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{Exercise 1.1 (Multivariate Gaussian Integral):}

Given @ = (z1,22)", b= (1,0)" and the matrix A:

A= 3 -1
-1 3
compute the Gaussian integrals:
2 L 7
Z(A) = /]de X exp (—21’ Ax
1
Z(Ab) = /IR2 d?x exp (—QmTAa: +b- :c>

Solution. We use the following formulas:

(2m)"
Z2(4) = det(A)
T (L)
Z(A)b) = dct(A) exp 2b (A™°b)
Note that det A = 8, and:
A1 _1 (31
8\ 1 3
Then:
(27_(_)2/2
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Exercise 1.2 (Steepest Descent Approximation):J

With the saddle-point strategy, compute the approximation for large s of the following
integral:

I(s) = /OO STeoshe gy (1.1)

Solution. Since the integral is over the real line, we can use Laplace’s formula. Let f(z)
be a twice-differentiable function with a unique global maximum at g € (a,b). Then:

b s
nf(x) d ~ nf(zq) 1.2
fo O st 42

This comes by expanding f to second order about the maximum:
1
f(z) = f(zg) — §|f”($0)|($ —x9)°

So that:

/a (@) 4z ~ e 0)/a exp <—2n|f”(x0)|(x—x0)2)
~ nf(zg) _l " . 2
3 @) [ exp (—snl o)l — )

Because z is not an end-point, for n — oo the gaussian becomes very “peaked” inside
(a,b), allowing to compute its integral as if it was on R. Then, computing the gaussian

integral leads back to (|1.2)).

In our case we start by collecting a s in the exponential argument:

I(s) = /O:Oexp (s (x— coihx>>
T

Now I(s) is in the form needed for ([1.2)). We find the maximum of f(z) by differentiating:

h
f/(x)zl—sm xL0:>x0—smh
S
h hsinh ™ V14 s
f,,(x):_cos x:f,,(xo):_cos sin S _ + s <0
S S S

Finally, by applying . we obtain the result:

[2m |
T exp ssinh™! s — cosh sinh ™ )

WGXP <ssmh —V1+s )

(1+s




Exercise 1.3 (Laplace’s formula):}

With the saddle-point strategy, compute the approximation for large N of the following

integral:
1091= [ g (< (=) (= )]
9(z) ~ G g
Solution.

For this exercise we can use Laplace’s formula ((1.2) with:

T\ 2 ™ 4}
@ ==|(==5) +(==5)
As this follows by approximating the integral with its most important value at the mazimum,

the exponential prefactor g(x) will appear as a prefactor of the solution evaluated at the
maximum zy: g(xg).

By looking at f(x) one can see directly that it has a global maximum in xy = 7/3. In fact:
T T\3] | T
fl(x) = — {2(1‘—3)4—4(%‘—3) } :O<:>x0:§
7 T2 7
f(x):—2—|—12<$—§) = f(xg) =-2<0

And so we arrive at:

2 1 T
I(N) = — .=
(V) (% SmBN — = 2 VN




Lesson 2

{Exercise 2.1 (Fourier transform of derivative):}

Show that the following formula holds for the Fourier transform (F(f) = f(k)) of a
derivative of the function f(z) (under the usual mathematical assumptions for having a
Fourier transform and its derivative):

F <§$9($)) =ik f(k)

Solution.

Flgf@] 0= [ arourne ™ = a7 i [ dre @) = k)

where in (a) we performed an integration by parts. The boundary term vanishes because
we assume f, f’ € L2(]R) to be able to compute their Fourier transform, so that f(x) — 0
for |z| — oc.

{Exercise 2.2 (Fourier transform of 1):}

Show that F(1) = 2w (k).
Solution. By applying the definition of the d(k) distribution:

—ikx

(&
F[1](k) = 27 [ do -
3(k)

= 270 (k)
—_—

Alternatively, we can show that:

Fl2ro())(e) = [ 2T ks (k) db = 0 = 1

27 (a)

where in (a) we applied (J, f) = f(0).
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Figure (2.1) — Left: integral on the real line with approaching singularity. Right: integral using a closed
curve and a shifted singularity.

{Exercise 2.3 (Prescription ie):}

To complete the case discussed during the lecture, compute:

1 1
lim,:P{ }—z’mS(x—xo)
e=0x — xg + 1€ T — Xy

Note that this limit and that discussed in the lecture are a physicists’ crude shorthand
notation for the full equation:

+o00 +oo

@)y, _p [ I
— 00

———dx +inf(xg)
r— Ty

lim -
e—0"J—o0 T —xgF 1€

and f(z) — 0 for |z] = oo and analytic in the Im(z) > 0 portion of the complex plane.

Solution. The integral on the real line with an approaching singularity from Im(z) <0
(figure [2.1] left) can be computed by using the closed curve shown in (figure [2.1] right),
and applying Cauchy’s integral theorem. The integrand, extended to the complex plane,
is:

f(2)

w9

By hypothesis, the integral over I'p vanishes:
/ g(z)dz=10
I'r

Then, the integral over I',; is, by definition, the principal part of the real integral:

f (=)

d :P/d
/r g(z) : R mx—xo

pri

And finally, the integral over I’ is equal to half the residue at x(, with a minus sign given
by the clockwise rotation:

| oyde = =22 () = —rif (o)

res




This proves the required relation:

lim / A CO N P/]Rdx xfgo — i f(zq)

es0T JR T —x + 1€

Im
A
:
Yo o
L 3 Re

Figure (2.2) — Closed path for the gaussian integral.

Exercise 2.4 (Gaussian integral):}

Compute the Gaussian integral

o0 2 s b2
1 :/ dxexp(—az —i—bm) = \/7€Xp —
—00 a 4a

for a € R,a > 0 and complex b = 8+ iv (with 3, € R). For the solution, one may shift
to a new variable z with x = 2 4 iq, so that the exponent in the integral does not contain
a term ~ iz and the new path of integration can be mapped back to the real axis by using
Cauchy’s theorem.

Solution. The starting integral is:
I = /]R dx exp(—aa:2 + Bz + z'yx)
We then perform a change of variables:
r=z4+1iq=dr =dz
moving the integral from the real line to 7, i.e. the horizontal line at Im z = iq.
I= Adz exp(—a(z +iq)? + B(z + iq) +iv(z + zq))
Expanding the exponential argument leads to:

—a(22 — P+ 2iqz) + pz +ifq+ivz —vqg =
—a2+ 28+ iz(v — 2qa) + aq® —vq+iBq




To remove the iz term we set v —2ga = 0 = ¢ = v/(2a), leading to:
2 2
av® v v
:““2”“4@2—2@“5 0 +25—4*+ i

Substituting back in the integral:

Bv
I ——/ —a + —5- Tl
7dzexp( az zﬁ) exp( o —i—zza

Consider now the closed path shown in fig. 2.2 In the limit where 7, goes from —oo to
+o00, the integrals over v, and _ vanish, as exp(—az2 + bz) — 0 for |z| — oo. Then, as
the closed path does not contain any singularity, by Cauchy’s integral theorem we have
that the integral along v is the same as the integral on the real line (assuming the same

orientation). This allows us to evaluate I on the real line:
r=[4d 2 ALAT
/ xexp( ax —i—atﬁ) exp —%—l—zg =
2
Y 15} v
N \/;exp(4a 4a+ Qa)
T (8 +iv)? \/? b?
—exp| ——— | =4/ —exp
a 4a 4q



Lesson 3

{Exercise 3.1 (Cauchy distribution):}

Expand the details of these passages:

1 00 *
P(x,t) =5 / dk e~ IHl+ike —/0 dke ™ Feoskr = —
m m

used to find the one-dimensional Cauchy distribution. Finding the last term by skipping
entirely the cos kx step is also an option. Here z = 0 at t = 0 and 2" = D;t.

Solution. We start from the generalized diffusion equation:

O, P(x,t) = D, =% P(x,1t)

ol
P(x,0) = p(x)
with 0 < p < 2. The fractional derivative makes sense after passing in Fourier space:
OP(k,t)=—D |/<;|“P(k; t) & Gt[exp(D |I<:\“t) (k,t)] =0
This means that the exponential must be time independent:

J(k) = exp(D,|k|"t) P(k,t) = P(k,t) = f(k)exp(—D,|k|"t)

Since f(k) so defined does not depend on time, we can compute it by setting ¢ = 0, leading

to f(k) = P(k,0) = p(k).
Cauchy random flights are found by setting © = 1. The equation becomes:

Po(k,t) = p(k) exp(—Di|k|t)

Assuming that the particle is localized in x = 0 at ¢t = 0, then p(z) = §(z), and so
p(k) = F[o(z)](k) = 1, leading to:

Po(k,t) = e~ Drlklt — exp(—a”(t)|k|)



To return to position space, we compute a Fourier anti-transform:

Po(z,t) = F~ [Pc x,t) —/ dk:exp ()| k| —zkx) =
_ %/de;m O [cos(—kz) + dsin(—kz)]

Note that the domain is symmetric, and the red terms are even, while the blue one is odd.
So the sin contribution will be 0, leading to:

1 +00 *
Po(x,t) = %2 ; dke @ DK cos(kx)

The integral can be computed with a double integration by parts:

k=400 %, k=00
+ zsin(kz)(z*) 2 "k

+o0o —x*kj 1 —x*k
I= / e cos(kx)dk = — cos(kz)—e
0 k=0 k=0

X

- /OJFOO dk 2* Cos(k‘yc)(:ﬁk)*ze*m*lC =

Lo L

T () 7y (%)2
And readding the 1/7 factor leads to the desired solution:

1
T (E)

Pc(ZL’, t) =

{Exercise 3.2 (Transition probabilities and Cauchy ﬂights):}

With the Cauchy jump distribution with typical displacement 2™ = Dt at time ¢ (see
previous exercise, setting x = displacement), compute the probability P(z,t) to find the
particle at position x at time t for such a Levy process, when the initial distribution is
uniform and bound as P(z,0) = p(z) = 1/(2a) for € [—a,a] and p(z) = 0 otherwise.

Solution. The initial distribution is given by:

L X —a a
Pla,0) = play = § 22 "€ 70l

0  otherwise

The probability of a particle being in x at ¢ is obtained by propagating the initial distribu-



tion:

P(x,t) = /IR dwg Pz, |70, 0) P(xg,0) =

ta 1 1 1
= d$0 N 3 % =
—a mr T—X
14 ()
1 T —xp\ |Yo="a
= ———— arctan ( = ) =
2amx”(t) x zo=—a

B 1 r—a x4+ a)}
= 727rax*(t) { arctan( o > —|—arctan< o

{Exercise 3.3 (Numerical simulation - optional):}

Check numerically that the sum S,, = ;1 + ...+ x,, of n i.i.d. variables x € R, each one
distributed according to

1
p(x) = 2 for |z] > 1, p(z)=1/4for |z| <1
T

converges to a Cauchy distribution

1

Pcauchy (Y) = m

after a suitable rescaling Y,, = vS,,/ n”. What are ~v and (5?7

See the Jupyter notebook at this link: https://github.com/Einlar/data_notes/blob/
revision/Models/Plots/Baiesi3 3-simulation.ipynb.

10


https://github.com/Einlar/data_notes/blob/revision/Models/Plots/Baiesi3_3-simulation.ipynb
https://github.com/Einlar/data_notes/blob/revision/Models/Plots/Baiesi3_3-simulation.ipynb

Lesson 4

Consider the two-state model with states at position 1 = —c and x5 = +c and probability p
to be in state —c, which evolves according to:

w
p=-Wp+ > + esin(wgt)

[Exercise 4.1: }

For e = 0, show that the correlation time function is:

C(t) = (x(t)z(0)) = 2e~ VI
Solution. The evolution equation for ¢ = 0 reads:
w 1
p= —Wp+? =-W (p—2> =—-WAp

With Ap = p—1/2. As Ap = p we get an equivalent ODE that can be solved by separation
of variables:

Ap = —WAp = Ap(t) = Ap(O)e_Wt

Substituting back:

and:
a0 = £ (p0) 1)

We can now compute the correlator:

((t)z(0)) = /]R2 de 2P (z, )Pz, 0) = /}RQ 22P(z,)P(z,0) ¢ >0

11



There are only two possible values for z: ¢ and —c. p(t) is the probability of x; = —¢, i.e.
P(—c,t). By conservation of probability:

Substituting in the expression for the correlator:

(z(t)z(0)) = (—¢)*p(t)p(0) + (1 — p(t))(1 — p(0))+
+ c(=c)p(t)(1 = p(0)) + (—c)e(1 — p(t))p(0)

For simplicity of notation, let:

1 1 B
p(t) = py; p(0) = po; pt=<p0—2>A+- A=e Wt
Then:

(z(t)z(0)) = CQ[Ptpo + (L= p)(1 = po) —pe(1 = po) —po(1 —py)] =

= ppo + 1+ ppo —pe =B0) —pe + pop: [SBol + pop: ] =
= c"[4ppo —2p; =2pp + 1] =

= P[Aps A+ dpo(—A)2) + 4py/2 — 2p0A+ A—1—2py 4+ 1] =
*[4pg A — 2poA + 2pg — 2pp A+ A — 2pg] =

= P[piA —ApgA+ Al = eV (4py — Apy + 1) =

— e—WtCZ(QpO _ 1)2

2

Cc

For pg = 1 (system initially in —c):
(z)z(0)) =™ >0

The same argument works for ¢ < 0, with the only difference being a sign. So, in the
general case:

(z()z(0)) = e VI

12



[Exercise 4.2:]

For € = 0, use the Wiener-Kintchine Theorem:
oo
P(w) = 4/0 C(t) cos(wt) dw

tho show that the power spectrum in this case is:

w

0 2
p! )(w) = 4c T 2

Solution. For ¢ = 0 we derived in the previous exercise that:
C(t) = (e(t)a(0)) = eI

Inserting in the Wiener-Kintchine theorem (4.1)):

+oo
Pw)=4 e W cos(wt) dt =
0

+oo
= 402/0 eV cos(wt) dt =

“+00 . .
_ 202 / e—Wt(ezwt . e—zwt) dt =
JO

I
)
Q

2 [T it(w-W/i)  —it(wtW/i)
- dt =
foe e
+oo . . . .
—9 2 it(w+iW)  —it(w—iW) dt =
C/o e e ]

1 1 1 1
= 2¢% {— + } = 22 {W + =

(a) w—-—W  w+ W —iw W 4w
o [W4id + W — i s W
=2 2 2 = 4c" — 2
W +w W +w

To compute the integral in (a) we used the following Fourier transform:

Foo —it(w—iwg) / —it(w—iwp) A . 1
/0 ‘ R (e (0 =) i(w —iwp)
1
T iw +wy

13
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[Exercise 4.3:]

For € # 0, show that the signal-to-noise ratio is maximum at x* = AV if the rates follow
the Kramers formula:

20V 2V; . w 2V .
Wi 9 =exp [—H F 71 sm(wst)] =~ exp [:Fﬁl sm(wst)] (4.2)

with V] < AV and using the correct identification for € in this case.

Solution. In the reduced model we started from:

W . w 2¢ .
Wig = - F esin(wgt) = 1 <1 F i sm(wst)> (4.3)

We confront this expression with the one from (4.2)), where we expand the exponential in
the limit V] /AV < 1 (as the sinusoidal term is just a perturbation):

2A 2
Wi 9 = exp (—X) (1 F Zl sin(wst)>

By comparison:

w ( 2 ) 2¢  2V; Vi
RSN —ZAV ) NS~ 4.4
o TP\ TR ’ W K ‘ K (44)
From previous calculations, we arrived at the following expression for the signal to noise

ratio:

2 2
T €

SNR,,, ~

Substituting in the right terms (4.4) and ignoring all prefactors (as we are interested just
in the position of the maximum), we arrive to:

1 2
SNR‘LUS ~ ? exXp <—kAV>

To find its maximum, we set its derivative with respect to k to 0:

2 2 1 2AV 2 [
13 exp <_kAV> + 22 exp (—AV) =0

2 2 2NV 2
=~ 5 oxp (—kAV> + e <—AV> =0

jexp(—iAV) {—14—?} :0:>A—V:1:>k:AV

14



Lessons 5-6

[Exercise 5. 1:}

Consider the Random Field Ising Model (RFIM), in which the disorder has variance §°.
Proceed to arrive at the formula where the number n of replicas appears explicitly in the
magnetization m:

1

m = 7 /IR d;T exp (;yz +nln2cosh(28Jm + B5U)> tanh(28Jm + Bov)

Solution. We start from the expression for Z" after the 2 Hubbard-Stratonovich transfor-

mations:
7 = ( )"/2 U dxexp( [—nx +log Zy(x )])r (5.1)

This integral is evaluated in the saddle-point approximation. Minimizing the exponential
argument leads to:

0 ( 1 5 >_ _ 9
3 \ e + log Z;(x) —O:>na:—a$ log Z;(x) (5.2)

Recall that we define the magnetization m as:
x
N
So we can change variables in through (5.2)). In particular, note that:
g 0 Om 1 0

dx — Om drx ~ /2BJ0m

=m

And so (5.1)) becomes:

1 0 _ 11 0

15



We have already found that:

Zi(m) = / d;r exp (—;V2 + nlog[2 cosh(25Jm + 661/)])

Substituting in (5.3)):
119

1 1 1 0 d 1
n28J Zy(m) d / ;/7? exp <_2]/2 + nlog[2 cosh(25Jm + 55,/)]> _
= ;K;;JZ (1m) / dv exp (‘é,ﬂ + nlog[2 cosh(25Jm + 55,/)]> .
1
/%/ .
. 2 cosh(28Jm + 55U)231Hh(25<]m + 0pv) —
_ g ) /]R \/_exp< —v +nlog[2c0sh(26jm+5ﬁy)])
-tanh(28Jm + §Bv)

[Exercise 5.2:]

With the self-consistent solution mga(m) = m of the RFIM, by using the condition
Omgc/Om = 1 for the critical point, show that the phase transition between paramagnetic
phase and ferromagnetic phase takes place where this condition is satisfied:

1
2@]/11201;1;9(11)[Cosh(ﬁh)]2 =1 (5.4)

Solution. The self-consistent equation for the RFIM is:
m = tanh(B[2Jm + h))

Criticality is reached when the lhs and rhs are tangent at the origin, meaning that:

itanh(ﬁ[QJm + h)) <1

om ’mIO
Expanding the average leads to:

9,
/IR dhp(h)% tanh(25Jm + 6}1)‘ =

1 1
= (28J) = 26J/]Rdhp(h)cosh?(5h)

B /]R dhp(h)coshz(QﬁJm + Bh) Im=0 =1

16



[Exercise 5.3:]

Show that at zero temperature in the RFIM there is a disorder-driven para-ferromagnetic
transition where the random field standard deviation ¢ and the coupling J satisfy 2J/6 =
\/m/2. For simplicity one may take 6 = 1.

Solution. We start from the criticality condition ({5.4)), inserting the distribution p(h):

1 h? 1
1=206J — | ————dh
W e T ( 252) cosh®(6h)

We introduce reduced dimensionless variables:

B'=ps;  h=ph=dh=p3dh

leading to:

o [ dho 1 R’ 1
t=247 5/11{ %E P (_25/2) cosh?(h)

In the low temperature limit 5 — oo the exponential tends to unity:

dh 1
27 =5 =1 (5.5)
R /27 (cosh h)
Note that:
d - 1
— tanh (h) = P2V
dh (cosh h)

And so we can evaluate (5.5)):

2.7 Lt 2 L2 . 2] \/?
Z° _tanhh = - (—1)) =2 =1=2) =22 =,/
\ 2T an —o0 \/27r( ( )) 2

17



Lesson 7

For the one-dimensional stochastic motion:

&= F(z) + /e
with white noise £ and drift F', the instantons (¢ — 0 limit) follow the equation:
N\ F?(z)
i=— d:‘; with  Vig(x) = — 5
which implies a conservation of the “energy”:
L 9
E= St T Vesr(2)
|Exercise 6.1:]
Find the instanton for F' = —kx by using the conservation of energy, for initial condition
t; =0, 2; =0, &; = 0 and final condition zy at ¢t = 0.
Solution. By conservation of energy:
L 9 S
&= gi" +Ver(2)  Velz) = ——
So we have:
Lo _an = k= = (1) rit
—i=——=1=u — =k = x(t) = xg€
2 2 d 0

18



[Exercise 6.2:]

For F' = —ksinx show that the instanton:
x*(t) = 2arctan (e"”t)

has “energy” £ = 0 at every instant ¢.
Solution. The energy is given by:

1. 1. K2 sin?(z
= 5 Vaple) = 5 =

We substitute the expression for 2™ inside £, to compute the energy of the given solution
. . .2
at any instant. We start by computing the sin”:

sin z*(t) = sin?(2arctan ¢™) = [2sin (arctan e’/”t) oS <arctan e"/”t)]2 =

= 4(sin? arctan ") (1 — sin” arctan ™) (6.1)

Recall from goniometry:

T

\/1+:U2

sinarctanx =

And so:

2Kt
.2 Kt __ €
sin” arctane ™ = —
I+e

Substituting in (6.1f) we get:

SinQ . (t) B 4€2nt . eQmﬁ B 462/% 1 +€2%_€2%f B
462K/t
- (1 + €2l€t)2
Then:
¢ 1 ()2 Ksin?zt 1] 4k 42 0
= —\Z — = — —
9 9 9 (1 + e2nt)2 (1 + eth)Z

19



[Exercise 6.3:]

follows a stochastic motion:
i; = Fi(x) + Ve
with independent white noises (&;(£)&;(t')) = 0;;6(t —t').

equations become:

o F)P X (oF OF;) .

where:

2 N 2
IF|”= > F
Jj=1
Solution We want to minimize the action functional:

%

t 1
Sl = [ L@@)dr L) = [é - F@)|’
t
The Euler-Lagrange equations are:

d oL 0L
— — = 1<i<N

Inserting the expression for L:

d1 1 X < OF;
Bl F . P — F - J) —
N N N
OF; OF; OF
— . — Ly r.— F.(p)—L =
¥ 2—21 oz, i+ 2—21 oz, i 2_:1 () 92, 0
J J= J=
N or; X (0F, OF
- = 2:1 (@) &r;j + z:l (8:16]- 83:5 i
J= J=
O, |IF|[* /2469

20

Consider a N-dimensional system with ¢ < N components. Each component of = (z;)

By starting from the Euler-Lagrange equation per component, show that the instanton

(6.2)

(6.3)



[Exercise 6.4:]

Show that:
L. .2 1 2
&= gllell”+Ver(z) V() = —[IF|

is a constant for the solution of the instanton equations ([6.2)).

Solution. Differentiating £ wrt time:

do 1 1

N N aF
:Zmixz

=1 =1 jl

N N N N

OF, 8F> OF.

5 H Y b+ Y6y By gy
63 ;= = ( Ox i— = =19 ’

Note that the last two terms cancel out, by exchanging ¢ <» j in the last one. Then we are

left with:
d oF;, OF;
&g_leﬂ (830 axi>_

ij=1
or; X . . OF;
:Zx:vja ijxi@Tvi:O

ij=1 Lj

Again these last two terms cancel out after substituting 7 <» j in the last one.
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