Models of Theoretical Physics

Baiesi's Exercises

October 13, 2020

Francesco Manzali, 1234428
Master's degree in Physics of Data
Università degli Studi di Padova

1

Lesson 1

Exercise 1.1 (Multivariate Gaussian Integral):
Given $\boldsymbol{x}=\left(x_{1}, x_{2}\right)^{T}, \boldsymbol{b}=(1,0)^{T}$ and the matrix A :

$$
A=\left(\begin{array}{cc}
3 & -1 \\
-1 & 3
\end{array}\right)
$$

compute the Gaussian integrals:

$$
\begin{aligned}
Z(A) & =\int_{\mathbb{R}^{2}} \mathrm{~d}^{2} \boldsymbol{x} \exp \left(-\frac{1}{2} \boldsymbol{x}^{T} A \boldsymbol{x}\right) \\
Z(A, \boldsymbol{b}) & =\int_{\mathbb{R}^{2}} \mathrm{~d}^{2} \boldsymbol{x} \exp \left(-\frac{1}{2} \boldsymbol{x}^{T} A \boldsymbol{x}+\boldsymbol{b} \cdot \boldsymbol{x}\right)
\end{aligned}
$$

Solution. We use the following formulas:

$$
\begin{aligned}
Z(A) & =\sqrt{\frac{(2 \pi)^{n}}{\operatorname{det}(A)}} \\
Z(A, \boldsymbol{b}) & =\sqrt{\frac{(2 \pi)^{n}}{\operatorname{det}(A)}} \exp \left(\frac{1}{2} \boldsymbol{b} \cdot\left(A^{-1} \boldsymbol{b}\right)\right)
\end{aligned}
$$

Note that $\operatorname{det} A=8$, and:

$$
A^{-1}=\frac{1}{8}\left(\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right)
$$

Then:

$$
\begin{aligned}
Z(A, 0) & =\frac{(2 \pi)^{2 / 2}}{\sqrt{8}}=\frac{\pi}{\sqrt{2}} \\
\frac{1}{2} \boldsymbol{b} \cdot\left(A^{-1} \boldsymbol{b}\right) & =\frac{1}{2}\left(\begin{array}{ll}
1 & 0
\end{array}\right) \frac{1}{8}\left(\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right)\binom{1}{0}=\frac{3}{16} \\
Z(A, \boldsymbol{b}) & =\frac{\pi}{\sqrt{2}} \exp \left(\frac{3}{16}\right)
\end{aligned}
$$

Exercise 1.2 (Steepest Descent Approximation):

With the saddle-point strategy, compute the approximation for large s of the following integral:

$$
\begin{equation*}
I(s)=\int_{-\infty}^{\infty} e^{s x-\cosh x} d x \tag{1.1}
\end{equation*}
$$

Solution. Since the integral is over the real line, we can use Laplace's formula. Let $f(x)$ be a twice-differentiable function with a unique global maximum at $x_{0} \in(a, b)$. Then:

$$
\begin{equation*}
\int_{a}^{b} e^{n f(x)} \mathrm{d} x \underset{n \rightarrow \infty}{\approx} \sqrt{\frac{2 \pi}{n\left|f^{\prime \prime}\left(x_{0}\right)\right|}} e^{n f\left(x_{0}\right)} \tag{1.2}
\end{equation*}
$$

This comes by expanding f to second order about the maximum:

$$
f(x) \approx f\left(x_{0}\right)-\frac{1}{2}\left|f^{\prime \prime}\left(x_{0}\right)\right|\left(x-x_{0}\right)^{2}
$$

So that:

$$
\begin{aligned}
\int_{a}^{b} e^{n f(x)} \mathrm{d} x & \approx e^{n f\left(x_{0}\right)} \int_{a}^{b} \exp \left(-\frac{1}{2} n\left|f^{\prime \prime}\left(x_{0}\right)\right|\left(x-x_{0}\right)^{2}\right) \\
& \approx \underset{n \rightarrow \infty}{ } e^{n f\left(x_{0}\right)} \int_{\mathbb{R}} \exp \left(-\frac{1}{2} n\left|f^{\prime \prime}\left(x_{0}\right)\right|\left(x-x_{0}\right)^{2}\right)
\end{aligned}
$$

Because x_{0} is not an end-point, for $n \rightarrow \infty$ the gaussian becomes very "peaked" inside (a, b), allowing to compute its integral as if it was on \mathbb{R}. Then, computing the gaussian integral leads back to (1.2).
In our case we start by collecting a s in the exponential argument:

$$
I(s)=\int_{-\infty}^{\infty} \exp (s \underbrace{\left(x-\frac{\cosh x}{s}\right)}_{f(x)})
$$

Now $I(s)$ is in the form needed for 1.2 . We find the maximum of $f(x)$ by differentiating:

$$
\begin{aligned}
f^{\prime}(x) & =1-\frac{\sinh x}{s} \stackrel{!}{=} 0 \Rightarrow x_{0}=\sinh ^{-1} s \\
f^{\prime \prime}(x) & =-\frac{\cosh x}{s} \Rightarrow f^{\prime \prime}\left(x_{0}\right)=-\frac{\cosh ^{\sinh }}{}=-1 \\
s & =-\frac{\sqrt{1+s^{2}}}{s}<0
\end{aligned}
$$

Finally, by applying (1.2) we obtain the result:

$$
\begin{aligned}
I(s) & \underset{s \rightarrow \infty}{ } \quad \sqrt{\frac{2 \pi}{s}} \sqrt{\frac{s}{\sqrt{1+s^{2}}}} \exp \left(s \sinh ^{-1} s-\cosh \sinh ^{-1} s\right)= \\
& =\frac{\sqrt{2 \pi}}{\left(1+s^{2}\right)^{1 / 4}} \exp \left(s \sinh ^{-1} s-\sqrt{1+s^{2}}\right)
\end{aligned}
$$

Exercise 1.3 (Laplace's formula):
With the saddle-point strategy, compute the approximation for large N of the following integral:

$$
I(N)=\int_{0}^{\infty} \underbrace{\cos (x)}_{g(x)} \exp (-N \underbrace{\left.\left[\left(x-\frac{\pi}{3}\right)^{2}+\left(x-\frac{\pi}{3}\right)^{4}\right]\right)}_{f(x)} d x
$$

Solution.

For this exercise we can use Laplace's formula (1.2) with:

$$
f(x)=-\left[\left(x-\frac{\pi}{3}\right)^{2}+\left(x-\frac{\pi}{3}\right)^{4}\right]
$$

As this follows by approximating the integral with its most important value at the maximum, the exponential prefactor $g(x)$ will appear as a prefactor of the solution evaluated at the maximum $x_{0}: g\left(x_{0}\right)$.
By looking at $f(x)$ one can see directly that it has a global maximum in $x_{0}=\pi / 3$. In fact:

$$
\begin{aligned}
f^{\prime}(x) & =-\left[2\left(x-\frac{\pi}{3}\right)+4\left(x-\frac{\pi}{3}\right)^{3}\right] \stackrel{!}{=} 0 \Leftrightarrow x_{0}=\frac{\pi}{3} \\
f^{\prime \prime}(x) & =-\left[2+12\left(x-\frac{\pi}{3}\right)^{2}\right] \Rightarrow f^{\prime \prime}\left(x_{0}\right)=-2<0
\end{aligned}
$$

And so we arrive at:

$$
I(N) \underset{N \rightarrow \infty}{\approx} \cos (\pi / 3) \sqrt{\frac{2 \pi}{N|-2|}}=\frac{1}{2} \sqrt{\frac{\pi}{N}}
$$

Lesson 2

Exercise 2.1 (Fourier transform of derivative):

Show that the following formula holds for the Fourier transform $(\mathcal{F}(f)=\tilde{f}(k))$ of a derivative of the function $f(x)$ (under the usual mathematical assumptions for having a Fourier transform and its derivative):

$$
\mathcal{F}\left(\frac{\mathrm{d}}{\mathrm{~d} x} \theta(x)\right)=i k \tilde{f}(k)
$$

Solution.

$$
\mathcal{F}\left[\frac{\mathrm{d}}{\mathrm{~d} x} f(x)\right](k)=\int_{\mathbb{R}} \mathrm{d} x\left(\partial_{x} f(x)\right) e^{-i k x}=\left.e_{(a)}^{i k x} f(x)\right|_{x=-\infty} ^{x=+\infty}+i k \int_{\mathbb{R}} \mathrm{d} x e^{i k x} f(x)=i k \tilde{f}(k)
$$

where in (a) we performed an integration by parts. The boundary term vanishes because we assume $f, f^{\prime} \in L^{2}(\mathbb{R})$ to be able to compute their Fourier transform, so that $f(x) \rightarrow 0$ for $|x| \rightarrow \infty$.

Exercise 2.2 (Fourier transform of 1):
Show that $\mathcal{F}(1)=2 \pi \delta(k)$.
Solution. By applying the definition of the $\delta(k)$ distribution:

$$
\mathbb{F}[1](k)=2 \pi \underbrace{\int_{\mathbb{R}} \mathrm{d} x \frac{e^{-i k x}}{2 \pi}}_{\delta(k)}=2 \pi \delta(k)
$$

Alternatively, we can show that:

$$
\mathcal{F}^{-1}[2 \pi \delta(k)](x)=\int_{\mathbb{R}} \frac{2 \pi}{2 \pi} e^{i k x} \delta(k) \mathrm{d} k \underset{(a)}{=} e^{i 0 x}=1
$$

where in (a) we applied $\langle\delta, f\rangle=f(0)$.

Figure (2.1) - Left: integral on the real line with approaching singularity. Right: integral using a closed curve and a shifted singularity.

Exercise 2.3 (Prescription $\boldsymbol{i \epsilon}$):

To complete the case discussed during the lecture, compute:

$$
\lim _{\epsilon \rightarrow 0} \frac{1}{x-x_{0}+i \epsilon}=P\left[\frac{1}{x-x_{0}}\right]-i \pi \delta\left(x-x_{0}\right)
$$

Note that this limit and that discussed in the lecture are a physicists' crude shorthand notation for the full equation:

$$
\lim _{\epsilon \rightarrow 0^{+}} \int_{-\infty}^{+\infty} \frac{f(x)}{x-x_{0} \mp i \epsilon} \mathrm{~d} x=P \int_{-\infty}^{+\infty} \frac{f(x)}{x-x_{0}} \mathrm{~d} x \pm i \pi f\left(x_{0}\right)
$$

and $f(z) \rightarrow 0$ for $|z| \rightarrow \infty$ and analytic in the $\operatorname{Im}(z) \geq 0$ portion of the complex plane.
Solution. The integral on the real line with an approaching singularity from $\operatorname{Im}(z) \leq 0$ (figure 2.1, left) can be computed by using the closed curve shown in (figure 2.1, right), and applying Cauchy's integral theorem. The integrand, extended to the complex plane, is:

$$
g(z)=\frac{f(z)}{z-\left(x_{0}-i \epsilon\right)}
$$

By hypothesis, the integral over Γ_{R} vanishes:

$$
\int_{\Gamma_{R}} g(z) \mathrm{d} z=0
$$

Then, the integral over $\Gamma_{\text {pri }}$ is, by definition, the principal part of the real integral:

$$
\int_{\Gamma_{\mathrm{pri}}} g(z) \mathrm{d} z=P \int_{\mathbb{R}} \mathrm{d} x \frac{f(x)}{x-x_{0}}
$$

And finally, the integral over $\Gamma_{\text {res }}$ is equal to half the residue at x_{0}, with a minus sign given by the clockwise rotation:

$$
\int_{\Gamma_{\mathrm{res}}} g(z) \mathrm{d} z=-\frac{2 \pi i}{2} f\left(x_{0}\right)=-\pi i f\left(x_{0}\right)
$$

This proves the required relation:

$$
\lim _{\epsilon \rightarrow 0^{+}} \int_{\mathbb{R}} \frac{f(x)}{x-x_{0}+i \epsilon} \mathrm{~d} x=P \int_{\mathbb{R}} \mathrm{d} x \frac{f(x)}{x-x_{0}}-i \pi f\left(x_{0}\right)
$$

Figure (2.2) - Closed path for the gaussian integral.

Exercise 2.4 (Gaussian integral):
Compute the Gaussian integral

$$
I=\int_{-\infty}^{\infty} \mathrm{d} x \exp \left(-a x^{2}+b x\right)=\sqrt{\frac{\pi}{a}} \exp \left(\frac{b^{2}}{4 a}\right)
$$

for $a \in \mathbb{R}, a>0$ and complex $b=\beta+i \nu$ (with $\beta, \nu \in \mathbb{R}$). For the solution, one may shift to a new variable z with $x=z+i q$, so that the exponent in the integral does not contain a term $\sim i z$ and the new path of integration can be mapped back to the real axis by using Cauchy's theorem.
Solution. The starting integral is:

$$
I=\int_{\mathbb{R}} \mathrm{d} x \exp \left(-a x^{2}+\beta x+i \nu x\right)
$$

We then perform a change of variables:

$$
x=z+i q \Rightarrow \mathrm{~d} x=\mathrm{d} z
$$

moving the integral from the real line to γ, i.e. the horizontal line at $\operatorname{Im} z=i q$.

$$
I=\int_{\gamma} \mathrm{d} z \exp \left(-a(z+i q)^{2}+\beta(z+i q)+i \nu(z+i q)\right)
$$

Expanding the exponential argument leads to:

$$
\begin{array}{r}
-a\left(z^{2}-q^{2}+2 i q z\right)+\beta z+i \beta q+i \nu z-\nu q= \\
\quad-a z^{2}+z \beta+i z(\nu-2 q a)+a q^{2}-\nu q+i \beta q
\end{array}
$$

To remove the $i z$ term we set $\nu-2 q a=0 \Rightarrow q=\nu /(2 a)$, leading to:

$$
=-a z^{2}+z \beta+\frac{a \nu^{2}}{4 a^{2}}-\frac{\nu^{2}}{2 a}+i \frac{\beta \nu}{2 a}=-a z^{2}+z \beta-\frac{\nu^{2}}{4 a}+i \frac{\beta \nu}{2 a}
$$

Substituting back in the integral:

$$
I=\int_{\gamma} \mathrm{d} z \exp \left(-a z^{2}+z \beta\right) \exp \left(-\frac{\nu^{2}}{2 a}+i \frac{\beta \nu}{2 a}\right)
$$

Consider now the closed path shown in fig. 2.2. In the limit where γ_{r} goes from $-\infty$ to $+\infty$, the integrals over γ_{+}and γ_{-}vanish, as $\exp \left(-a z^{2}+b z\right) \rightarrow 0$ for $|z| \rightarrow \infty$. Then, as the closed path does not contain any singularity, by Cauchy's integral theorem we have that the integral along γ is the same as the integral on the real line (assuming the same orientation). This allows us to evaluate I on the real line:

$$
\begin{aligned}
I & =\int_{\mathbb{R}} \mathrm{d} x \exp \left(-a x^{2}+x \beta\right) \exp \left(-\frac{\nu^{2}}{2 a}+i \frac{\beta \nu}{2 a}\right)= \\
& =\sqrt{\frac{\pi}{a}} \exp \left(\frac{\beta^{2}}{4 a}-\frac{\nu^{2}}{4 a}+i \frac{\beta \nu}{2 a}\right)= \\
& =\sqrt{\frac{\pi}{a}} \exp \left(\frac{(\beta+i \nu)^{2}}{4 a}\right)=\sqrt{\frac{\pi}{a}} \exp \left(\frac{b^{2}}{4 a}\right)
\end{aligned}
$$

Exercise 3.1 (Cauchy distribution):

Expand the details of these passages:

$$
P(x, t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{d} k e^{-x^{*}|k|+i k x}=\frac{1}{\pi} \int_{0}^{\infty} \mathrm{d} k e^{-x^{*} k} \cos k x=\frac{1}{\pi x^{*}} \frac{1}{1+\left(\frac{x}{x^{*}}\right)^{2}}
$$

used to find the one-dimensional Cauchy distribution. Finding the last term by skipping entirely the $\cos k x$ step is also an option. Here $x=0$ at $t=0$ and $x^{*}=D_{1} t$.
Solution. We start from the generalized diffusion equation:

$$
\left\{\begin{array}{l}
\partial_{t} P(x, t)=D_{\mu} \frac{\partial}{\partial|x|^{\mu}} P(x, t) \\
P(x, 0)=\rho(x)
\end{array}\right.
$$

with $0<\mu<2$. The fractional derivative makes sense after passing in Fourier space:

$$
\partial_{t} \tilde{P}(k, t)=-D_{\mu}|k|^{\mu} \tilde{P}(k, t) \Leftrightarrow \partial_{t}\left[\exp \left(D_{\mu}|k|^{\mu} t\right) \tilde{P}(k, t)\right]=0
$$

This means that the exponential must be time independent:

$$
\tilde{f}(k) \equiv \exp \left(D_{\mu}|k|^{\mu} t\right) \tilde{P}(k, t) \Rightarrow \tilde{P}(k, t)=\tilde{f}(k) \exp \left(-D_{\mu}|k|^{\mu} t\right)
$$

Since $\tilde{f}(k)$ so defined does not depend on time, we can compute it by setting $t=0$, leading to $\tilde{f}(k)=\tilde{P}(k, 0)=\tilde{\rho}(k)$.
Cauchy random flights are found by setting $\mu=1$. The equation becomes:

$$
\tilde{P}_{C}(k, t)=\tilde{\rho}(k) \exp \left(-D_{1}|k| t\right)
$$

Assuming that the particle is localized in $x=0$ at $t=0$, then $\rho(x)=\delta(x)$, and so $\tilde{\rho}(k)=\mathbb{F}[\delta(x)](k)=1$, leading to:

$$
\tilde{P}_{C}(k, t)=e^{-D_{1}|k| t}=\exp \left(-x^{*}(t)|k|\right)
$$

To return to position space, we compute a Fourier anti-transform:

$$
\begin{aligned}
P_{C}(x, t) & =\mathcal{F}^{-1}\left[\tilde{P}_{C}\right](x, t)=\frac{1}{2 \pi} \int_{\mathbb{R}} \mathrm{d} k \exp \left(-x^{*}(t)|k|-i k x\right)= \\
& =\frac{1}{2 \pi} \int_{\mathbb{R}} \mathrm{d} k e^{-x^{*}(t)|k|}[\cos (-k x)+i \sin (-k x)]
\end{aligned}
$$

Note that the domain is symmetric, and the red terms are even, while the blue one is odd. So the sin contribution will be 0 , leading to:

$$
P_{C}(x, t)=\frac{1}{2 \pi} 2 \int_{0}^{+\infty} \mathrm{d} k e^{-x^{*}(t) k} \cos (k x)
$$

The integral can be computed with a double integration by parts:

$$
\begin{aligned}
I= & \int_{0}^{+\infty} e^{-x^{*} k} \cos (k x) \mathrm{d} k=-\left.\cos (k x) \frac{1}{x^{*}} e^{-x^{*} k}\right|_{k=0} ^{k=+\infty}+\left.x \sin (k x)\left(x^{*}\right)^{-2} e^{-x^{*}} k\right|_{k=0} ^{k=+\infty} \\
& -\int_{0}^{+\infty} \mathrm{d} k x^{2} \cos (k x)\left(x^{*}\right)^{-2} e^{-x^{*} k}= \\
= & \frac{1}{x^{*}}-\frac{x^{2}}{\left(x^{*}\right)^{2}} I \Rightarrow I=\frac{1}{x^{*}} \frac{1}{1+\left(\frac{x}{x^{*}}\right)^{2}}
\end{aligned}
$$

And readding the $1 / \pi$ factor leads to the desired solution:

$$
P_{C}(x, t)=\frac{1}{\pi x^{*}} \frac{1}{1+\left(\frac{x}{x^{*}}\right)^{2}}
$$

Exercise 3.2 (Transition probabilities and Cauchy flights):

With the Cauchy jump distribution with typical displacement $x^{*}=D_{1} t$ at time t (see previous exercise, setting $x=$ displacement), compute the probability $P(x, t)$ to find the particle at position x at time t for such a Levy process, when the initial distribution is uniform and bound as $P(x, 0)=\rho(x)=1 /(2 a)$ for $x \in[-a, a]$ and $\rho(x)=0$ otherwise.

Solution. The initial distribution is given by:

$$
P(x, 0)=\rho(x)= \begin{cases}\frac{1}{2 a} & x \in[-a,+a] \\ 0 & \text { otherwise }\end{cases}
$$

The probability of a particle being in x at t is obtained by propagating the initial distribu-
tion:

$$
\begin{aligned}
P(x, t) & =\int_{\mathbb{R}} \mathrm{d} x_{0} P\left(x, t \mid x_{0}, 0\right) P\left(x_{0}, 0\right)= \\
& =\int_{-a}^{+a} \mathrm{~d} x_{0} \frac{1}{\pi x *} \frac{1}{1+\left(\frac{x-x_{0}}{x^{*}}\right)^{2}} \frac{1}{2 a}= \\
& =-\left.\frac{1}{2 a \pi x^{*}(t)} \arctan \left(\frac{x-x_{0}}{x^{*}}\right)\right|_{x_{0}=-a} ^{x_{0}=+a}= \\
& =\frac{1}{2 \pi a x^{*}(t)}\left[-\arctan \left(\frac{x-a}{x^{*}}\right)+\arctan \left(\frac{x+a}{x^{*}}\right)\right]
\end{aligned}
$$

Exercise 3.3 (Numerical simulation - optional):

Check numerically that the sum $S_{n}=x_{1}+\ldots+x_{n}$ of n i.i.d. variables $x \in \mathbb{R}$, each one distributed according to

$$
p(x)=\frac{1}{4 x^{2}} \quad \text { for }|x|>1, \quad p(x)=1 / 4 \text { for }|x| \leq 1
$$

converges to a Cauchy distribution

$$
P_{\text {Cauchy }}(Y)=\frac{1}{\pi\left(1+Y^{2}\right)}
$$

after a suitable rescaling $Y_{n}=\gamma S_{n} / n^{\beta}$. What are γ and β ?
See the Jupyter notebook at this link: https://github.com/Einlar/data_notes/blob/ revision/Models/Plots/Baiesi3_3-simulation.ipynb.

Lesson 4

Consider the two-state model with states at position $x_{1}=-c$ and $x_{2}=+c$ and probability p to be in state $-c$, which evolves according to:

$$
\dot{p}=-W p+\frac{W}{2}+\epsilon \sin \left(\omega_{s} t\right)
$$

Exercise 4.1:

For $\epsilon=0$, show that the correlation time function is:

$$
C(t)=\langle x(t) x(0)\rangle=c^{2} e^{-W|t|}
$$

Solution. The evolution equation for $\epsilon=0$ reads:

$$
\dot{p}=-W p+\frac{W}{2}=-W\left(p-\frac{1}{2}\right)=-W \Delta p
$$

With $\Delta p=p-1 / 2$. As $\dot{\Delta p}=\dot{p}$ we get an equivalent ODE that can be solved by separation of variables:

$$
\dot{\Delta p}=-W \Delta p \Rightarrow \Delta p(t)=\Delta p(0) e^{-W t}
$$

Substituting back:

$$
p(t)-\frac{1}{2}=\left(p(0)-\frac{1}{2}\right) e^{-W t} \Rightarrow p(t)=\left(p(0)-\frac{1}{2}\right) e^{-W t}+\frac{1}{2}
$$

and:

$$
1-p(t)=\frac{1}{2}-\left(p(0)-\frac{1}{2}\right) e^{-W t}
$$

We can now compute the correlator:

$$
\langle x(t) x(0)\rangle=\int_{\mathbb{R}^{2}} \mathrm{~d} x x \mathbb{P}(x, t) x \mathbb{P}(x, 0)=\int_{\mathbb{R}^{2}} x^{2} \mathbb{P}(x, t) \mathbb{P}(x, 0) \quad t>0
$$

There are only two possible values for x : c and $-c . p(t)$ is the probability of $x_{t}=-c$, i.e. $P(-c, t)$. By conservation of probability:

$$
\mathbb{P}(c, t)=1-\mathbb{P}(-c, t)=1-p(t)
$$

Substituting in the expression for the correlator:

$$
\begin{aligned}
\langle x(t) x(0)\rangle= & (-c)^{2} p(t) p(0)+c^{2}(1-p(t))(1-p(0))+ \\
& +c(-c) p(t)(1-p(0))+(-c) c(1-p(t)) p(0)
\end{aligned}
$$

For simplicity of notation, let:

$$
p(t) \equiv p_{t} ; \quad p(0) \equiv p_{0} ; \quad p_{t}=\left(p_{0}-\frac{1}{2}\right) A+\frac{1}{2} ; \quad A \equiv e^{-W t}
$$

Then:

$$
\begin{aligned}
\langle x(t) x(0)\rangle & =c^{2}\left[p_{t} p_{0}+\left(1-p_{t}\right)\left(1-p_{0}\right)-p_{t}\left(1-p_{0}\right)-p_{0}\left(1-p_{t}\right)\right]= \\
& =c^{2}\left[p_{t} p_{0}+1+p_{t} p_{0}-p_{t}-p_{0}-p_{t}+p_{0} p_{t}-p_{0}+p_{0} p_{t}\right]= \\
& =c^{2}\left[4 p_{t} p_{0}-2 p_{t}-2 p_{0}+1\right]= \\
& =c^{2}\left[4 p_{0}^{2} A+4 p_{0}(-A / 2)+4 p_{0} / 2-2 p_{0} A+A-1-2 p_{0}+1\right]= \\
& =c^{2}\left[4 p_{0}^{2} A-2 p_{0} A+2 p_{0}-2 p_{0} A+A-2 p_{0}\right]= \\
& =c^{2}\left[4 p_{0}^{2} A-4 p_{0} A+A\right]=e^{-W t} c^{2}\left(4 p_{0}^{2}-4 p_{0}+1\right)= \\
& =e^{-W t} c^{2}\left(2 p_{0}-1\right)^{2}
\end{aligned}
$$

For $p_{0}=1($ system initially in $-c)$:

$$
\langle x(t) x(0)\rangle=c^{2} e^{-W t} \quad t>0
$$

The same argument works for $t<0$, with the only difference being a sign. So, in the general case:

$$
\langle x(t) x(0)\rangle=c^{2} e^{-W|t|}
$$

Exercise 4.2:

For $\epsilon=0$, use the Wiener-Kintchine Theorem:

$$
\begin{equation*}
P(\omega)=4 \int_{0}^{\infty} C(t) \cos (\omega t) \mathrm{d} \omega \tag{4.1}
\end{equation*}
$$

tho show that the power spectrum in this case is:

$$
P^{(0)}(\omega)=4 c^{2} \frac{W}{W^{2}+\omega^{2}}
$$

Solution. For $\epsilon=0$ we derived in the previous exercise that:

$$
C(t)=\langle x(t) x(0)\rangle=c^{2} e^{-W|t|}
$$

Inserting in the Wiener-Kintchine theorem (4.1):

$$
\begin{aligned}
P(\omega) & =4 \int_{0}^{+\infty} c^{2} e^{-W|t|} \cos (\omega t) \mathrm{d} t= \\
& =4 c^{2} \int_{0}^{+\infty} e^{-W t} \cos (\omega t) \mathrm{d} t= \\
& =2 c^{2} \int_{0}^{+\infty} e^{-W t}\left(e^{i \omega t}-e^{-i \omega t}\right) \mathrm{d} t= \\
& =2 c^{2} \int_{0}^{+\infty}\left[e^{i t(\omega-W / i)}-e^{-i t(\omega+W / i)}\right] \mathrm{d} t= \\
& =2 c^{2} \int_{0}^{+\infty}\left[e^{i t(\omega+i W)}-e^{-i t(\omega-i W)}\right] \mathrm{d} t= \\
& =2 c^{2}\left[-\frac{1}{i \omega-W}+\frac{1}{i \omega+W}\right]=2 c^{2}\left[\frac{1}{W-i \omega}+\frac{1}{W+i \omega}\right]= \\
& =2 c^{2}\left[\frac{W+i \omega+W-i \omega}{W^{2}+\omega^{2}}\right]=4 c^{2} \frac{W}{W^{2}+\omega^{2}}
\end{aligned}
$$

To compute the integral in (a) we used the following Fourier transform:

$$
\begin{aligned}
\int_{0}^{+\infty} e^{-i t\left(\omega-i \omega_{0}\right)} \mathrm{d} t & =\int_{\mathbb{R}} \theta(t) e^{-i t\left(\omega-i \omega_{0}\right)}=\tilde{\theta}\left(\omega-i \omega_{0}\right)=\frac{1}{i\left(\omega-i \omega_{0}\right)}= \\
& =\frac{1}{i \omega+\omega_{0}}
\end{aligned}
$$

Exercise 4.3:

For $\epsilon \neq 0$, show that the signal-to-noise ratio is maximum at $\kappa^{*}=\Delta V$ if the rates follow the Kramers formula:

$$
\begin{equation*}
W_{1,2}=\exp \left[-\frac{2 \Delta V}{\kappa} \mp \frac{2 V_{1}}{\kappa} \sin \left(\omega_{s} t\right)\right]=\frac{W}{2} \exp \left[\mp \frac{2 V_{1}}{\kappa} \sin \left(\omega_{s} t\right)\right] \tag{4.2}
\end{equation*}
$$

with $V_{1} \ll \Delta V$ and using the correct identification for ϵ in this case.
Solution. In the reduced model we started from:

$$
\begin{equation*}
W_{1,2}=\frac{W}{2} \mp \epsilon \sin \left(\omega_{s} t\right)=\frac{W}{2}\left(1 \mp \frac{2 \epsilon}{W} \sin \left(\omega_{s} t\right)\right) \tag{4.3}
\end{equation*}
$$

We confront this expression with the one from (4.2), where we expand the exponential in the limit $V_{1} / \Delta V \ll 1$ (as the sinusoidal term is just a perturbation):

$$
W_{1,2} \approx \exp \left(-\frac{2 \Delta V}{\kappa}\right)\left(1 \mp \frac{2 V_{1}}{\kappa} \sin \left(\omega_{s} t\right)\right)
$$

By comparison:

$$
\begin{equation*}
\frac{W}{2} \sim \exp \left(-\frac{2}{k} \Delta V\right) ; \quad \frac{2 \epsilon}{W} \sim \frac{2 V_{1}}{\kappa} \Rightarrow \epsilon \sim W \frac{V_{1}}{\kappa} \tag{4.4}
\end{equation*}
$$

From previous calculations, we arrived at the following expression for the signal to noise ratio:

$$
\mathrm{SNR}_{\omega_{s}} \sim \frac{\pi^{2} \epsilon^{2}}{W}
$$

Substituting in the right terms (4.4) and ignoring all prefactors (as we are interested just in the position of the maximum), we arrive to:

$$
\mathrm{SNR}_{\omega_{s}} \sim \frac{1}{k^{2}} \exp \left(-\frac{2}{k} \Delta V\right)
$$

To find its maximum, we set its derivative with respect to k to 0 :

$$
\begin{aligned}
& -\frac{2}{k^{3}} \exp \left(-\frac{2}{k} \Delta V\right)+\frac{1}{k^{2}} \frac{2 \Delta V}{k^{2}} \exp \left(-\frac{2}{k} \Delta V\right) \stackrel{!}{=} 0 \\
\Rightarrow & -\frac{2}{k^{3}} \exp \left(-\frac{2}{k} \Delta V\right)+\frac{2 \Delta V}{k^{4}} \exp \left(-\frac{2}{k} \Delta V\right) \stackrel{!}{=} 0 \\
\Rightarrow & \exp \left(-\frac{2}{k} \Delta V\right)\left[-1+\frac{\Delta V}{k}\right]=0 \Rightarrow \frac{\Delta V}{k}=1 \Rightarrow k=\Delta V
\end{aligned}
$$

Exercise 5.1:

Consider the Random Field Ising Model (RFIM), in which the disorder has variance δ^{2}. Proceed to arrive at the formula where the number n of replicas appears explicitly in the magnetization m :

$$
m=\frac{1}{Z_{1}(m)} \int_{\mathbb{R}} \frac{\mathrm{d} \nu}{\sqrt{2 \pi}} \exp \left(\frac{1}{2} \nu^{2}+n \ln 2 \cosh (2 \beta J m+\beta \delta \nu)\right) \tanh (2 \beta J m+\beta \delta \nu)
$$

Solution. We start from the expression for $\overline{Z^{n}}$ after the 2 Hubbard-Stratonovich transformations:

$$
\begin{equation*}
\overline{Z^{m}}=\left(\frac{N}{2 \pi}\right)^{n / 2}\left[\int_{\mathbb{R}} \mathrm{d} x \exp \left(N\left[-\frac{1}{2} n x^{2}+\log Z_{1}(x)\right]\right)\right]^{n} \tag{5.1}
\end{equation*}
$$

This integral is evaluated in the saddle-point approximation. Minimizing the exponential argument leads to:

$$
\begin{equation*}
\frac{\partial}{\partial x}\left(-\frac{1}{2} n x^{2}+\log Z_{1}(x)\right)=0 \Rightarrow n x=\frac{\partial}{\partial x} \log Z_{1}(x) \tag{5.2}
\end{equation*}
$$

Recall that we define the magnetization m as:

$$
\frac{x}{\sqrt{2 \beta J}}=m
$$

So we can change variables in (5.1) through (5.2). In particular, note that:

$$
\frac{\partial}{\partial x}=\frac{\partial}{\partial m} \frac{\partial m}{\partial x}=\frac{1}{\sqrt{2 \beta J}} \frac{\partial}{\partial m}
$$

And so (5.1) becomes:

$$
\begin{equation*}
n m \sqrt{2 \beta J}=\frac{1}{\sqrt{2 \beta J}} \frac{\partial}{\partial m} \log Z_{1}(m) \Rightarrow m=\frac{1}{n} \frac{1}{2 \beta J} \frac{\partial}{\partial m} \log Z_{1}(m) \tag{5.3}
\end{equation*}
$$

We have already found that:

$$
Z_{1}(m)=\int_{\mathbb{R}} \frac{\mathrm{d} \nu}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} \nu^{2}+n \log [2 \cosh (2 \beta J m+\beta \delta \nu)]\right)
$$

Substituting in (5.3):

$$
\begin{aligned}
m= & \frac{1}{n} \frac{1}{2 \beta J} \frac{\partial}{\partial m} \log Z_{1}(m)= \\
= & \frac{1}{n} \frac{1}{2 \beta J} \frac{1}{Z_{1}(m)} \frac{\partial}{\partial m} \int_{\mathbb{R}} \frac{\mathrm{d} \nu}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} \nu^{2}+n \log [2 \cosh (2 \beta J m+\beta \delta \nu)]\right)= \\
= & \frac{1}{x} \frac{1}{2 \beta J} \frac{1}{Z_{1}(m)} \int_{\mathbb{R}} \frac{\mathrm{d} \nu}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} \nu^{2}+n \log [2 \cosh (2 \beta J m+\beta \delta \nu)]\right) . \\
& \cdot \frac{\not x}{2 \cosh (2 \beta J m+\delta \beta \nu)} \sinh (2 \beta J m+\delta \beta \nu) 2 \beta J= \\
= & \frac{1}{Z_{1}(m)} \int_{\mathbb{R}} \frac{\mathrm{d} \nu}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} \nu^{2}+n \log [2 \cosh (2 \beta J m+\delta \beta \nu)]\right) . \\
& \cdot \tanh (2 \beta J m+\delta \beta \nu)
\end{aligned}
$$

Exercise 5.2:

With the self-consistent solution $m_{\mathrm{SC}}(m)=m$ of the RFIM, by using the condition $\partial m_{\mathrm{SC}} / \partial m=1$ for the critical point, show that the phase transition between paramagnetic phase and ferromagnetic phase takes place where this condition is satisfied:

$$
\begin{equation*}
2 \beta J \int_{\mathbb{R}} \mathrm{d} h p(h) \frac{1}{[\cosh (\beta h)]^{2}}=1 \tag{5.4}
\end{equation*}
$$

Solution. The self-consistent equation for the RFIM is:

$$
m=\overline{\tanh (\beta[2 J m+h])}
$$

Criticality is reached when the lhs and rhs are tangent at the origin, meaning that:

$$
\left.\frac{\partial}{\partial m} \overline{\tanh (\beta[2 J m+h])}\right|_{m=0} \stackrel{!}{=} 1
$$

Expanding the average leads to:

$$
\begin{gathered}
\left.\int_{\mathbb{R}} \mathrm{d} h p(h) \frac{\partial}{\partial m} \tanh (2 \beta J m+\beta h)\right|_{m=0}= \\
=\left.\int_{\mathbb{R}} \mathrm{d} h p(h) \frac{1}{\cosh ^{2}(2 \beta J m+\beta h)}\right|_{m=0}(2 \beta J)=2 \beta J \int_{\mathbb{R}} \mathrm{d} h p(h) \frac{1}{\cosh ^{2}(\beta h)} \stackrel{!}{=} 1
\end{gathered}
$$

Exercise 5.3:

Show that at zero temperature in the RFIM there is a disorder-driven para-ferromagnetic transition where the random field standard deviation δ and the coupling J satisfy $2 J / \delta=$ $\sqrt{\pi / 2}$. For simplicity one may take $\delta=1$.
Solution. We start from the criticality condition (5.4), inserting the distribution $p(h)$:

$$
1=2 \beta J \int_{\mathbb{R}} \frac{1}{\sqrt{2 \pi \delta^{2}}} \exp \left(-\frac{h^{2}}{2 \delta^{2}}\right) \frac{1}{\cosh ^{2}(\beta h)} \mathrm{d} h
$$

We introduce reduced dimensionless variables:

$$
J^{\prime}=\frac{J}{\delta} ; \quad \beta^{\prime}=\beta \delta ; \quad \tilde{h}=\beta h \Rightarrow \mathrm{~d} \tilde{h}=\beta \mathrm{d} h
$$

leading to:

$$
1=2 \not \not J^{\prime} \not \emptyset \int_{\mathbb{R}} \frac{\mathrm{d} \tilde{h}}{\beta \not \partial \delta} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{\tilde{h}^{2}}{2 \beta^{\prime 2}}\right) \frac{1}{\cosh ^{2}(\tilde{h})}
$$

In the low temperature limit $\beta \rightarrow \infty$ the exponential tends to unity:

$$
\begin{equation*}
2 J^{\prime} \int_{\mathbb{R}} \frac{\mathrm{d} \tilde{h}}{\sqrt{2 \pi}} \frac{1}{(\cosh \tilde{h})^{2}}=1 \tag{5.5}
\end{equation*}
$$

Note that:

$$
\frac{\mathrm{d}}{\mathrm{~d} \tilde{h}} \tanh (\tilde{h})=\frac{1}{(\cosh \tilde{h})^{2}}
$$

And so we can evaluate (5.5):

$$
\left.\frac{2 J^{\prime}}{\sqrt{2 \pi}} \tanh \tilde{h}\right|_{-\infty} ^{+\infty}=\frac{2 J^{\prime}}{\sqrt{2 \pi}}(1-(-1))=2 J^{\prime} \frac{2}{\sqrt{2 \pi}} \stackrel{!}{=} 1 \Rightarrow 2 J^{\prime}=\frac{2 J}{\delta}=\sqrt{\frac{\pi}{2}}
$$

6
 Lesson 7

For the one-dimensional stochastic motion:

$$
\dot{x}=F(x)+\sqrt{\epsilon} \xi
$$

with white noise ξ and drift F, the instantons ($\epsilon \rightarrow 0$ limit) follow the equation:

$$
\ddot{x}=-\frac{\mathrm{d} V_{\text {eff }}}{\mathrm{d} x} \quad \text { with } \quad V_{\text {eff }}(x)=-\frac{F^{2}(x)}{2}
$$

which implies a conservation of the "energy":

$$
E=\frac{1}{2} \dot{x}^{2}+V_{\text {eff }}(x)
$$

Exercise 6.1:

Find the instanton for $F=-\kappa x$ by using the conservation of energy, for initial condition $t_{i}=0, x_{i}=0, \dot{x}_{i}=0$ and final condition x_{0} at $t=0$.
Solution. By conservation of energy:

$$
\mathcal{E}=\frac{1}{2} \dot{x}^{2}+V_{\mathrm{eff}}(x) \quad V_{\mathrm{eff}}(x)=-\frac{x^{2} \kappa}{2}
$$

So we have:

$$
\frac{1}{2} \dot{x}^{2}=\frac{x^{2} \kappa^{2}}{2} \Rightarrow \dot{x}=x k \Rightarrow \frac{\mathrm{~d} x}{\mathrm{~d} t}=x \kappa \Rightarrow x(t)=x_{0} e^{\kappa t}
$$

Exercise 6.2:

For $F=-\kappa \sin x$ show that the instanton:

$$
x^{*}(t)=2 \arctan \left(e^{\kappa t}\right)
$$

has "energy" $\mathcal{E}=0$ at every instant t.
Solution. The energy is given by:

$$
\mathcal{E}=\frac{1}{2} \dot{x}^{2}+V_{\mathrm{eff}}(x)=\frac{1}{2} \dot{x}^{2}-\frac{\kappa^{2} \sin ^{2}(x)}{2}
$$

We substitute the expression for x^{*} inside \mathcal{E}, to compute the energy of the given solution at any instant. We start by computing the $\sin ^{2}$:

$$
\begin{align*}
\sin ^{2} x^{*}(t) & =\sin ^{2}\left(2 \arctan e^{\kappa t}\right)=\left[2 \sin \left(\arctan e^{\kappa t}\right) \cos \left(\arctan e^{\kappa t}\right)\right]^{2}= \\
& =4\left(\sin ^{2} \arctan e^{\kappa t}\right)\left(1-\sin ^{2} \arctan e^{\kappa t}\right) \tag{6.1}
\end{align*}
$$

Recall from goniometry:

$$
\sin \arctan x=\frac{x}{\sqrt{1+x^{2}}}
$$

And so:

$$
\sin ^{2} \arctan e^{\kappa t}=\frac{e^{2 \kappa t}}{1+e^{2 \kappa t}}
$$

Substituting in (6.1) we get:

$$
\begin{aligned}
\sin ^{2} x^{*}(t) & =\frac{4 e^{2 \kappa t}}{1+e^{2 \kappa t}}\left(1-\frac{e^{2 \kappa t}}{1+e^{2 \kappa t}}\right)=\frac{4 e^{2 \kappa t}}{1+e^{2 \kappa t}} \frac{1+e^{2 \kappa t}-e^{2 \kappa t}}{1+e^{2 \kappa t}}= \\
& =\frac{4 e^{2 \kappa t}}{\left(1+e^{2 \kappa t}\right)^{2}}
\end{aligned}
$$

Then:

$$
\mathcal{E}=\frac{1}{2}\left(\dot{x}^{*}\right)^{2}-\frac{k^{2} \sin ^{2} x^{*}}{2}=\frac{1}{2}\left[\frac{4 \kappa^{2} e^{2 \kappa t}}{\left(1+e^{2 \kappa t}\right)^{2}}-\frac{4 \kappa^{2} e^{2 \kappa t}}{\left(1+e^{2 \kappa t}\right)^{2}}\right]=0
$$

Exercise 6.3:

Consider a N-dimensional system with $i \leq N$ components. Each component of $\boldsymbol{x}=\left(x_{i}\right)$ follows a stochastic motion:

$$
\dot{x}_{i}=F_{i}(\boldsymbol{x})+\sqrt{\epsilon} \xi_{i}
$$

with independent white noises $\left\langle\xi_{i}(t) \xi_{j}\left(t^{\prime}\right)\right\rangle=\delta_{i j} \delta\left(t-t^{\prime}\right)$.
By starting from the Euler-Lagrange equation per component, show that the instanton equations become:

$$
\begin{equation*}
\ddot{x}_{i}=\frac{\partial}{\partial x_{i}} \frac{\|\boldsymbol{F}\|^{2}}{2}+\sum_{j=1}^{N}\left(\frac{\partial F_{i}}{\partial x_{j}}-\frac{\partial F_{j}}{\partial x_{i}}\right) \dot{x}_{j} \tag{6.2}
\end{equation*}
$$

where:

$$
\|\boldsymbol{F}\|^{2}=\sum_{j=1}^{N} F_{i}^{2}
$$

Solution We want to minimize the action functional:

$$
S[\boldsymbol{x}]=\int_{t_{i}}^{t_{f}} L(\boldsymbol{x}, \dot{\boldsymbol{x}}) \mathrm{d} \tau \quad L(\boldsymbol{x}, \dot{\boldsymbol{x}})=\frac{1}{2}\|\dot{\boldsymbol{x}}-\boldsymbol{F}(\boldsymbol{x})\|^{2}
$$

The Euler-Lagrange equations are:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{x}_{i}}-\frac{\partial L}{\partial x_{i}}=0 \quad 1 \leq i \leq N
$$

Inserting the expression for L :

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{~d} t} \frac{1}{2} \cdot \not \mathscr{Z}\left(\dot{x}_{i}-F_{i}(\boldsymbol{x})\right)-\frac{1}{2} \cdot \mathscr{2} \sum_{j=1}^{N}\left(\dot{x}_{j}-F_{j}(\boldsymbol{x})\right)\left(-\frac{\partial F_{j}}{\partial x_{i}}\right)= \\
&=\ddot{x}_{i}-\sum_{j=1}^{N} \frac{\partial F_{i}}{\partial x_{j}} \dot{x}_{j}+\sum_{j=1}^{N} \frac{\partial F_{j}}{\partial x_{i}} \dot{x}_{j}-\sum_{j=1}^{N} F_{j}(\boldsymbol{x}) \frac{\partial F_{j}}{\partial x_{i}}=0 \\
& \Rightarrow \ddot{x}_{i}=\underbrace{}_{\partial_{x_{i}\|\boldsymbol{F}\|^{2} / 2 * 69}^{\sum_{j=1}^{N} F_{j}(\boldsymbol{x}) \frac{\partial F_{j}}{\partial x_{i}}}+\sum_{j=1}^{N}\left(\frac{\partial F_{i}}{\partial x_{j}}-\frac{\partial F_{j}}{\partial x_{i}}\right) \dot{x}_{j}} \tag{6.3}
\end{align*}
$$

Exercise 6.4:

Show that:

$$
\mathcal{E}=\frac{1}{2}\|\dot{\boldsymbol{x}}\|^{2}+V_{\mathrm{eff}}(\boldsymbol{x}) \quad V_{\mathrm{eff}}(\boldsymbol{x})=-\frac{1}{2}\|\boldsymbol{F}\|^{2}
$$

is a constant for the solution of the instanton equations (6.2).
Solution. Differentiating \mathcal{E} wrt time:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \mathcal{E} & =\frac{1}{2} 2 \dot{\boldsymbol{x}} \cdot \ddot{\boldsymbol{x}}-\frac{1}{2} 2 \boldsymbol{F} \cdot \dot{\boldsymbol{F}}= \\
& =\sum_{i=1}^{N} \dot{x}_{i} \ddot{x}_{i}-\sum_{i=1}^{N} F_{i} \sum_{j=1}^{N} \frac{\partial F_{i}}{\partial x_{j}} \dot{x}_{j}= \\
& =\sum_{i=1}^{N} \dot{x}_{i} \sum_{j=1}^{N}\left(\frac{\partial F_{i}}{\partial x_{j}}-\frac{\partial F_{j}}{\partial x_{i}}\right) \dot{x}_{j}+\sum_{i=1}^{N} \dot{x}_{i} \sum_{j=1}^{N} F_{j} \frac{\partial F_{j}}{\partial x_{i}}-\sum_{i=1}^{N} F_{i} \sum_{j=1}^{N} \frac{\partial F_{i}}{\partial x_{j}} \dot{x}_{j}
\end{aligned}
$$

Note that the last two terms cancel out, by exchanging $i \leftrightarrow j$ in the last one. Then we are left with:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \mathcal{E} & =\sum_{i j=1}^{N} \dot{x}_{i} \dot{x}_{j}\left(\frac{\partial F_{i}}{\partial x_{j}}-\frac{\partial F_{j}}{\partial x_{i}}\right)= \\
& =\sum_{i j=1}^{n} \dot{x}_{i} \dot{x}_{j} \frac{\partial F_{i}}{\partial x_{j}}-\sum_{i j=1}^{N} \dot{x}_{j} \dot{x}_{i} \frac{\partial F_{j}}{\partial x_{i}}=0
\end{aligned}
$$

Again these last two terms cancel out after substituting $i \leftrightarrow j$ in the last one.

