —b-x)=0 Vi (5.5)
Note that:
0 A(ZB Z oy Aabxb Z 5a1Aab$b + Z x Aab(sbz -
axi 8 L ab ab ab
= Z Aibmb + Z xaAai
b a

By renaming the first summation variable to a, we get:

= Z Ajg + Agi) (_ QZAM% = 2Ax

where in (b) we used the fact that A is symmetrical (4;; = Aj;).
Substituting in (B3):

ZZAUJ;] =b; Vi 3/1% = b%m* =A""b

In (c) we noted that b; is the scalar product between the i-th column of A and

x, leading to the transpose in the matrix notation. Of course, as A = AT, in
(d) we simply dropped the transpose.
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We can now apply the coordinate change:
r=x"+y
Substituting in the exponential argument:

Alz)
2

]_ ]- * * *
+b-:c:—§a:TAa:+a:Tb:—§(a: +y) A +y) + (2" +y) b=

1
= [a:*TAw* +yl Ay —|—M—|—M} +a*l Az + yL AT
(5.6)
Note, in fact, that y? Az* = (w*TATy)T = (a:*TAy)T because A is symmetric,

and then (:I:*TAy)T = m*TAy because they are scalars.
Then:

oAz = (A7) AA b =" A Y b=b"A"b=b 2"
And substituting in (58):

- +b-x= —5Y Ay+§b-m
——
wo(b)
To simplify notation, let’s define:
1 & -1 1 *
wy(b) = 3 D bi(AT )b = Joz (5.7)
ij=1

As the change of variables involves only a translation by a constant value, the
volume element in the integral does not change, leading to:

Z(Ab) = /_O:o A"y exp (—Aéy) —I—w2(b)>

Note that wy(b) is constant, thus can be extracted from the integral:

= 2 /_O:O d"yexp <_A;y)) = e2® (272 (det A) Y2 (5.8)

Another way to solve the integral for Z(A,b) is by using the matrix equiva-
lent of “completing the square”. We start by considering the argument of the
exponential in (54):

1
—5(:13TA:1: —2bl x)

x! Az has the tole of the square, and —2b” x that of the double product.
We can then sum and subtract a constant vector ¢ in order to rewrite:

a:TAa:—QbTm—i—c—c:yTAy—c

for some y € R".
Comparing to a generic square:

(a+ b Ala+b) =a’ Aa+b" Ab+2a” Ab
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we note that a = x and b = —Ailb, leading to:
' Ax — 20"k = (@ — A7'0) A(x—A7D)—bTA D

Defining A7b = z* and y = x« — " then leads to the same calculations as
before.

{Exercise 5.3.1 (Multivariate Gaussian Integral):}

-,

Compute Z(A) and Z(A,b) with:

Note that det A = 8, and:

1(3
(1 O)g .

1
3
Z(Ab) = \%exp(

DO | —

5.3.1 (aussian expectation values
The result in (BR) is exactly what we need to compute the moment generating

function for the multivariate normal (62).

So, we can finally compute moments:
— ]' n 1A
(T, Thy - - - Th) :Z(A)/d T Ty, Ty - Thy OXP | —5 ()

by simply deriving the generating function Z(A,b) with respect to certain
variables in b. For example:

1 0 -1 n A(x)
(xp) = ma—ka(A,b) = Z(A)/d & Ty, eXp <— 5 —I—bT:I;>

For the general case:

o 9 9
dby,, by, " Dby,

(g, Tpy - ap) = (20) 73 (det A) T2 [ Z(A, b)] -

b=0
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__0 9 0 wy(v)
c%kl 8bk2 o 8bkl b=0

In physics, we say that by, is “coupled” to xj, and that Z(A,b) is used as “gen-
erating function” for

5.3.2 Wick’s Theorem

From the previous formula we know that:

pulls down a b,

ab
Explicitly, recall that:
1
wy(b) = §bTA’1b
and so:

0 b 1 b 0 -1 1
C ) = Zgnb T gnlp = e ZAm by
ob; 2 é?bZ T

If we now set b = 0, the result will be 0, meaning that:

_ 0 Z(Ab) _
) = o0, 704

This result is expected, as in Z(A, b) all random variables are centered in 0.
However, note that if we derive one more time, with respect to some b;:

9 9 Lo b 1 1 b1
9b; b, 2O = ¢S AT, ST Aty + 920 Ay
s k
And now, if we set b = 0, the result may be # 0.
Note that if we derive one more time we return to the previous situation - and
the result will be also 0.

In general, every moment of odd-order is 0, due to the symmetry of the gaussian,
we have:

(wrj7p) =0

So the expectation value of the product of different random variables, sampled
from the same gaussian distribution centered on 0, is only non-zero for an even
number of variables. This result is known as the Wick’s theorem (also known
in literature as the Isserlis theorem).

By extending this argument, one can find a way to compute the even-order
moments, leading to the following formula (which we will not prove):

_ —1
<xk137k2 - -xkl> E Akp kp Akp kp, Akp kp
2 -1

Péo(K) ' Peo(K)
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where (k,, k,) are a pair of indices from K = {ky,..., Kk}, and P is a permuta-
tion of K, so that (kp,, kp,) is the first pair of indices after the permutation P.
The sum is over all the distinct ways of partitioning [ = 2s variables in pairs
to obtain distinct products of s groups.
So, the total number of terms to be added will be (2s)!/(2%s!) - that is the
total number of permutation of 2s elements, where the order within couples
does not matter (2°) and neither the order of the couples themselves (s!).
Note that:

!

(22883{ = (2s— ! = (25— 1)(25 = 3)(25 = 5) ...

Where !! denotes the double factorial, not to be confused with the factorial of
a factorial (which requires brackets: (a!)!).

{Exercise 5.3.2 (Wick’s theorem):}

Consider a univariate normal distribution:

fle) = Z(lA) exp (-5

Show that:

@)=
(@h) = 2 = 3((z%))?

S

Here the A matrix is just the scalar a = o 2. As the pdf is univariate, there
is only one index possible K = {1}. As (2 —1)!! = 1!l = 1, there is only
one term in the summation, thus:

1
2 _ 4—1_ 1L
<1’>—A11—a

For the 4-th order, however, we have more combinations: (4 — 1)!! = 3!l =
3-1 = 3. Again, there is only one possible index, so all terms will be the
same:

1. 1. 1 . 3
(z'y = AR AT + AT AT + AT A = 2= 3((2%))?

5.4 Steepest Descent Integrals

It is possible to use gaussian integrals to solve a more general set of integrals,
thanks to the Steepest Descent approzimation.
We start with an integral of the form:

) = /S d™z exp (—F(;")> (5.9)
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where )\ is a small parameter (the approximation is more and more accurate as
A — 0), F(x) has a global minimum in &y € (a,b) and S C R" is a sufficiently
large region.

Note that, if A is lowered, the integral is dominated by the neighborhood of the
minimum xg. In fact:

) = e (-2 )5 L e (o) - Fi@))

As F(xg) — F(x) < 0, the ratio becomes exponentially higher if A\ — 0. Basi-
cally, for A — 0, the integrand function becomes “more and more similar to a
gaussian”.

To compute the integral, then, we translate the coordinates about xq:
x=x9+V\y "z = N2 d"y

Then we perform a second order Taylor expansion about A = 0 and * = x¢:

1 1 11 12
XF((’L‘) = XF(wo) 3 ;8 FElag)yiV/ A+ X1 %:@iij(wo)yiijJr O(A7)

where we cancelled the first derivative, as xq is a stationary point for F.

Substituting back in the integral we get:

_\n/2 <_F(w0)> n _1 2 o
I()‘) A exp A /Sld Yyexp 9 izjaxiij(mO)yzy] R(y)

This is a gaussian integral Z(A), with A being the Hessian of F' evaluated at
the minimum xq (or, equivalently, at the maximum of —F(x)).

Now, for A sufficiently small, we can ignore R(y) and compute the integral with
(633), leading to the approximation:

_ F
I\ ~ (20\)"?[det 82, F(xo)] % exp (—(””‘))) (5.10)
A—0 i A
Doing this, we implicitly integrated over the entire IR". This is fine because,
for A — 0, the gaussian is “peaked” in a small region around xq, and vanishes

exponentially moving further away.

The Steepest Descent approximation generalizes Laplace’s method for calcu-
lating integrals, which has a much simpler expression for the limited case of
univariate integrals:

1/2 sf(zc)
_ sf(z) ~ (2’”) g(zc)e
o) = [ o Os =%

with f,¢g € R, and z, is the maximum of f, ie. f(z.) > f(z)Vz € (a,b).
This formula is useful in physics: s can model the system’s size, and s — oo is

(5.11)

then the limit for a large system.
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Example 14 (Stirling approximation):J

We can use the Steepest Descent approximation to derive the formula for
the Stirling approximation of factorials.
Recall that a factorial is merely the I' function evaluated on IN:

(X> p—
sl = / e “dx
0
We then perform a change of variables:
T =2zs
so that:

00
5! — Ss+1/ es(lnz—z)dz
0

This is an integral in the form:

[ (-57)

if welet A =1/s and F(z) = z —Inz. So we need to find the minimum of
F(z):

d 1
F'(z):d—(z—lnz)zl—féO:%zczl
z z

1
F'(z)= 5 =F"(2)=1>0
z

We can now apply (610), leading to:

2T 1/2 1/2 1
sl = <) ()28 = Vars*t2e

S§—00 S

Taking the In we arrive at the usual form for the Stirling approximation:

1 1
Ins! ~ slnns—s+§1n(27rs) + O ()
s

Note that the same result can be obtained by using the much simpler (611),
with g(z) =1 and f(z) =Inz — 2.
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{Exercise 5.4.1 (Steepest Descent Approximation):}

Compute the Steepest Descent Approximation for the following integral (for
s — 00):

' sz—coshz
I(s) = / e dz
6=/
By collecting a s in the exponential argument:

0= [ (- 22)

we can bring back to the form of (69) with F'(z) = coshz/s —x and A =
-1

s
We find the minimum of F(z) by differentiating:

sinh z

F'(z) = —140:>xozsinhfls
S

F"(a:) _ cosh x N F”(xo) _ coshsinh ™! s _ V1482 =0
S S S

Finally, by applying (610) we obtain the result:

B \ 2T 1+32 -
_mexp T—sm s

Note that, for this peculiar case, the simple 1D formula does not work
(why?) - and so one should proceed with the general method (full steps:
find maximum, second derivative...).

{Exercise 5.4.2 (Laplace’s formula):}

Compute:

e 7 2 - 4})
I(N) = /0 cos(x) exp (—N (:1: — §> + (a: — §> dx
in the limit N — oo.

For this exercise we can use Laplace’s formula (511) with:

g(x) =cos(z)  flz)=— [(1‘ - 7;;)2 + (9” - 7;)4]

By looking at f(z) one can see directly that it has a global maximum in
xg = /3. In fact:

2<x—ﬂ)—|—4<x—ﬂ')3} Loeay="

fw) =~ 3 3 3
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" T\ 2 "
f(x):—2+12<x—§) = f(z0) = —2<0
And so we arrive at:

_em) P eos(n/3)N? 1 [7
T 5 IN(—2)|2 _2\/;
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CHAPTER 6

Integrals of complex variables

In this chapter we discuss several techniques for computing integrals on the
complex plane.

6.1 Fourier Transform

One of the most frequent kind of complex integral is given by the Fourier
Transform (FT). Let f(z) € Ly(R) be a square-integrable function. Then the
Fourier transform maps f(z) to another function f(k) defined as follows:

FIf@Ik) = Fo) = [ e™f@)de  fel®)  (61)

R

Similarly, it is possible to define the inverse Fourier transform, linking f(k)
back to f(z):

_ 1
Y

FIR)@) = fla) = o [ e F(k)dk

The 27 factor is needed for normalization, so that:

FUFI @) (k) (@) = f() (6.2)

As long as (62) is satisfied, any different definition of the Fourier transforms is
acceptable. For example, it is possible to switch the signs in the ¢*%, or split
differently the normalization factor between F and F -1

6.1.1 Refresher on functional analysis

The definition (61) is quite limited, as several interesting functions are not in
Ly(R) - for example sin(z), cos(x), #(x). Fortunately, it is possible to extend
the Fourier transform by considering generalized functions (distributions).

We start by defining a space S(R) (Schwartz space) containing all functions
p € C®(R) that are rapidly decreasing, i.e. such that sup,cg |20 ()| < oo
Va, B € IN. These are also called test functions.

Then a tempered distribution 7" is a continuous linear mapping S(R) —
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R. So it is possible to “apply” a distribution 7" to any test function ¢ € S(R),
resulting in a real number, denoted with (7', ¢).

The choice of S is made expressly so that the Fourier transform is a linear and
invertible operator on §. However, other choices can be made for the space
of test functions. For example, one can take the set D of all functions with
compact support, i.e. that vanish (along with all their derivatives) outside a
compact region.

We can now see that distributions generalize the concept of function. We start
by noting that any locally integrable function f: R — IR can be used to
define a distribution, by considering its inner product with a test function:

(Ty.¢) = [ defl@)pla) Ve e SER) (63
Distributions that can be defined like this are called regular.

In the complex case, where f: R — C, we instead use the Hermitian inner
product:

(T, = [ dv f(2) ()

where f(x)" is the complex conjugate of f(z). The choice of the position of
this conjugate (on the first or second entry) is a convention. Physicists tend to
use the first position (due to Dirac notation), while mathematicians the second
one.

Not all distributions are regular: in general, it is not possible to find a function
f(z) for a generic distribution 7" such that (63) is satisfied. The distributions
for which this is not possible are called singular.

The simplest (and most important) singular distribution is the Dirac Delta
d(x), defined as follows:

(0,0) =90(0)  peSR)

In other words, applying the ¢ to any test function ¢ returns the value of ¢ at
0.
In practice, we often write formally:

as if d(x) were a function (but keep in mind that it isn’t). This expression is
often just a shortcut for quickly reaching useful results, as we will see in the
following.

The point of defining distributions is that they provide a way to extend rig-
orously may operations that cannot be done on normal functions. One such
example is differentiation. Given a distribution 7T, its distributional deriva-
tive is defined as:
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(T, 0) = —(T.¢))  VpeSR) (6.4)

This is done so that, for a regular distribution T, that result comes from
integration by parts:

(1} ¢) = [ F@)eln) dr = fetrl .~ [ f@)e(@) = (1.6 (65)

For a singular distribution we use directly the definition (64), as the construc-
tion in (63) has no meaning (but still, sometimes we will write it nonetheless,
as a merely formal expression).

In the distributional sense, it is possible to differentiate the Heaviside func-
tion 0(z):

1 >0
b@)=4q1 z=0 (6.6) flffuiiv;lzlje step
0 z<0

As 0(z) is locally integrable, we can define a corresponding distribution - that
we denote with the same symbol 6. Then:

+oo
(0.0) = —(0.¢) = = [ 0@)' @) do = = [ ¢'(a) dw = [iolebT - o(0)] =
= ¢(0) = (3lp) (6.7)

So 0" = ¢ in the distributional sense - i.e. applying 6’ or ¢ to any test function
¢ leads to the same result.

6.1.2 Fourier transform of distributions

We are finally ready to extend the Fourier Transform to tempered distri-
butions. In fact, S(R) has been chosen” such that any ¢(z) € S(R) has a
well-defined transform @(k). Then we define the Fourier transform of a distri-

bution as follows: Fourier Transform

of distributions

(FIT], ) = 2m{T, F ')

Again, this comes from the expression for regular distributions:

(FITfl.¢) = [ ak{F @0} ok) = [ ak [ do [ f@)]" pla) =
= [ def@) [ dbe® o) = [ 2mf@)F pb)]@) = 2n(T.F[g)
Note that:

(FIT), Flel) = 2n(T, F~ ' Flgl) = 2n(T, ) (6.8)

'mMore precisely, the Fourier transform is an automorphism of S, i.e. it is linear and
invertible
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Delta transform

Finally, we can use all this machinery to compute Fourier transforms of some
generalized functions. We start with the ¢:

(Flo]. o) = 2n(8, F ]} = 20 ()] (0)
where:
F U@l ) = o [ dee™o(e) = 207 [o(@)(0) = [ drola) = {1,¢)

And so F[0] = 1.

Note that the same result could be obtained in a simpler way by treating ¢ as
a “formal function”:

FI8)(k) = /}R eHT5(g) = 0 = 1

This leads to an equivalent definition for the § “function”:

) = FU1)(w) = 5 [ e ak

Also, note that:

F1)(k) = /Re_ilm dz = /]Rei]“r dr =27 (I/IReikx> = 271d(k) (6.9)

27

Heaviside transform

We can use the result for the § to aid the computation of F[f], where 0(z) is
the regular distribution defined from (68). We have already seen in (627) that
0 = 4. So, we can use the formula for the Fourier transform of a derivative
(which naturally generalizes to distributions):

FIT'] = ikT (6.10)
In our case:

FlO'] = Flo|=1=ikd (6.11)

However, (60) cannot be used to reconstruct § by itself, that is we cannot
just “solve by 8” and write:

O(k) = — (6.12)
In fact, consider a different 6"(z) = 6(x) + ¢, with ¢ € R constant. Their

derivatives coincide, and so formula (61) would give the same result for both
of them. However:

F10"(2)](k) = FO(x))(k) + Flel(k) = 0(k) + co(k) # 0(k)
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So we are missing a 0 term, meaning that the correct Fourier transform should
be:

amzp<;>+ww) (6.13)

for some constant c. P denotes the Cauchy principal value, which needs to be
used to “fix” the singularity at k& = 0 (see the following green boxes for the
details).

There are several ways to fix ¢ in (B133). One of the quickest is to reason with
symmetries.

Let f be an even function (i.e. a gaussian). Symmetry is preserved by the
Fourier transform, and so:

0.5y =P [ TR dh+eld fy = cfO) =c [ f@)de (610

The principal value vanishes because f is even (as f is even). The corresponding
scalar product without the Fourier transforms is:

+oo 1
@ﬁ—é ﬂ@m@24ﬂww (6.15)
where in (a) we again used the symmetry of f. Then, recalling (ER), we have:
i 7 2T
@) =2m(0.) = ¢ [ f@yde =" [ f@)ydr»e=x

(Note that ¢ depends on the choice we made for the normalization in the Fourier
transforms).

A similar argument can be made noting that 6(z) is just a scaled and shifted
sgn function, which is odd:

1 x>0
1 1
bz) =5 +5sen(z)  sgu@)=q0 2=0
-1 <0
By linearity we have:
- 1 1

Noting that sgn’ = 26 and using (610) leads to:
2 = ik F[sgn](k)
Inverting with (613), we have:

Flsenl() =P () + o) =P ()

As this time ¢ must be 0, otherwise F[sgn|(k) wouldn’t be odd (the ¢ is even).

Substituting in (E18) we have:

9@%:;£EpéP(i)::P<;>+w&@
2
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Why is (E12) wrong? There are two main reasons:

e 1/(ik) is not locally integrable (as it diverges for k = 0), so it cannot be
used to define a distribution, such as 8. This can be solved by using the
principal part of 1/(ik) instead.

e The most general solution to the equation 2T = 1, where T is a tempered
distribution, is not just 7' = P(1/x), but:

1
T="P () +co
x
for some constant ¢ € R.
First, to be precise, the product of a function, such as f(x) = =z, with a
distribution 7" is defined as the following distribution:
(f(@)T, ) = (T, f(z)p) (6.17)

where f(z) must be such that f(z)p € S Vo € S, which is indeed the case for
any polynomial.

Now consider the distributional equation T = 1. If we apply both sides to
some test function ¢, we have:

(T,20) = (Lg) = [ o(e)da (618)

The problem of finding T satisfying (618) is called the (distributional) division
problem. To solve it, we want to reduce the equation to something in the form
of 2T’ = 0, that can then be solved. So we rewrite the rhs as follows:

dx

: : zp()
z)dz = lim z)dz = lim
fe @) D R e P A= I a7

Then we define the principal value distribution P(1/x) as:

1 . ¢(z)
— = ] r\J
(P (a:) %) Ejél /112\[—6,61 x de

so that:

/m p(z)dz = (P (i) , TP)

Substituting back in (6I8) and rearranging we get:

Z

1 1 1
(T, xp) = (P (x) ,xpy = (T =P (x) ,xp) =0 (E:>|:2|) 5 [T—P ()] =0
All that’s left is to solve:

T =0 (6.19)
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with 7" = T — P(1/x). We will now see that the general solution of (619) is
T = ¢d, for some constant c¢. This leads to:

T’=T—P(1)—05:>T 7?( )+c§
X

which indeed confirms (613).

So, let’s see why T" = ¢d. In the following, we drop the ’ for simplicity.
First, we note that any test function ¢(x) can be written as:

p(x) = ¢(0) + z¢p(x)
for some ¢ (z) € S(R). Explicitly:

+/ dt—gp +/xcpxu)d

= (0) + :L‘/O ¢ (zu) du = p(0) + 29)(2) (6.20)
—_—
P(x)
Note that if ¢(0) = 0, then p(z) = z(x).

Now, 2T = 0 means that:
(T, p) =0 Ve eSR) (6.21)

To see what T is, we evaluate it on a test function ¢(z). The idea is to write
@o(x) as a sum of two test functions a(z) and b(z), choosing b(x) so that it
vanishes at 0, meaning that we can factor a = from it (6220), and then use
(T, xb) = («T, by = 0 (B220).

Note that we can’t just directly use (6220), because while zt(z) is indeed a test
function, ¢(0) ¢ S(R) (it is a constant value, so it doesn’t vanish for x — 00).
So, the following is ill-defined:

as (T, ¢(0)) can’t be done, because distributions act only on elements of S(IR).

The idea is to convert ¢(0) to a test function by multiplying it with another
test function y(z) € S(R), that we choose (for simplicity) so that x(0) = 1.
Then we write ¢(x) as:

|
S
=
>
&

I

p(z) = ¢(z) + p(0)x(z
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Note that now a(x) € S(IR), meaning that (T, a) is properly defined. Moreover,
as we chose x(0) = 1, b(z) is a test function that vanishes at 0:

b(0) = ¢(0) — »(0)x(0) = (0) —(0) =0

And so we can use (B220) to write b(z) = z¢(x) for some ¥(z) € S(R).
Finally, we are able to apply T to ¢(x):

(T, o) = (T, 0(0)x + xvp) =
= p(0) (T, x) + (2T, ¢) =
‘}’" S
= cp(0) = (cd, p)

where we denoted with ¢ the result of (T, x). This proves that the general
solution is indeed T" = ¢d.

Some references on these derivations can be found in:

e https://see.stanford.edu/materials/lsoftaece261/book-fall-07.pdf

https://math.stackexchange.com/questions/678457/
o I 2 ]
distribution-solution-to-xt-0-1n-schwartz-space

https://math.stackexchange.com/questions/2962209/solve-
the-distribution-equation—-xt-1

Explicit computation. It is also possible to compute @ directly, at the cost
of a longer derivation. The idea is to use a limit representation 6 (x) for 0(x),
so that ¢ (z) has the same discontinuity of 6(x) at z = 0, and lim__, ;+ 0. (z) =
O(zx). One possible choice is:

—€ex 0
ee(m) _ (& x >

0 z <0

When e — 07, e™ — 1, reconstructing the Heaviside function. So:

it —ikx . 00 —ex —ikx . 1 —00
0(k) :/ O(x)e dz = lim e “e dr = lim — —[e”* 1] =
R e—0" J0 e—07" €+ ik
1 —i2 o —i
= lim = lim :
ot €+ik —i* ot k—ie

To manipulate this expression we need to treat it in the context of distributions,
meaning that we need to apply it to a test function ¢(z) and see what happens:

~ ~ —i k4e
0.¢) = [ O(k)p(k) k= 1 k) dk =
0,9) = | 0(k)o(k) ;rél+Rk_M+[€so()
k+ie
= —i lim | ———p(k)dk =

2
e—0" JR k + €
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k €
— hm/i k) dk +i lim, k) dk
a) [H(ﬁ R k* + € (k) et IR/{:2+6290( ) ]

N~ N~

Ale) B(e)

—

where in (a) we split the real and imaginary part. We then examine each of
them separately:

Ae) = /Mzk 2g0(k:)dk—/ (i;ln(k;z—l—g))go(k)dk:

/(—/m (K + €)' (k) dk

—— — [ (k) o' / In ||/ (k
E—>O+ 2 \,_/
21n |k|

+ €

—/ { arctan( )} o(k) dk :6
f“/ / arctan ) '(k) dk

Ble) = [ W) dk = [ c—lk) dk =

+00 71 / 0 e / .

— = 3w [ () s
T /

= =3 fpse e (W) b = 2 [, s80'(k) (k) dk
26(k)

where in (b), (c¢) and (d) we performed integrations by parts. Then we note
that:

lim (B(e), o) = (3, ©)

e—0"

hmA /ln|k\g0()dk:—P

dk
e—0" (e) R kQO( )

with a final integration by parts in (e). Putting it all together we arrive at the
desired result:

O(k) = —iP(llc) +7o(k) =P (;{) + 7o (k)

Reference: https://math.stackexchange.com/questions/269809/heaviside-
step-function-fourier-transtform-and-principal-values
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6.2 Fresnel integral

An important complex integral, appearing for example in the Schrodinger equa-
tion, is the Fresnel integral:

+oo dk , , 1 ib?
I(a,b) = /_OO %exp(— ak? —zbk:) = \/mexp (4@)

It is similar to a Gaussian integral, but with complex mean and variance.

To compute it, the idea is to rotate it so that it is not entirely along the
imaginary axis. Explicitly, we rewrite the ¢ multiplying the a in the exponential

argument as:
. (.7T >
1=exp |tz
P

And then we subtract an angle e, and consider the limit e — 07

Y (T
= i onfi(3-)

Then, we evaluate the integral over one segment [—R, R] of the real line, and
take the limit R — oo:

I(a,b) = lim. I.(a,b)

e—0

: +r dk P (T :
I (a,b) = P}gnoo p 5. XP (— aic exp [2 (5 - e)l—zbk) a,be R

Suppose that a > 0. We make the change of variables:
2=k exp [z (g — e)] =z = kexp [z (% — ;)] = ke'¥c = k = ze ¥
¢

And dk = dze . Note that:

@<£ (6.22)

definitely when e — 0.

This change of variables has removed the ¢ multiplying the 22, meaning that
now we have a “standard” Gaussian integral. However, the integration path is
now vg = {|z| < R,argz = ¢.}, i.e. a segment of length 2R, centred at the
origin and forming an angle ¢, with the real line. So the integral becomes:

dz » »
I (a,b) = lim / 02 e ide exp ( —az* —izbe we) b = be
R—o00 Jyp 27 S~
bl

dz -
= lim CF pioe exp(—a22 — ib/z>
R—o0 YR 2
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Figure (6.1) — Integration path for the Fresnel integral

We want to relate this integral to its version on the real line, that we know how
to compute. To do this, as always, we close the path of integration and use the

Cauchy integral theorem, following the schema in fig. B
Explicitly, consider the closed curve I'p defined by:

Ir=9r+7++r+7-
where:

v ={z=Re": 0 €0,0]}

Yo = {Z = Rew: 0 e [7T77T+¢6]}
vr = {[2] < R,argz = ¢c}
r = [-R, R

As the integrand has no poles inside I'g, we have:

. dz
lim —e
R—00 JTp 2w

—ide exp(—az2 — ib/z> =0

Moreover, the integral over v, and ~_ vanish. We show this explicitly only for
the 7y, case:

dz iy 2 o id
_ € _ _ b €
[y+ 271'6 eXp( az 10ze >

(6.23)

We use the parameterization of v, to change variables:

2= Re" = dz = iRe" 40
leading to:

(623)

o db o . L
/ —LiRee % eXp(—aRzeMG —ibRe®e Zd)f)
0 27
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@6_i¢6
2T
R/(2m)

2]1 /O(be de ‘exp (i@ — aR%e*0 — ibRei(ef‘ﬁf)) ‘ =

¢E - . .
/0 dg % exp(—aRzeM9 — ibReZ(a_d’f)) ' <

- QR;-/O@ a0 |6i9| |6—aR2(00520+isin29)||6—ibR(cos(0—¢e)+isin(@—gzﬁe))| _

1

R /¢€ dee—aR2c0529+Rbsin(9—¢e)
0

— — 0
2T

R—o0
As the integral is over 6 in [0, ¢.], we have:
T T
0<bO<¢p. < Z:>O<20<§:>cos(29)>0
(622)

So, as we assumed a > 0, the integrand decays exponentially fast when R — oo,
making the integral vanish.

Finally, as the integral over v, and ~_ vanish, then:

Liptlsy=0=1,=-1I

where [5  is the integral over the real line, that we can compute:
R dz _; e e 7 (')
I :_/ e eexp(—at —ib'z) —— — =
7Te exp( =t 2) R—oo 27 a P 4a
L i (v
= ——¢ Tfexp| ———
4dma P ( 4da

Inserting back b’ = be_i¢€, and taking the limit ¢ — O+, we have:
T —q 1 / b

¢ — — =€ e E— — = b —— —

‘ e—0" 4 e—0" \/E e—0" \/;

and (V)% — —ib%, so that:

which is the desired result.

For a < 0, observe that I(a,b) = I*(—a, —b), with —ia = (ia)* and b* = (b*)*,
and the same result follows.

6.2.1 Schrodinger Equation

A possible application of the Fresnel integration is solving the Schrodinger
equation for a free particle:

2
MO, 1) =~ o, 1) (6.24)
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In the following, we will take A = 1 for simplicity. Note that (6E224) is very
similar to the diffusion equation, and in fact we can solve it in the same way,
by applying a Fourier transform to both sides:

AVA o _i 2 —xp __
Z@ﬂﬂ(p, t) @ m Adxaxw(xat)e -

J/

2

- p —ipT — 7

= 2 [ deue, e = 2(p.)
P(p,t)

where in (a) we performed two integrations by parts, using the fact that ¢ (x,t)
vanishes at infinity to remove the boundary terms.

We are left with a first order ODE that can be solved by separation of variables:

0,0 v b = df _ _pp gy = 3(p,t) = P(p,0) ip’t
i = — — =" —dt = —— = exp | ———
Y= om 7 2mi om P PRSP T,
If we assume the particle to be initially localized at x = 0, meaning that

Y(z,0) = §(x), we have ¥(p,0) = 1, and so:

2
Y(p,t) = exp (—igng

All that’s left is to “go back to position space” with an inverse Fourier transform,
which involves a Fresnel integral:

o) 1 / 1 Dt e 1 ib?
x,t) = — exp| —=—— | e = exp | —
T o RPN Ty Virai P\ 4a

with @ = ¢/(2m) and b = —z, leading to:

2
oot =\ e (ﬁ;t)

To reinsert h we substitute ¢ — th:

2
m ™moux
V(@) =\ oy &P <_ 2ﬁit>

This is the Schrodinger propagator for a one-dimensional free particle.

6.3 Indented Integrals

Sometimes it is needed to compute integrals with singularities on the path
of integration. Note that this integrals do not exist, meaning that there is
not a unique way to compute them. Nonetheless, there are several rules (or
prescriptions) that can be used to assign some result (possibly of physical
significance) to these integrals.
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Consider, for example, an analytic function f(z), and the following integral:

I:/dxf@)
R T — X
The integrand has a pole at xy, which lies in the path of integration. So [
does not exist. However, we could integrate “symmetrically”, hoping that the

diverging term from one side “cancels” with the one from the other. This is
the gist of the Cauchy Principal Value:

R N A

For example, this works for f(z) = 1/2% and 2y = 0

-0 1 oo 1
P dx—hm{/ —3+/ 3}:111110:0
x 0—0 LJ—c0 6 (a) 6—0

where in (a) we used the symmetry of 1/ 2® to cancel the two integrals.

Im

v

Figure (6.2) — Integration path for an indented integral

Another possibility is to deform the integration path from the real line to a
curve 7, that avoids the singularity, as can be seen in the bottom half of fig. B2.
Doing so produces a different result from the one of the Cauchy Principal Value,
because now we are accounting for half a small circle C, = {z = xy + e’ 0 €
[—7,0]} around the singularity:

lim /() d

—P/ dz +1 (6.25)
e—0Jy, T — X Rz — X e=0JC, T — X

And the difference amounts to:

lim dz /(z)
e—0 C, zZ—a (a) 6*)0

€e
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0
lim /“ d6 (iee )jxxo*%fe)::ilg%déf(xo4—eée)::iwfcmﬁ



where in (a) we changed variables using the parameterization of C,.

Integrating over v, that passes to the right of the singularity is equivalent to not
deforming at all the integration path and moving the singularity “up” instead,
as can be seen in fig. B2. This is the idea of the prescription tie:

/]Rdxsc_f(x):/ dxM:P (=) dz +im f(xg)

(xo + i€) . T—x R T —

Equivalently, it is possible to show that integrating over a path 7, that passes
to the left of the singularity equates to moving the singularity “down”:

flz) flz) _ (z) :
/]Rdx(xo—ie_ dz =P dz —im f(zg)

T — ) v x—xg R T — X
We can summarize these facts as an equation between operators:

1 1
lim — =P Find(z — xp)
e=0x — Tg F 1€ T — X
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CHAPTER 7

Limit Distributions

In our previous discussion of Brownian motion, we concluded that the sum
of many independent gaussian increments converges, in distribution, to a
gaussian.

But what would happen if we consider increments that are still independent
and identically distributed, but not gaussian? How would the distribution for
their sum change, in the limit of many steps? Does it even have a unique form?

In this lesson, we will see that the sum of a general class of i.i.d. random
variables - the ones for which it makes sense to compute mean and variance -,
after some proper normalization, tends to a normal distribution. This is the
gist of the Central Limit Theorem (CLT).

Moreover, even the distributions without finite mean or variance, for which the
CLT does not apply, can still produce sums that converge to some distribution
(not gaussian), which we call a stable distribution. This observation will
allow us to study generalizations of Brownian motion, and in particular the
phenomena of subdiffusion and superdiffusion, which have interesting physical
applications.

So, we will start by proving the CLT, and then generalize the diffusion equation
and study it in some particular cases.

7.1 Characteristic functions
To prove the CLT, we first need a way to efficiently compute the pdf of a sum
of i.i.d. random variables.

Let’s start with the case of just two independent variables X’ and X", with
distributions py(z') and py(z”). Let X = X'+ X" = f(X, X’) be their sum,
with distribution p(z).

Applying the rule for a change of random variables, we get:

p(z) = (6(x — f(a:’,a:”))>p17p2 = /]Rdx//]Rdx’/pl(x/)pg(:c”)é(:c Sy
(7.1)
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where we used the independence of X’ and X" to factorize their joint pdf.

By symmetry, §(z — 2’ —2") = 6(2’ + 2" —2) = §(z" — (x — 2)). Then,
integrating over 2" to remove the ¢ , we get:

= / dx’/ dz" py (a2 pe(2)6(2" — (xz — 2")) = / dz’ py (") py(x — 2)
R R R
which is the convolution of the distributions p; and ps.

Convolutions are best computed in the Fourier domain, where they reduce to
multiplications:

F| [ de' m@pa(e =) (&) = Flpi] (k) - Flps) ) (7.2)

The Fourier transform” of a pdf p(z) is called the characteristic function of
the corresponding random variable X, and denoted with ¢(k):

o(k) = Flp@)|(k) = [ dze™p(x) = (")

Note that ¢(k) is the moment-generating function My of X, evaluated at a
complex argument:

My (k) = (") = (k) = Mx(ik)

This means that we can use ¢(k) to compute moments of X. Note that:

x:l—i—ikx—;kzx _Z ka
And so:
IRT n
(k) = (™) = 30— (") (7.3)
n=0 :

Then, by differentiating n times and evaluating at 0, all terms of order # n
vanish, leaving only a multiple of (z"):

Oelh) _ O—i—z— +Z W”j>:
ok
First n terms Jj= n+1
390(k) n n\ __ 1 2\n 0 . AT 0
S| =) = @) = () amek)| = () mek)|

Proof of convolution property. Start from the left side of (7). By repeat-
ing backwards the steps from () we have:

=)= | 0 e =] -

_ dikm/d//d// / //5_/_//:
Jodwe™ [ da’ [ o pi(a)pa(a”)il@—a' — )

'mHere we are using a slightly different convention for the Fourier transform compared
to sec. B, where both the — sign and (277)_1 normalization factor are contained in the
inverse transform.
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_ / n ik(z' +z") / mno_ 1 ika n ikz' _
/]Rdx /]Rdx e p1(z)pe(z”) /]Rdx e /IRdx e
= Flpil(k) - Flpo](k)

7.2 Central Limit Theorem

We are finally ready to prove the full Central Limit Theorem.

Consider a set of n independent and identically distributed (i.i.d.) random
variables X = {X7,..., X,,}, each according to a distribution f(z) with finite
mean f and variance o%. We want to prove that their sum S,, = >;; z;, when
properly translated/scaled, converges in distribution to a gaussian.

More precisely, the “proper translation/scaling” means considering the random
variable Y, defined by:

Sy, —np
Vno

Note that, by additivity of mean and variance:

Y

(7.4)

(Sp) = (x1) + -+ (zn) = np
Var(S,) = Var(z;) + - - - + Var(z,,) = no*

And so:

(S,) —nu 0 Var(Y,) Var(S,) mo-
- = I = =

Vno " no’ e
where we used Var(z + a) = Var(z) and Var(bz) = b* Var(z) where b € R is a
constant. So, we expect Y,, to converge in distribution to a standard gaussian
(0 mean and unit variance).

<Yn> = =1

To compute the distribution of Y,, we apply the rule for changing random
variables:

Yy ~g(y) = P(Yo(x) = ylo; ~ fz) Vi) = (6(y = Yo(@) gl =

We rewrite the § as a Fourier transform 6(z) = F '[1] = (27) " Jg dke ™",
and then insert the definition for Y,,:

1 Cio(y— 1 , (it —n
= (— a(y=Ya(®))y — {_ (%12“
<27r /]R dave ) () <27T /IR daexp | —iay +ia Vno

By linearity we can bring the average inside the integral, which is then factor-
ized as the X; are independent:

= 217T /Rda exp(—iay) ili[ (exp (%)Mxp (—%) =

1
Finally we write explicitly the average:

_ L i WD/ | (m) )
—27T/]Rdaexp( e {y#— — 11;[1 ]Rdxzexp N p(z;) =
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And then, as the X, are identically distributed, the product becomes the
power of the characteristic function of any of the n variables:

= 217T/Rdaexp (—zoz {y#—D [/ dzyp x1)exp(ijﬁx;>]
(k)

(7.5)

As all the n variables are effectively the same, we will drop the subscript in the
following steps.

The idea is now to expand ¢ as in ([=3), bring all the terms inside the same
exponential, and show that it reduces to a gaussian after integration. So:

2

a . a 2, ¢ —3/2
k::):l—i—zx—x + o(n
o(b= 2 (5) < = (6%} 5oy o)
s
This expansion only makes sense if ;1 and o are finite. Actually, we need to

require only o to be finite, as then p is finite by consequence of the Cauchy
Schwarz Inequality. To proceed, recall that o = (22) — (z)? = (2%) — 1* =
(z?) = o + ;. Substituting in the previous expression:

2 2 2
o} o) a’p

Vno 20 2po>
If we ignore all the higher order terms (as in the limit n — oo), (@) is the

expansion of the following exponential, as the only non-negligible terms are the
three highlighted above:

. 2
= exp < ‘an — af + o(n_3/2)) (77)

=1+

+o(n3/?) = (7.6)

no  2n

We then substitute (") in (Z3) and compute the n-th power:

P(Y,(x) =y) = / daexp <—za {y + \/ﬁ]) exp (i(/”f: O;ZL + o(n_1/2)> _

= /daexp(—zay % %—4—0 _1/2)):
=5 /daexp (—z—zay+0( 1/2)>:

This is a gaussian integral, which evaluates, in the large n limit, to:

2 2

1 /= b 1 Y

= — exp| — | = exp | —=
no0 27V o TP\ 4 V2 P 2

with a = 1/2 and b = —iy. The final result is the standard gaussian, as desired.

So, we showed that if X; ~ p(x) with finite variance o, then the sum of n i.i.d.
random variables X; converges in distribution to a gaussian:

Tim ¥, ~ N(0,1)
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By undoing the normalization, we have:
. 2
Jim_ S, ~ N(np, no”)
In particular, the sample mean distributes normally around the distribution

1 o’
lim —S, N | p, —
n

n—oo n,

mean ji:

7.3 Subdiffusion and superdiffusion

Recall that, for Brownian motion, the final distribution for a particle starting
inzg=0atty=0is:

1 z?

Its variance, which physically represents how quickly the initial distribution
“spreads”, is linear in time:

(z2(t)) = 2Dt

This is indeed a good model for many physical phenomena. However, there
are cases of anomalous diffusion, in which the “spreading velocity” scales
differently - as can be seen in fig. [l. For example:

e Subdiffusion. Sometimes particles tend to persist in the same state
for extended periods of time - meaning that the waiting time between
jumps has a distribution with a “long tail”, such as 717 with a €
(0,1). This happens, for example, in the transport of charge carriers in
semiconductors, and monomers in polymer diffusion. Their paths satisfy:

(B*(t)) = 2Dt 0<(<1

e Superdiffusion. Here particles make jumps of large size with non-
negligible frequency, meaning that the distribution of displacements Ax
has a “long tail”, proportional to \Am[ﬁl*ﬁt for Ax sufficiently large, with
w € (0,2). If large jumps happen almost instantaneously, we talk about
“flights”, while if they happen with a fixed maximum velocity, they are
“walks”. In this case we have:

(B*(t)) = 2Dt (>1

7.4 Levy Flights

Anomalous diffusion can be even more complicated, involving memory and
long-range correlations. In our discussion, we will limit ourselves to a case of
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Ty o o m » (b) — Levy flight (superdiffusion). Note
how jumps are frequently of very large
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Figure (7.1) — Comparison between normal diffusion (a) and anomalous diffusion (b).

superdiffusion - the Levy flights - that can be described with a generalized
diffusion equation:

—n _0
oW (x,t) = Dﬂa|x|“W(x’t) 0< <2
W(z,0) = p(x)

The meaning of the fractional derivative can be understood in Fourier space,
as a generalization of the transform for a derivative:

atW(k7 t)) = _Du|k|MW(k7 t)
Note that this is equivalent to:

O, Pr I (e, £)) = D, |k |Pe2 T (k, 1) + 20,17 (k1) = 0
F(k)

Meaning that the function f (k) is constant in time. Rearranging:
F(k) = exp (D [k["t) W(k,t) = W(k,t) = f(k)e Pull"t

As f (k) does not depend on time, we can compute it at any instant, for example
at t = 0, where f(k) = W(k,0) = 5(k), and so:

W(k,t) = p(k) ¢_2ulM™
W (k,t|kq,0)

We interpret the exponential as the Fourier transform of a propagator. Multi-
plication in the Fourier domain corresponds to convolution in the space domain,
and so we recover the usual form for the solution of the diffusion problem:

W(x,t) = p(xg) * W(x,t|zg,0)
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And for p = 2 we know that:

— za)?
i = fponen gy (<)

J

-~

W(l‘,t‘fo,o)

For a general p € (0,2), however, it is difficult to find analytically W (z, t|z¢, 0),
except for a few cases. One of them is for p = 1, where W (z,t) becomes a
Cauchy distribution, and we talk about Cauchy random flights:

o 1
Wolk,t) = pk)e" M = We, 110,0) = o /R dk exp (—2*(t)|k| + ikz) =

= i/ooo dk e~ Ok cos(kz) =
1 1
™ (t) ( T )2
Y0

where we set p(z) = d(x), and x"(t) = Dit, representing the typical length
scale. See the exercises for a full derivation.

Note that, in the case of Levy flights, the displacements do not follow a dis-
tribution with finite variance, as it has a “long tail”. Thus, the CLT theorem
does not apply, and in fact the sum of many displacements is not normally
distributed - for example, in the = 1 case it is a Cauchy pdf.

However, the Cauchy pdf has a key property in common with the gaussian:
it is a stable distribution. This means that a sum of two Cauchy random
variables follows again a Cauchy pdf, up to scaling and translation.

We argue (omitting the proof) that this property holds for all the distributions
in the general case p € (0,2), which are called Lévy alpha-stable distri-
butions. In particular, these stable distributions behave like “attractors” for
the sums of i.i.d. random variables with certain distributions, exactly like the
gaussian behaves for all random variables with finite variance. This leads to a
generalization of the central limit theorem, for which the sum of a number
of random variables with symmetric distributions having power-law tails (Pare-
tian tails), decreasing as ||~ " for large z, with a € (0,2] (and therefore
with infinite variance), will tend to a Lévy stable distribution as the number
of summands grows".

’nB.V. Gnedenko, A.N. Kolmogorov. Limit distributions for sums of independent
random variables, Cambridge, Addison-Wesley 1954 https://books.google.com/books/
about/Limit distributions for sums of independ.html?id=rYsZAQAATIAAJ&redir |
ESC=Yy

See Theorem 5 in Chapter 7, Section 35, page 181.
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