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Abstract

In this document I have tried to reorder the notes of the statistical mechanics course
held by Professor Enzo Orlandini at the Department of Physics of the University of
Padua during the first semester of the 2019-20 academic year of the master’s degree.

The notes are fully integrated with the material provided by the professor in the
Moodle platform. In addition, I will integrate them, as best as possible, with the
books recommended by the professor.

There may be formatting errors, wrong marks, missing exponents etc. If you find
errors, let me know (alice.pagano@studenti.unipd.it) and I will correct them, so that
this document can be a good study support.

Padova, Wednesday 5" February, 2020 Alice Pagano
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Introduction

The goal of statistical mechanics [1] is to predict the macroscopic properties of
bodies, most especially their thermodynamic properties, on the basis of their micro-
scopic structure.

The macroscopic properties of greatest interest to statistical mechanics are those
relating to thermodynamic equilibrium. As a consequence, the concept of thermody-
namic equilibrium occupies a central position in the field.

The microscopic structure of systems examined by statistical mechanics can be
described by means of mechanical models: for example, gases can be represented
as systems of particles that interact by means of a phenomenologically determined
potential. Other examples of mechanical models are those that represent polymers
as a chain of interconnected particles, or the classical model of crystalline systems,
in which particles are arranged in space according to a regular pattern, and oscillate
around the minimum of the potential energy due to their mutual interaction. The
models to be examined can be, and recently increasingly are, more abstract, how-
ever, and exhibit only a faint resemblance to the basic mechanical description (more
specifically, to the quantum nature of matter). The explanation of the success of such
abstract models is itself the topic of one of the more interesting chapters of statisti-
cal mechanics: the theory of universality and its foundation in the renormalization
group.

The models of systems dealt with by statistical mechanics have some common
characteristics. We are in any case dealing with systems with a large number of
degrees of freedom: the reason lies in the corpuscular (atomic) nature of matter. The
degrees of freedom that one considers should have more or less comparable effects on
the global behavior of the system. This state of affairs excludes the application of
the methods of statistical mechanics to cases in which a restricted number of degrees
of freedom “dominates” the others—for example, in celestial mechanics, although the
number of degrees of freedom of the planetary system is immense, an approximation
in which each planet is considered as a particle is a good start. In this case, we
can state that the translational degrees of freedom (three per planet)—possibly with
the addition of the rotational degrees of freedom, also a finite number—dominate
all others. These considerations also make attempts to apply statistical concepts
to the human sciences problematic because, for instance, it is clear that, even if
the behavior of a nation’s political system includes a very high number of degrees of
freedom, it is possible to identify some degrees of freedom that are disproportionately
important compared to the rest. On the other hand, statistical methods can also be
applied to systems that are not strictly speaking mechanical—for example, neural
networks (understood as models of the brain’s components), urban thoroughfares
(traffic models), or problems of a geometric nature (percolation).

The simplest statistical mechanical model is that of a large number of identical
particles, free of mutual interaction, inside a container with impenetrable and per-
fectly elastic walls. This is the model of the ideal gas, which describes the behavior
of real gases quite well at low densities, and more specifically allows one to derive the
well-known equation of state.

1X



The introduction of pair interactions between the particles of the ideal gas allows
us to obtain the standard model for simple fluids. Generally speaking, this model
cannot be resolved exactly and is studied by means of perturbation or numerical
techniques. It allows one to describe the behavior of real gases (especially noble
gases), and the liquid—vapor transition (boiling and condensation).

The preceding models are of a classical (nonquantum) nature and can be applied
only when the temperatures are not too low. The quantum effects that follow from
the inability to distinguish particles are very important for phenomenology, and they
can be dealt with at the introductory level if one omits interactions between particles.

In many of the statistical models we will describe, however, the system’s fun-
damental elements will not be “particles,” and the fundamental degrees of freedom
will not be mechanical (position and velocity or impulse). If we want to understand
the origin of ferromagnetism, for example, we should isolate only those degrees of
freedom that are relevant to the phenomenon being examined (the orientation of
the electrons’ magnetic moment) from all those that are otherwise pertinent to the
material in question.

The simplest case is that in which there are only two values—in this fashion, we
obtain a simple model of ferromagnetism, known as the Ising model, which is by far
the most studied model in statistical mechanics. The ferromagnetic solid is therefore
represented as a regular lattice in space, each point of which is associated with a
degree of freedom, called spin, which can assume the values +1 and -1. This model
allows one to describe the paramagnet-ferromagnet transition, as well as other similar
transitions.

In this course, classical statistical mechanics of system at equilibrium is treated.
The exam is divided into two parts: first, common oral exam (same exercise and
question for everyone, it is a written part), second part, oral.
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Chapter 1

Recall of Thermodynamics

1.1 A short recap of thermodynamics definitions
The systems we are considering are

1. In equilibrium with an external bath at fixed temperature 7.

2. Made by a (large) number N of degrees of freedom. For instance, we remind
that 1mol ~ N4 ~ 10?3 elementary units.

Thermodynamic is a macroscopic theory of matter at equilibrium. It starts either
from experimental observations or from assiomatic assumptions and establishes rig-
orous relations between macroscopic variables (observables) to describe systems at
equilibrium. One of the first important concept is the one of extensive variables.
For instance, the extensive variables that characterize the system at equilibrium are
the internal energy U, volume V, number of particles N and magnetization M that
"scale with the system". In general, the extensive variable are additive.

In thermodynamic, it is important the concept of walls and thermodynamic
constrains that are necessary for a complete definition of a thermodynamic sys-
tem. With their presence or absence it is possible to control and redistribute the
thermodynamic variables for changing the system. The typical walls are:

o Adiabatic walls: no heat flux. If it is removed we obtain a diathermic walls.

e Rigid walls: no mechanical work. If it is removed we obtain a flexible or mobile
walls.

e Impermeable walls: no flux of particles (the number of particles remain con-
straints). If it is removed we obtain a permeable walls.

1.2 Equilibrium states

Consider a system in an equilibrium state, if the system changes our aim is to
study the next equilibrium state of the system. Therefore, we move from a system
in equilibrium to another. The fundamental problem of thermodynamics is how to
characterize the new system.

Now, we define the concept of equilibrium states. Consider macroscopic states
that are fully described by extensive variables such as the internal energy U, the
volume V, the number of particles N, the magnetization 1\7[, etc . ... If these variables
are time independent, the system is in a steady state. Moreover, if there are no
macroscopic currents, the system is at equilibrium. Therefore, we describe a system
by characterizing all the extensive variables at equilibrium.

Lecture 1.
Wednesday 9t"
October, 2019.
Compiled:
Wednesday 5"
February, 2020.



2 Chapter 1. Recall of Thermodynamics

Suppose that the system changes slow in time, it goes from an equilibrium state
to another one and the transformation is so slow that in each At the system is at
equilibrium. Hence, considering a sequence of equilibrium states, the quasi-static
transformation are described by the 15! Law of Thermodynamic:

dU = 6Q — 6W (1.1)

The variation of the internal energy of the systems depends by two factors, dw that
is the work done by the system during a quasi-static process (infinitive slow), and §Q
that is the heat absorbed by the system during the process. Remember that we write
dU because it is a differential quantity, while the other quantities with the § are only
small quantities. Therefore, dU is a function of state, the other are not.

Remark. The convention is §¢) > 0 if the heat is absorbed by the system, and éW > 0
if the work is done by the system.

For example, considering a simple fluid with a given pressure ,if we change the
volume, the work done by the systems is W = PdV. For a magnetized system, we
have W = —H - dM.

In conclusion, starting from an equilibrium state and removing some constraints
(i.e. wall properties), we want to find the new equilibrium state compatible with the
new constrains.

Suppose a system with adiabatic rigid impermeable constraints. The system on
the left is characterized by Vi, N1, Ui, the one on the right by Vo, No, Us. There are
many ways for solving this problem. We use the most general way, that is by using
the maximum entropy principle. If exists a function S of the extensive variables of
the system that is defined for all equilibrium states, we call it entropy and the 15¢
fundamental relation is

S = S(U,V,N) (1.2)

The new values taken by the extensive parameters when a constraint has been re-
moved are the ones that mazimize S. It means dS = 0 and d2S < 0, given the
remaining constraint.

The properties of S are:

1. S is an additive function with respect to the subsystems in which the system is
partitioned:

S=> 5 (1.3)
«
2. S is differentiable and monotonically increasing with respect to the internal
energy U. It means that (%)VN > 0.
3. For each subsystem (a)) we have:
gla) — S(O‘)(U(O‘), V(Oé),N(a)) (1.4)
This fundamental relation holds for each subsystem.

4. S is an homogeneous function of 15 order with respect to the extensive param-
eters, namely:

S(AU, AV, AN) = AS(U,V,N), YA >0 (1.5)

It means that S is an extensive quantity.



1.3. Equations of states 3

Remark. Since S is monotonically increasing in U, the following inequality holds:

2) o
U ) yn

Therefore, we have (g—g)v y 7 0 and it can be inverted locally.

Afterwards, S = S(U,V, N) inverted in U gives the 25¢ fundamental relation

U =U(S,V,N) (1.6)

It means that, we can look or S or U and, when this quantities are known, all the
informations about the system can be obtained.
By taking the differential of the fundamental relation

U=U(S,V,Ny,...,N,)

one gets
oU ou ~ [ oU
dU::<> ds () dyh+§:<:> dN; (1.7)
95 V,N; oV S,N; j=1 ON; S,V
absolute pressure electrocflemical
temperature potential

1.3 Equations of states

Now, we define another set of variables that are called intensive variables. The
term intensive means that it is independent of the size of the system, namely that
the value of the variable relative to a subsystem is equal to that of the whole system.
The intensive variables are themselves functions of S, V,N, and examples of intensive
variables are the pressure, P, and the temperature of the system, T.

The state equations are defined as:

T=T(5V,Ny,...,N,) (1.8a)
P=P(S,V,Ny,...,N,) (1.8b)
127 :ILL]'(S,‘/,Nl,...,NT) (18C)

Remark. If all the state equations are known, the fundamental relation is determined
a part from a constant. It means that the coefficients of the differential (1.7) are
known.

Example 1

Let us see some examples of equations of state:

e For an ideal gas:

PV = NK,T (1.9)
e Van-Der Walls equation of the state:
aN?
<P+V2>(V—Nb) = NkyT (1.10)
e For magnetic systems, another equation of state is the Curie Law:
H
M = o (1.11)

T




4 Chapter 1. Recall of Thermodynamics

Remark. We compute (%)SN =H.

The equations of state are homogeneous functions of zero degree. For example,
considering the temperature T

T(AS, AV, \N) 2 T(S,V,N)

It means that at equilibrium the temperature of a subsystem is equal to the one of
the whole system. Similarly,

P(AS,AV,AN) = P(S,V,N)

Now, we keep the S parameter separates from the other that are substituted
by generalized displacements, as (V,Ny,...,N,) — X;. The fundamental relation
becomes

U=U(S X1,..., X11) (1.12)

and we define:

oU
=7 1.13
(55) (1.134)
ou
— | =P; 1.13b
(5% ) =" (1.130)
The differential is written as the following:
r+1
dU =TdS+ ) P;dX; (1.14)
j=1
where X1 = V is the volume and P; = — P is the pressure.
From the equilibrium condition,
dU =0

one can get a relation between intensive variables in differential form as the Gibbs-

Duhem relation:
r+1

SAT+> X;dP; =0 (1.15)
j=1

For a one-component simple fluid system, the equation simplifies into
SdT'—-VdP+ Ndpu=0
and dividing by the number of moles N
dp = —sdT +vdP (1.16)

that is the Gibbs-Duhem relation in a molar form.
For a magnetic system, we have

AU =TdS +H-dM + pdN (1.17)

Remark. Note that = p(T, P) is a relation between intensive variables.

To summarize, the fundamental relations are S = S(U,V,Ny,...,N,) or § =
S(U,M, Ny,...,N,) for magnetic systems. In the energy representation we have
U=U(S,V,Ny,...,N.)or U=U(S,M, Ny,...,N,).
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1.4 Legendre transform and thermodynamic potentials

In many situations, it is convenient to change some extensive variables with their
conjugate intensive ones that became independent and free to vary. We have new
thermodynamic potentials. It works as following; suppose we have a function as

Y=Y (X0, X1, -, Xi, .-, Xp41) (1.18)
such that Y is strictly convex in say, Xj (82Y > 0) and smoot The idea is to find

ox7
a transformation such that

Y=Y (X0, X1,..., Pr,..., Xrt+1) (1.19)

where 9y
X, — P= — 1.20
o Po= o (1.20)

i.e. P, substitutes X as a new independent variable. In mathematics this is called
Legendre transform.

The thermodynamic potentials are extremely useful tools, whose name derives
from an analogy with mechanical potential energy: as we will later see, in certain
circumstances the work obtainable from a macroscopic system is related to the change
of an appropriately defined function, the thermodynamic potential. They are useful
because they allow one to define quantities which are experimentally more easy to
control and to rewrite the fundamental thermodynamic relations in terms of them.

Mathematically, all the thermodynamic potentials are the result of a Legendre
transformation of the internal energy, namely they are a rewriting of the internal
energy so that a variable has been substituted with another.

Example 2: How to calculate thermodynamic potentials

Suppose we want to replace the entropy S with its conjugate derivative

oU
T—2_
oS

One starts form the fundamental relation
U=U(S,V,Ny,...)

and transforms U such that S is replaced by 7T as a new independent variable.
Let us consider the transformation

ou
A=U-S5S—=U-TS
oS

By differentiating A we get
dA=dU —-TdS - SdT

On the other hand
dU =TdS+ ) P;dX;
J
It implies that

dA=-5dT+> P;dX;,
J

For such a system we have A = A(T,V, Ny, ..., N;). It is a function of 7" instead
of S, as wanted. Similarly for a magnetic system A = A(T,M, Ny, ..., N,).

LA smooth function is a function that has continuous derivatives up to some desired order over
some domain.
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Helmholtz free energy

The Helmholtz free energy is defined as:

A=U-TS (1.21)
In terms of heat and mechanical work, since dU = 6Q — W
dA=dU - d(TS)=6Q —TdS — SdT — oW
Hence,
oW = (0Q —TdS)—SdT —dA (1.22)

On the other hand, for a reversible transformation we have
0Q=TdS

which implies
oW =-5dT —dA (1.23)

If the reversible transformation is also isothermal, dT' = 0 and we obtain dA = dW.
It is reminiscent of a potential energy.

Remark. For an isothermal but not reversible (spontaneous) process we know the 27¢
Law of Thermodynamics
0Q <TdS

which implies
(W)ipr =0Q —TdS —dA < —dA. (1.24)

Hence, if W = 0 and dT = 0, we have dA < 0. Therefore, in a spontaneous
(irreversible) process, the thermodynamic system, as a function of 7, V,N etc, evolves
towards a minimum of the Helmoltz free energy A = A(T,V,Ny,...,N;).

In the case of a system with (P, V,T'), we have:

dA=-8dT — PdV + ) p;dN; (1.25)
J
where
A
-5 = <8> (1.26a)
T )y,
A
—pP= (a) (1.26b)
0A
= | = 1.26
=), (1.260)
For a magnetic system (H, M, T):
dA=-SdT +H-dM+ Y _ p;dN; (1.27)

with

oA
H, = < > (1.28)
OMa ) 7 (n;)
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Heltalpy

The Hentalpy is the partial Legendre transform of U that replaces the volume
V with the pressure P as independent variable.
Consider U = U(S,V, Ny,...,N,) and —P = g—g, we define the hentalpy as
H=U+PV (1.29)

Remark. Note that the plus sign in the definition of the hentalpy is just because the
minus of the P.

We have:
dH = dU + PdV +VdP

= TdS —PdV + Y p;dN; + P4V +VdP o)
j .

=TdS+VdP+) pu;dN;
J

Finally, we obtain the relation H = H(S, P, N1, ..., N,).

Gibbs potential

The Gibss potential is obtained by performing the Legendre transform of U to
replace S and V with T and P.
Consider again U = U(S,V,Ny,...,N,) and T = g—g, —P= g—g, then we have:

G=U-TS+PV=A+PV (1.31)
For a simple fluid system

dG = dU -TdS —-SdT'+PdV +VdP

= PdS —PdV + Y AN, —PdS — SdT + P4V + VdP

j (1.32)
=-SdT+VdP+ ) p;dN;
j
Hence, G = G(T, P, Ny, ..., N,).
For a magnetic system, the Gibbs potential is defined as
G=A-M-H (1.33)
and
dG =dA—dM-H =d(U —TS) —d(—M - H)
= dU —TdS—SdT—dM-H-M-dH e
B B L 1.34
= Td5+ B~dM —Td5— SdT —dM~-H - M- dH
= —SdT —M-dH
and finally G = G(T, H) and also
oG
== 1.
S <8T>ﬁ (1.35a)
M = — (acg) (1.35b)
OH ) 1
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Grand canonical potential

The grand canonical potential is obtained by performing the Legendre trans-
form of U to replace S and N with T and u. The corresponding Legendre transform
is

i=1 i=1
Differentiating this relation we obtain:
dQ=dU — SdT - TdS =) du; N; = > pidN;
ij i=1

= (0Q —TdS) —6W — SdT — > dp; N; — > p; dN;
j=1 j=1

(1.37)

Hence, Q = Q(T, P, {u;}).

1.5 Maxwell relations

Internal energy U and entropy S are homogeneus function of the first order. A
consequence of this fact is the relation called Euler equation:

U=TS—PV+> uN; (1.38)
J

Example 3: How to derive the Euler equation

Using the additive property of the internal energy U, we can derive a useful
thermodynamic relation, the Euler equation.

UAS, AV, AN1,...,AN,,) = AU(S,V, Ny, ... Np,)
Let us differentiate this “extensivity condition” with respect to A:

OU(NS,...) . OU(AS,...) "LOU(NS,...)
2% >t o)V DON,)

N; =U(S,V,Ny,...,Nyp)
i=1

Setting A = 1 in the above equation, we obtain:

ou ou ou ou

Using the definition of the intensive parameters, we arrive at the Euler equation:

U=TS—PV+> wh
=1

Instead, the Maxwell relations are relations between the mixed derivatives
of the thermodynamic potentials. They can be obtained from the expressions of
dU ,dH ,dA,dG and d2 and from the Schwarz theorem on mixed partial deriva-
tives.

Due to SC}?{&% theorem, if a thermodynamic potential depends on t + 1 variables

there will be =5— independent mixed derivatives.
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Example 4: Internal energy U = U(S,V,N)

dU =TdS — PdV + pdN

where

It implies that

PU  (or QU
ovas — \av

fr(;n
SN Schwarz inequality

therefore, we have the 1° Maxwell relation :
Grs e

which we have t +1 = 3 and t(t;q) =3 ([S,V, N]), are

oUu oU
T= (=2 _p— (%Y
(), —7= ().,

asov

(

o
a5

)v,N

(1.39)

All the 8 Mazweel relations obtained by the differential (1.39) with ¢t = 2, for

(V) <§‘1;> S,N - <g§>V,N Gy
(V,N) —<2P> oy :<§€> ox (1.40¢)
Example 5: Helmholz A = A(T,V,N)
dA = —8dT — PdV + pdN (1.41)
In this case the 3 Mazweel relations ([T, V, N]) are
v ), (). 9

Example 6: Gibbs G = G(T, P, N)

dG = -SdT +VdP+ pdN

(1.43)
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In this case the 3 Mazweel relations ([T, P, N]) are

1.6 Response functions

Response functions are quantities that express how a system reacts when some
external parameters are changed.

In fact, aim of most experiments is to measure the response of a thermodynamic
system write respect to controlled variatious of thermodynamic variables. Any osser-
vation is just the pertubation of a system and looking for the response. A list of the
commonly used response functions is the following:

e Thermal expansion coefficient at constant pressure.

1 /oV
== 1.45
=5 (57),., A
o Adiabatic compressibility.
1[0V 1 (0°H
ks == () _ L (> (1.46)
VANOP)snv=(2),, V oP? ) sy
o [sothermal compressibility.
1 (0V 1 (8°G
kr = —— <) = —— () (1.47)
VNOP)rnv=(28),y V oP? ) n

Remark. Remember that kr it is the second derivative of the Gibbs potential
write respect to pressure.

e Molar heat capacity at constant pressure.

5Q> <8S> <82G>
ep=(22) =7(Z sy (1.48)
<dT PN OT ) py —5=(52),  \OT*/pw

e Specific heat at constant volume. Consider a quasi static transformation.

L (QY  _p(0S\  _ (9(=0A/TNY (04
V= \ar v aT )y x oT -~ a12 ),y

(1.49)

e Magnetic susceptibility (d=1) for a magnetic system (1\7[, H, T).

oM G
_ _ (o9& 1.
X (8H>TM:—gf,| (8H2>T (150

T
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More generals, M, H we have

oM, oG 0’G

Remark. Note that the response functions, when used with the Maxwell relations, al-
low to express observables usually inaccessible to experiments with measurable quan-
tities.

Let us illustrate a lemma useful for calculation:

Lemma 1 |

Let z,y, z be quantities that satisfy the relation f(x,y,z) = 0. Ifw is a function
of two any variables chosen between x,vy, z, then:

(%), (%), = @,

6 ay 3 _ o o o
3. (a—z)z( )x(a—;)y = —1 (concatenation relation or triple product rule).

Example 7

The Maxwell relation
95\ _ _(9V
OP )1 n -\ oT PN

dG =-SdT +VdP

obtained from

((T, P) equation) used with the response function ap, permits to write

S
28 _ 1.52
<8P>T7N Jer (1.52)

measurable

inaccessible
to experiments

Example 8

Let us start with the Maxwell relation

s\ _(op
V/)ry \OT)yn
obtained from ((7, V') equation)

dA=-5SdT - PdV

From some property of multi-variable differential calculus one has the triple

7JV T,N P,N

(8P> _ —1 _ (%)P,N

OT Jv,n (%)T,N(%)RN (%)TN (1.53)
_—Var _ar
- —Vkr  kr

Hence
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1.6.1 Response functions and thermodynamic stability

Now, we analyze the concept of thermal stability. If one injects heat in a system
either at constant volume or at constant pressure, its temperature will inevitably

increase
_ (50
v = (dT)V >0

Remark. The thermal capacities are non-negative functions!

(1.54)

It is useful also the concept of mechanical stability. If one compress a system by
keeping T constant, we would expect that it shrinks

1[0V
kr V(&P)T_O (1.55)

Similar considerations for a magnetic system, gives
cg >0, ¢epy >0, xr>0 (1.56)

Remark. In diamangetic systems x s can also be negative.

Exercise 1 !

By using Maxwell relations show that

Va3 1 (V)
Cp — Cy = kT = ‘/kTT<81—Y>P (1573)
T (OM)\®
_ = = = 1.57b
oM XT(aT)H (1.57)

Solution. Let us start considering a system with a fixed number of particles
(namely dN = 0) and such that S is explicitly expressed in terms of 7" and V.

Then:
oS oS
ds = <8T>VdT+ <8V>Tdv

Dividing by dT both sides keeping the pressure constant, and then multiplying

by T:
oS oS oS oV
T(w)JT(aT)V‘T(av)T(aT)P

). (7).

Now, using the Maxwell relation (%)T = (8—5)‘/ and using the triple product

rule we obtain
oP\ _ (9P (9V
or),  \ov ) \oT ),

OP\ [oV\? oo 0P TV
= (38) G - (), - o

It can be shown similarly for magnetic systems.

it implies

Q|
N

Cp—CV:T<

we get:
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A consequence is that, since the right hand terms are non negative, it follows
that

> ey >0
{CP =V = (1.58)

cg > cy >0

For resuming, we have seen the thermodynamic of a phase, where the equilibrium
state can be described by the maximum of the entropy. If we have a given phase, we
can look for the Gibbs function. If we have more phases, we want to change between
these phases.
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Chapter 2

Equilibrium phases and
thermodynamics of phase
transitions

2.1 Equilibrium phases as minima of Gibbs free energy

Experimentally, any element or compound can be found, depending on the ther-
modynamic conditions in which it is, in different phases. When we say that a system
is in a particular phase we mean that its physical properties (like density or magne-
tization) are uniform.

Equilibrium states are given by mazima of the entropy and minima of internal
energy, or by minima of thermodynamics potentials such as A and G. Let us consider
for example the Gibbs potential per particle of a fluid system

S —g=gT.P) (2.1)
that depends on two intensive variables T and P and is not anymore a function of N
because we have divided for N. Let us define « as the phase of a one-component system
(say a = gas or liquid). Therefore, the thermodynamic properties are described by
surfaces of function g, (7', P) and for all equilibrium phase we have a surface on the
space (T,P,g). For each value of T and P the thermodynamically stable phase is the
one for which go(7, P) is minimum.

2.2 First order phase transition and phase coexistence

Let us suppose for example that the system can be found in two phases a and
(for example liquid and solid). Consider the surface g, and gg, we are looking for the
lower one.

For given values of T and P the stable phase will be that with the lowest value
of g: for example, if we have g, (T, P) < gg(T, P) then the system will be in phase
a. Therefore there will be regions in (7', P) space were the most stable phase will be
« and others in which it will be 8. If we now plot the values of g as a function of T
and T in (g, P,T) space for every phase of the system, we can determine the regions
where the two phases will be the stable ones, namely we can determine the phase
diagram of the system, as illustrated in Figure 2.1}

The very interesting region of this space (and the one on which we will focus our
attention in this section) is the line where the surfaces of the two phases intersect:
along this the two phases coexist, and when the system crosses it we say that it
undergoes a phase transition. The coexistence line is the projection on the (T,P)

15
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plane of the intersection between different surfaces, so the coexistence condition is:

9a(T, P) = gg(T, P) (2.2)

Figure 2.1: Phase diagram: stability of phases.

To fix the ideas, let us choose a given value of pressure P = P* and study the
behavior of g(T, P*) as a function of 7" when we go from solid to gas, as illustrated

in Figure

P
solid
a I gas
= S L R
; |
freezing point X E
: !
! |
i boiling point !
: !
! 1
: !
: :
r triple T: T
point

Figure 2.2: (T, P) projection.

The existence of a critical point has a very intriguing consequence: since the
liquid-gas coexistence line ends in a point, this means that a liquid can continuously
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|
i
I
|
|
I
I
1
I
I
1
I
1
I
I
1
I
i gas
I

|

>

» < » <
> < <

solid stable liquid stable gas stable T

Figure 2.3: (g,T) projection at a fixed pression P = P*. The red line is the coexistence
line of the two phases « and f.

be transformed in a gas (or viceversa), and in such a way that the coexistence of
liquid and gaseous phases is never encountered.

At the coexistence line, gsolid (T4, P*) = giiq(Ta) and giq(Th) = Gggas(Tp, P*), as
shown in Figure 2.3

Note also that:

e At the coexistence points a and b of the two phases, one has go(T") = gg(T).

e ¢(T) is a continuous function of T.
e Note that, S = —(g—g)v and cp = _T(%>P > 0. This implies that g(7) is
concave in 7' at fixed P.

How about its derivatives? Since P is fixed we can vary T and look for s = — (g—:gp) .

As we cross different phases we have discontinuities, where AsT is called the latent
heat. 1t is illustrated in Figure [2.4]

If there is a finite discontinuity in one, or more, of the first derivatives of the
appropriate thermodynamic potential, the transition is called first order transition. In
general, a phase transition is signaled by a singularity in a thermodynamic potential.

We can also fix the temperature T'= T™ and look at the variation of P, as shown
in Figure 2.5
Note that, we have v = (%)T >0:

0%g v

S0, also in this case we had a jump of the first order derivative of the thermodynamic
potential g. It is illustrated in Figure
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fized P
liquid :\ }

i AsT = latent

' heat
T, T T

Figure 2.4: (s,T) projection.
P g

fized T

Figure 2.5:
T=T"

Left: (T, P) projection.

fized P

P

gas

liquid solid

Right: (g, P) projection at a fixed temperature

~
N

gas

Figure 2.6:

liquid solid P

(v, P) projection.
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2.2.1 Critical points

At the critical point (P, T.) the system can pass from the liquid to the gas phase
(and vice versa) in a continuous way

As=Av =0

Usually, critical points are end point of first order transition phases. Why there is
no critical point between solid and liquid? The crossover between phases having the
same symmetry define the Landau point. There is a break of symmetry, for instance
we can think about the structure of the bravais lattice. Instead, from gas to liquid
symmetries are not broken.

P
critical point
solid
liquid /
P
latm p---------------"-"-"-~-"@-------=> |
! gas
[freezing point : E
! :
i boiling point !
! |
' |
T, . Te T
triple
point

Figure 2.7: Phase diagram of a fluid. All the phase transition are first-order except at
the critical point C. Beyond C' it is possible to move continuously from liquid to a gas. The
boundary between the solid and liquid phases is thought to be always first-oder and not to
terminate in a critical point.

2.2.2 Ferromagnetic system

A similar behaviour can be encountered in magnetic systems. We can have a
magnetization different from 0 even when the is no magnetic field. Supposing P <
H,V < M, we have (P,T) < (H,T).

The magnetization M has a jump at H = 0 for temperatures lower than the
critical one; in this case since M = —g—fl we see that the first derivative of the free
energy F' with respect to H has a jump discontinuity. For instance, consider Figure

2.9] At the critical point the magnetization would pass through zero.
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phase positive M

: continuous
| \
I
! O
LT T, / T T
I
I
phase negative M paramagnetic
phase

Figure 2.8: Phase diagram for a magnetic system in (T, H) space. A line of first-order
transitions at zero field ends in a critical point at a temperature 7.

<M >

T =T < Tc

Figure 2.9: Plot of the Magnetization for T'=T* < T..
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2.3 Second order phase transition

The transitions are classified in the first order transition and continuous transition.
If the first derivatives are continuous, but second derivatives are discontinuous, or
infinite, the transition will be described as higher order, continuous or critical. This
is different from the previous situation, in which we had a jump for the first order
derivative of a thermodynamic potential. Some examples are illustrated in Figure

210
Let us suppose that

9y
) = g
oTr ) p
9g
23—y
OP )

are continuous. We suppose also that

7829 = @ = v
oror) ~\or ), """

is discontinuous. An example is superconductivity.

(2.4a)

(2.4b)

T,

(a) Thermodynamic potential g.

(b) Continuous s.

-

T,

(c) Continuous v. (d) Discontinuous cp.

Figure 2.10: Example of a second order phase transition.

If we look for example at the specific heat cp in Figure it represent the

transition from superconducting.
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The critical point is special because there is not a jump, so we can go continuously
from gas to liquid. The response function when we plot this point shows that the
specific heat diverges.

The superfluid transition is a transition where the second derivative of the thermo-
dynamic potential diverges. There are many phase transitions that can be classified
in different ways.

Remark. Note that at the coexistence line we increase V, but the pressure remains
constant. At the coexistence line we see bubbles. It is the density that is changing
locally, the bubbles becomes bigger and bigger and at the Vg, becomes a liquid.

2.3.1 Helmholtz free-energy

fized T

linear

/

Vi Vo v Vi Vo v

(a) (V, A) projection for fixed T. (b) (P, V) projection.

Figure 2.11: Helmholtz free-energy and phase transition.

Consider A = A(T,V,N), here P is replaced by V which has the derivative
discontinuous at the first order transition. Moreover, P > 0 implies 9A/0V < 0 and

1/oV 1 /0P 1 /0%A
kr=—— [ — = = = —| — 0 2.6
T V<8P>T v<av>T V<av2)T> (2:6)
so, A is an overall convex function of V. The behaviour of A when there is a first

order phase transition is as in Figure The linear sector becomes an horizontal
one in the P = —(0A/0V)r = P(V) curve (Figure 2.11D)).

2.4 Thermodynamic of phase coexistence

2.4.1 Lever Rule

The lever rule [2] is a rule used to determine the mole fraction of each phase of
a binary equilibrium phase diagram. For instance, it can be used to determine the
fraction of liquid and solid phases for a given binary composition and temperature
that is between the liquid and solid line.

In an alloy or a mixture with two phases, a and 3, which themselves contain two
elements, A and B, the lever rule states that the mass fraction of the a phase is

B
wp —w
wt = ———8 (2.7)
Wp — Wp

where
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e w%: is the mass fraction of element B in the o phase.

° wg: is the mass fraction of element B in the [ phase.

e wp: is the mass fraction of element B in the entire alloy or mixture.

Example 9

Consider Figure [2.12} at all points between A and B the system is a mixture
of gas and liquid. Points D has global density pp = pa + pp and therefore

Up = 555VA = 70, UB = oo which implies:
Ny o Np N
VD = —VA T —-UB = TAVA T TBUB
N N

Since x4 + xp = 1 we have (x4 + zp)vp = £4v4 + xpvp and finally by rear-
ranging, one finds the Lever Rule. It shows that the relative concentration of
the liquid-gas mixture changes with V:

A UB —UD
B Up — U4

1%:] Vb Va 14

Figure 2.12: (V| P) projection. In the region between A and B the gas and the liquid
phase coexist by keeping the pressure constant.

2.4.2 Phase coexistence (one component system)

Consider a (P,V,T) system as a mixture of two species (1,2) at temperature
11,75, pressure P, P> and chemical potentials 1, ue. The equilibrium condition is
given by the maximum of the total entropy S = 51 + S5 and gives the conditions

Ti=T,, Pi=PFP, m=pu (2.8)

this is the coexistence condition of the two phases.
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In terms of the Gibbs potential G = U —T'S + PV, where U is given by the Euler
equation U =TS — PV + u1 N1 + poNa, the Gibbs per mole is

_ G
g1 (T, P) = N, H1 (2.9a)
G
¢2(T, P) = FQ = iy (2.9b)
2

Therefore, on the coexistence line it should hold the relation

gl(T7 P) = QZ(T, P) (210)

2.4.3 Clausius-Clapeyron equation

The coexistence curves [3|, as the one illustrated in Figure are less arbi-
trary than is immediately evident; the slope dP /dT of a coexistence curve is fully
determined by the properties of the two coexisting phases.

The slope of a coexistence curve is of direct physical interest. Consider cubes of
ice at equilibrium in a glass of water. Given the ambient pressure, the temperature of
the mixed system is determined by the liquid-solid coexistence curve of water; if the
temperature were not on the coexistence curve some ice would melt, or some liquid
would freeze, until the temperature would again lie on the coexistence curve (or one
phases would become depleted). If the ambient pressure were to decrease perhaps,
by virtue of a change in altitude, then the temperature of the glass of water would
appropriately adjust to a new point on the coexistence curve. If AP were the change
in pressure, then the change in temperature would be AT = AP/(dP /dT)coex,
where the derivative in the denominator is the slope of the coexistence curve.

Remark. Ice skating presents another interesting example. The pressure applied to
the ice directly beneath the blade of the skate shifts the ice across the solid-liquid
coexistence curve, providing a lubricating film of liquid on which the skate slides. The
possibility of ice skating depends on the negative slope of the liquid-solid coexistence
curve of water.

Now, suppose to know the position on the coexistence line (for example the melt
temperature T, at the atmospheric pressure Pp). Is it possible to find other points
on the curve? For example T}, at lower or higher pressure?

The answer is yes for small deviations of T and P from a. The idea is to compute
the slope of the tangent of the coexistence curve, i.e. (dP /dT). This is given by the
Clausius-Clapeyron equation. Both at a and b the two phases 1 and 2 coexist. This
means that at the coexistence line

(a) (@)
91" = 99
(2.11)
{ggb) O

Hence, if a and b are very close:

b a
dgs = gy — 93"

Therefore, the starting point for Clausius-Clapeyron is
= d91 = dgg (2.13)

From the molar version of the Gibbs-Duhem relation, we have

{dgl = —51dT + v dP = diy (214)

dgo = —sodT +vodP =dpus
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Figure 2.13: (T, P) projection. The coexistence line is represented in red, while in green
the slope between the two points a and b.

taking the difference, one obtains

—(82 — Sl)dT—i- (1)2 — 'Ul)dP =0

The slope is called Clausius-Clapeyron equation:

dP _ (82 — 81) o E
<M>coem a (UQ - Ul) - Av (215)

Remark. Since (AP /dT)coer is finite, the equation explains why a first order tran-
sition is characterised by discontinuous changes in entropy and volume (or density).
AS gives the latent heat Lis E

L12 = TAS (216)
whence, the Clapeyron equation is

dP Lio

— = 2.1

dT" TAvw (2.17)

2.4.4 Application of C-C equation to the liquid-gas coexistence line

Now, we go from gas (region 2) to liquid (region 1), we have:

(dP) . S9 — 81
dr coex V2 — U1

The Clapeyron equation embodies the Le Chatelier pm’ncipleﬂ Consider a liquid-
gas transition (the coexistence curves are shown in Figure [2.14]):

dP S92 — 81
( — >0 = >0
AT J .pew Vg — V1
'The latent heat of fusion is the quantity of heat required to melt one mole of solid.

2"When a settled system is disturbed, it will adjust to diminish the change that has been made
to it".
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T

Figure 2.14: (T, P) projection. Region 1: liquid. Region 2: gas. The lines represent the
combinations of pressures and temperatures at which two phases can exist in equilibrium.

and since vy > w1, we have so > s1. The gas has more entropy as it should be.
The slope of the phase curve is positive, then an increase in pressure at constant
temperature tends to drive the system to the more dense (solid) phase, and an increase
in temperature tends to drive the system to the more entropic (liquid) phase.

When going from a low-temperature phase to a high-temperature phase entropy
always increases AS > 0, because cp = T'(95/0T)p > 0.

The sign of AV is more uncertain though. To see this point, let us consider the
C-C equation at the solid-liquid (now solid is region 1 and liquid region 2) coexistence
curve. At the melt temperature:

dp 5Qmelt
ar T Ava OQmert = Quia — Qsoli
<dT> coex Trnelt AVmeit ’ Q it Ql q Q 1id > 0

In general, Av,, = vjig — Vsolia > 0 which implies (dP/dT),,., > 0. There are
cases, however, where Av,, = v — Usoria < 0 because pjiq > psoia (for instance
the H50, or also Silicon and Germanium). The paradigmatic example is the freezing
of water where v;.. > ;4 since ice is less dense than liquid water at the coxistence

(0 < T < 4). This implies that dP /dT < 0.
Example 10: Melting point on Everest
Consider T'= 237K and P = P,. If we suppose that

6Qm = 6.01kJ/mol, Av = —1.7em?®/mol

we have

dP _ 6Qm 6.0110%.7 /mol o
_— = = —]_'2 . 1 — _1‘2 b K
dT’  TAv 273 (—1.7cm3/mol) 9-10%J/m 9bar/

AP (PO - PEverest) (1 — O36)atm
AT = = == = —0. ©
- (C1.20Pa/K) ~ (—129Pa/K) ~ (=1.29PajK) = 00 ©

= T (Everest) = T,,,(Py) + 0.5°C

Example 11: Boiling point on Everest

Let us consider
Piverest = 0.36atm,  p(T = 100°C) = 0.598kg/m?>, Ly = 2.257-10%J/g

The density of the vapour (gas) is about 1000 less than water (liquid), it implies
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that:

1
Pg

We have:

dP Ly  Lgepy  225-10°J/g-0.593kg/m®  3.610°J kg 161035

dr  TAV T 373K K g m3 K

= AT ~ AP/(3.6103Pa/K) = 18°C
= TD - TEverest = 18°C = TEverest ~ 80°C

2.5 Order parameter of a phase transition

An order parameter is a measure of the degree of order across the boundaries in a
phase transition system. In particular, order parameters are macroscopic observable
that are equal to zero above the critical temperature, and different from zero below:

T<T,
0, = {# 0 I'< (2.18)
=0 T =1,

When a phase transition implies a breaking of a phase symmetry, the order parameter
is related to this symmetry. Therefore, the order parameter reflects the symmetry of
the system. Recall that, at T, the system has a symmetry broken.

For instance, consider the densities of liquid and gas and the related order param-
eter of the gas-liquid transition Ap = p; — py, that is # 0 for T' # T, but — 0 when

T — T, (see Figure [2.15)).

Pl L o ___2>

Pg

gas

T, T

Figure 2.15: (T, p) projection of the (P, V,T) system, where p = N/V.

Remark. Note that p = ]‘\// = 1 hence either N or V varies.

)

In Figure is shown the behaviour for a ferromagnetic system. We have
M#0 T<T,
H=0= # ‘
M—=0 T—=T,

Clearly M # 0 if H # 0. Recall that M is the order parameter of the paramagnetic-
ferromagnetic phase transition.
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M

H <0

Figure 2.16: Magnetization of a ferromagnet. In red: zero-field magnetization. Below the
critical temperature there is a spontaneous magnetization.

Variable conjugate to Op
o Ferromagnetic system: M — H (magnetic field).
e Ferroelectric: P — E (electric field).
o Liquid crystals: Qa3 — f), H.

e Fluid: V — P (pressure), or p — p.

2.6 Classification of the phase transitions

2.6.1 Thermodynamic classification

Thermodynamically, one can distinguish two kinds of phase transitions:
1. Ones who develop latent heat.

2. Ones who do not develop latent heat. The entropy changes continuously at the
transition.

2.6.2 Eherenfest classification

The FEherenfest classification is based on the behaviour of the derivatives of the
thermodynamic potentials.

A phase transition is of order n if all the (n — 1) derivatives are continuous and
the nt" derivative displays a finite discontinuity.

Example 12

For instance, a first order transition in which § = —(0G/9T)p has finite dis-
continuity.

Remark. There are first order transitions where S is continuous (no latent heat), but
p is discontinuous (v = (0G/IP)r).
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Example 13

Second order transition. The specific heat displays a finite jump, see Figure
in the conductor-superconductor transition.

Another example is a second order transition but with divergence. Consider the
fluid-superfluid transition (or A transition) of the Hey (Figure 2.17d)).

Xm | ¢ :
(cm) : I
: [
I I flex point
I diverges |
I
: I
I I
I |
: !
I [
| !
T, T T -
® (b) Liquid gas kr = — & 2%
Cp ! o |
I !
[
I [
I ! |
L I diverges
I I
l I
I |
I !
I [
| !
T, T ™ -
(€) 2" order phase transition (d) Superfluid in M-transition

Figure 2.17: Plots of response functions.

Remark. A transition: a second-order or higher-order transition, in which the heat
capacity shows either a discontinuity (second-order) or a vertex (higher-order) at the
transition temperature. It is so named because the shape of the specific heat versus
temperature curve resembles the Greek letter A.

2.6.3 Modern classification

A phase transition is of the first order if exists a finite discontinuity in either
one or more partial derivatives of the thermodynamic potentials. Instead, if the first
derivatives are all continuous, but the second are either discontinuous, or infinite, one
talks of continuous transitions. A critical point is a continuous transition.

2.7 Critical exponents

At the critical point response functions may diverge. How are these divergence?
In general, when you are close to T, there are singolarities. Now, we can ask, how
the curve diverges? What is the behaviour close to the critical point? Power law, so
which are the values of these critical exponents?
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2.7.1 Divergence of the response functions at the critical point

While at the critical point the order parameter goes to zero continuously as T" —
T, the response function may develop divergences.

Example 14

In a fluid system since at 7" = T¢ the curve P = P(V') develops an horizontal
flex (Figure [2.18)), we have kpr = —% (%)T — 00. Similarly, in a magnetic since

the curve is like Figure [2.16], we have xy7 = (g—%)

%
T T,

Figure 2.18: (V,T) projection.

2.7.2 Critical exponents definition

The notion of critical exponent describes the behaviour of the order parameter
and the response functions in proximity of the critical point. In order to answer to
these questions, let us define:

Definition 1: Critical Exponent, or Scale Exponent

Let us define the adimensional parameter measuring the distance from the crit-
ical point t = T;CTC, the critical exponent A associated to the function F'(t) is
defined as:

(2.19)

We note that it behaves like a power law. One can also write the power law:
F(t) 728 | (2.20)
More generally, for t < 1:
Ft)=AtM*A+bM+...), A >0 (2.21)

where all other terms are less important.

Definition 2: Thermodynamic Critical Exponents

e Exponent 8: tells how the order parameter goes to zero. Consider Figure

2194, we have M "2 (—t)®. No sense in going from above (t — 0F)
where it stays 0.
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e Exponent 74 (susceptibility): related to the response function. Consider

+
Figure [2.19b] we have yr = |t|”7%. In principle, the value of v can
depend on the sign of ¢ i.e. ¥ # v, but they are the same in reality and

we have T =~ =+.

e Exponent a4: how specific heat diverges (second order derivative in
respect of 7). For instance see Figure we have cg ~ [t|” %%,

e Exponent §: in this case one consider the isotherm T'= T, and look for
the behaviour of M at the critical point at small H (or viceversa). The
result is M ~ HY/%. In Figure [2.19d, H ~ |M|’sign(M).

M X :
H=0 :
|
I H=0
|
|
|
|
|
|
|
TC T Tc T
(a) Exponent 8. (b) Exponent .
c | M
" . T=T.,
!
|
|
I H=0
|
|
| H
|
!
!
|
T. T
(c) Exponent a. (d) Exponent 4.
Figure 2.19
Zero-field specific heat Cy ~ |t|™
Zero-field magnetization M ~ (—t)?
Zero-field isothermal susceptibility xr ~ |t|7
Critical isotherm (¢ = 0) H ~ |M|°sign(M)
Correlation length En~ |t
Pair correlation function at 7t G(r) ~ rd—%ﬂ

Table 2.1: Definitions of the most commonly used critical exponents for a magnetic system
14

Remark. In compiling Table and we have made the as yet totally unjustified



32 Chapter 2. Equilibrium phases and thermodynamics of phase transitions

Specific heat at constant volume V. Cy ~ [t|™
Liquid-gas density difference (p1 — pg) ~ (—=t)?
Isothermal compressibility kp ~ |t]77
Critical isotherm (¢ = 0) P—P.~|p — pg]5sign(pl — Pg)
Correlation length En~ |t
Pair correlation function at 7, G(r) ~ rd%ﬂ

Table 2.2: Definitions of the most commonly used critical exponents for a fluid system [4].

assumption that the critical exponent associated with a given thermodynamic variable
is the same as T' — T, from above or below.

2.7.3 Law of the corresponding states

The system displays correlation at very long distance, these goes to the size of the
system when T' — T.. We are talking about long range correlation. The correlation
function is £ ~ t~7. For instance, consider a polymer as in Figure .

Having defined the critical exponents, we need to justify why they are interesting
and why they are more interesting than the critical temperature T itself. It turns out
that, whereas T, depends sensitively on the details of the interatomic interactions, the
critical exponents are to a large degree universal depending only on a few fundamental
parameters.

To summurize, the critical exponents are more interesting than 7T, since their
values do not depend on microscopic details, but only on few parameters such as the
space dimension d and the symmetry of the system.

One of the first experimental evidence of this universality was given by the work
of Guggenheim on the coexistence curves of ¢g different fluids: A, Kn, x., Ne, No,
CO9 and Os. By plotting T'/T, versus p/p. (Figure he found that all the data
collapse on the same curve, i.e. different sets of data fit the same function. Moreover
for t — O:

(P = pe) ~ (_t)ﬁ
and 8 ~ 1/3 ~ 0.335. Therefore, close to the critical point all the data lie on the
same curve and hence can be described by the same exponent 5. A further test
of universality is to compare this value to that obtained for a phase transition in a
completely different system with a scalar order parameter. For instance, if we do the
same for a string ferromagnetic the result is § = 1/3 too.

Remark. The law of corresponding states gives a universal liquid-gas coexistence
curve.

2.7.4 Thermodynamic inequalities between critical exponents

It is possible to obtain several rigorous inequalities between the critical exponents.
The easiest to prove is due to Rushbrooke.
Rushbrocke inequality

It follows from the well known thermodynamic relation between the specific heats
at constant field and constant magnetization. Remember the relation between re-
sponse functions:

e = Toat = ot (20) Z L (Y
kr(cp — ¢y) = Toa —TUU2 5T p_TU ar ),
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(a) N-Polymer.

1="T./T, T/T,

(b) Coexistence curve of different fluids plotted in
reduced variables.

Figure 2.20

For magnetic systems one has

From thermodynamic stability we have cp; > 0,cg > 0,x7 > 0. Hence, from the
previous relation we have

T <8M)2 N
cH=—| == c
" XT or H \>]\/(/)L

e > - <8M)2 (2.22)

On the other hand, for T'— T, (t — 07) and H = 0 (zero field) we have

which implies

—Q

ey ~ (=)
xr ~ (=t)77
M ~ (—t)P

(7).~

Since the inequality (2.22) is valid for all temperature 7, it follows that can only be
obeyed if

that implies

[(Tc — T)B_IP
(Te —T)~7
with B, B’ > 0. Take the limit 7" — 7T, , we have:

B(T.—T)“>DB'T

B'T

lim (T, — T)?> %207 >
T—T.

>0

Since the left hand side must be strictly greater than zero, we have the RushBrook
iequality:

a+28+7y>2 (2.23)
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Griffith inequality

The Griffith inequality is obtained from the convexity property (in 7" and V') of
the Helmolds free energy and from A ~ t2~%:

= a+B(1+0)>2 (2.24)

We have introduced two very new ideas, universality and inequalities between the
critical exponents, which appear to hold as equalities (see Sec.

In the intervening chapters, we look at models of systems which undergo phase
transitions and how to calculate their critical exponents and other properties.



Chapter 3

Recall of statistical mechanics and
theory of ensembles

3.1 Statistical ensembles

Statistical mechanics roughly speaking was born as a sort of theory from mi-
croscopic and try to compute the macroscopic length using thermodynamics. The
problem is going from the countinuous problems to the macroscopic problems. In
origin was statistical mechanics of equilibrium system. Each microstate with a given
energy fixed, will have the same probability, this is the equal probability statement.

In general, if we consider a system with N,V (number of particles and volume)
fixed and also the total energy E fixed, we call Q(E,V, N) the number of microstate
with total energy F , volume V and number of particles N.

If the system is isolated and in equilibrium the rule of equal probability of the
microstates holds:

If the system is isolated and in equilibrium with energy F it visits each microstate
consistent with energy F with equal probability.

Another way to say is: the system spends the same amount of time in each of the
Q(E,V, N) microstates.

Therefore, we call a single configuration of a given microstate C. A configuration
is just when you have the spatial part, because momentum can be obtained by inte-
grating. Let us suppose to compute the probability of a given configuration €, Pp;
because of equal probability we have:

1

Po— —
¢ Q(E,V,N)

(3.1)

Now, let us now consider two subsystem 1 and 2 that can exchange energy, volume
and/or particles. The number of microstates, of the combined system, of total energy
Er = FEy + Es, total volume Vi = Vi 4+ V5 and Np = Ny + N, is given by:

Q(Er,Vp, Np) = Z Q1 (Eq1, Vi, N1)Q(Ep — By, Vp — Vi, Np — Nq) (3.2)
E1,V1,N1

One can show that, in the thermodynamic limit, Q(Ep, Vp, N7) is strongly peaked
around a given point (£}, V{*, N{') and the fluctuations around this value are rare and
small. Writing Q(Ep, Vp, Nr) as
S(Eq, Vi, N) 1
Q(ET,VT,NT) x e kg = Z exp |:k(Sl(E1,V1,N1) —l—SQ(EQ,VQ,NQ))
B
E1,Vi,N1
(3.3)

35
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(the proportionality becomes from the Boltzmann definition of entropy).
The values (Ej, Vi*, Ni) are obtained by the max entropy condition that can be
written as

dln€y  dln$y

_ T =T 3.4
aE, aE, Tt (3.42)
danl danQ

— P, = P 3.4b
av; v, T (3.4b)
danl danQ

_ _ 4
AN, aN, e (34¢)

We next consider these properties to the case in which 1 is the system we want to
study and 2 is a much larger system than 1 (a bath). This setup will bring us to the
canonical ensemble.

3.2 The canonical ensemble

Figure 3.1: Isolated system. There are two subsystems, S constituted by red points and
B constituted by the black one.

Let us consider an isolated system made by two subsystems, one S and one much
larger, B, that we call thermal bath (Figure . The total number of particles is
given by Ny = Np + Ng with Ng > Ng > 1 (they are both large but B is much
larger than S), where Np are the particles in the thermal bath and Ng the particle
of the system.

Let E7 be the energy of the composite system. The two subsystems can exchange
energy but the whole system has constant energy FEr. Therefore, let the energy to be
free to fluctuate in time at fixed temperature T (isothermal ensembles). Note that
Vs, Ng, Vg, Np are fixed (no exchange of volume and particles).

For resuming, other quantities fixed are the temperature of the bath Tx , the
number of the total particles of the system N7, and also the total volume Vp. We
have also Vi = Vg + Vg, with Vg > Vg.

The key to the canonical formalism is the determination of the probability dis-
tribution of the system among its microstates. And this problem is solved by the
realization that the system plus the bath constitute a closed system, with fixed tem-
perature, to which the principle of equal probability of microstates applies.

If one assumes that the system and the bath are weakly coupled (neglet interaction

energy):
Er = Eg + Eg = const Ep > Fg

Let € by the microstate of the system .S, and G the microstate of the heat bath B.
A given microstate of the isolated composite system B-S is given from a pair (€, 9)



3.2. The canonical ensemble 37

of microstate € € S and § € B. The number of microstates of the isolated system
with total energy Fp and system energy FEg is given by:

Qr(Er, Es) = Q(Es)Qp(Er — Es)

Remark. In this analysis V' and N are fixed. Since Er is fixed

QOr(Er) =Y Q(Es)Qp(Er — Es) (3.5)
Eg

From the principle of equal probability for microstates at equilibrium, the proba-
bility of a composed microstate (€ o G) is given by:

1

= Fe+FEs=F

Poog = Qr(ET) ¢ .9 T (3.6)
0 otherwise

Since we are not interested to the microstates of the heat bath

1 1
Pe = > Peg= > e~ @21 (3.7)

all § all § 9
such that such that
9(Er—E¢—Eg) g(Er—Ee—Eg)

The number of microstates § with energy Eg = Ep — Ep is given by:

This implies that the probability of a given configuration is related to the number of
microstate of the bath:

Qp(Er — Ee)
= Po=———"— """ xOp(Er— FE 3.8
e B > B(Er — Ee) (3.8)
It is more convenient to deal with the logarithmic of Pe that is smoother

ikBanB(ET—E@) :SB (3.9)

This is the entropy of B and is a function of Ng. Since Ee < Ep ~ Ep we can
expand Sp(Er — Ee) around xg = E7 by the small amount

A=x—1z9=(Fp)— (Er)=—E¢

d
f(EB):f(ET>+$ (Ep — Er)+ ...
B |Eg=FEr
Therefore:
o8 E% [0%S
kBanB(EB):SB(EB):SB(ET)_EG(8E2> +2€<8Ef) +...
Ep=Er B/ Ex=E
" 3.10)

To make explicit the Np dependence, let us consider the molar version

Sp — Npsp Ep — Npep

883 E2 8283
B BSB BsB(ET) e<863>53_eT + N < o2
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Let us consider the limit in which the system size is fixed, while the one of the heat
bath is going to oco:

Ep
E Es+ N
. T S BEB
1 —_ = = 3.11
NglgooNB NB B ( a)
dsp

lim kB IHQB(ET — E@) — NBSB — E@

Np—00 dep

On the other hand,

(3.11b)

dsp _ 1 _ 1
dep ~ T T
which implies
SB Npsp Ee
e X B( T @) eXP(kB) exp< kB kBT

Since the first therm does not depend on €, it can be absorbed in the constant and
what we get by expanding considering the huge number of particles

P@ 0.8 eXp(—Ee/kJBT) (3.12)

Remark. Since the energy of the system fluctuates, its microstates are not anywhere
equiprobable, but are visited with probability given by (3.12)).

Remark. Since the bath is very large, T is the only property of the bath that affects
the system. The Boltzmann factor is defined as:

1

= — 3.13
A — (3.13)
The normalization consists in dividing by the normalization factor, that is the
sum of all microstates
e_ﬁEe
Finally, the canconical partition function is defined as
QT,V,N)= Y exp(—fBEe) (3.15)
all €
with V,N
fixed
Given Q(T,V, N), one gets the Helhmoltz free energy:
A(T,V,N) = —kpTInQ(T,V,N) (3.16)

that is the free energy describing the isothermal (or canonical) ensemble at fixed T,
volume V and number of particles N.

Remark.
QUI,V,N)= Y e PO =) "ePPQE,V,N)

e E
V,Nfixed

What we have done is a foliation in energy of the space, that is a sum over the energy
(keeping {V, N'} fixed):

QITV.N) =Y e PPQE,V,N) = Y e PeS/hn = 3 ¢ AE-T5)
E I =

Hence,
Q(T,V,N)=e P4 = A= —kgThQ(T,V,N)
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We have formulated a complete algorithm for the calculation of a fundamental
relation in the canonical formalism. Given a list of states of the system, and their
energies Ee, we calculate the partition function . The partition function is
thus obtained as a function of temperature and of the parameters that determine
the energy levels. The fundamental relation is that determines the Helmholtz
potential.

The probability of a configuration can be written as , that is a very useful
form. Indeed, the average energy is expected to be

> Eee PPe
U=S EeP = =" (3.17)
z@: S e PEe
or

3.2.1 Energy fluctuations in the canonical ensemble

Despite energy in the canonical ensemble fluctuates, while in the microcanonical
one is constant, this does not contradict the equivalence principle of the ensemble
(in the thermodynamic limit). The reason is that the relative size of the energy
fluctuation decreases in the large system limit. To see it, let us compute the average
square fluctuations of F.

((0B)*) = ((E - (B))*) = (E*) — (E)” (3.19)

Remark. Remember that thermodynamic assume that the number of number of free-
dom is related to the number of Avogadro.

On the other hand,

o—BEe 0Q(T,V,N)

— a5 0
ZP@E@—ZE@ oe /BEGZ_ % = (,BIDQ>

Therefore,
o (- L(PQ) L (00’
((0E)%) = ((E - (E))%) Q<352>N, 2<8ﬂ)N,V
<a21nQ> __<3<E>
o2 N,V 0 N,V
Since oFE
o — <6T>W (3.20)
we have
(0F)?) = kT ey (@.21)

Both ¢y and (E) are extensive

JOFP i (1
B - (B O( >:’O

because N ~ 1023.
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3.3 Isothermal and isobaric ensemble

Now, the system is coupled both to a thermal and a volumic bath at temperature
Tp and pressure Pg. The idea is: consider the same system with the bath; the
difference is that in this case the system can exchange energy but also volume (we
continue to keep the temperature of the bath fixed). At this point the ensemble is
isothermal and isobaric. All the assumptions done before are valid, in particular,
assuming as before weak coupling between the degrees of freedom of the bath and
those of the system

Er=FE+ Ep
V=V +Vp

We look for the partition function that describes this isothermal and isobaric ensem-
ble. Similarly to the previous case, one can write

Pe x Qp(ER, V) x Qp(Er—Ee, Vr—Ve) o exp[Sp(Er — Ee, Vr — Ve)/kp] (3.23)

Remark. Now, C is specified both by its volume V and energy FE. As before, one
can expand logQp both in Ep and in Vg (around Ep and V) and take the limit
N B — OQ.

Pe o exp Sp(Er,Vr) Ee 0Sp Ve 0SB N <term 1 >
eXeXp|———— — 7 S — T Ao =
kp ks 0EB|g, v, kB OVBly, g, Np
(3.24)
Recalling that
d P Pg— P
N R (3.25)
dVip T 5 —> T
Ee PVe
P - 2
= Peocenp| -2~ 2] (3.26)
If we normalize:
P e~ B(Ee+PVe) 597
© A(T,P.N) (327
where
A(T,P,N) =) e AEEOFPV(E) (3.28)
€
is called the Gibbs partition function.
Remark. Note that
A(T,P,N) Ze*ﬁPV Z e PPe) =" e PPV Q(T,V,N)
VNﬁxed v
ZZ e PEFPVIQE, V, N)
\“,_/
fluctuating
variables
By summing over all the microstates compatible with £ and V'
QUE,V,N
P(E,V) = UEVLN) —pie+pv) (3.29)

~ A(T,P,N)
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Remark.
A(T,P,N) ZZ TPEBPVQ(E,V,N) =) e PETAPVASIEV-N/ks (3 30)
EV
Laplace transform
Classical systems (fluids)
o0 - 1 . L N N
A(T,P,N) = /0 dv e PPV [hBNN! /dpl ...dpg e PHETrT) (3.31)
which implies
A(T,P,N) = / AV e PPV Q(T, V,N) (3.32)
0
that is the Laplace transform of the canonical partition function Q.
We also define
P 05
P=_—=_" 3.33
8 T 0V ( )

Remark. Let us remind that

Definition 3: Laplace transform

the function F'(s), which is a unilateral transform defined by

= /OOO f(t)e st dt

s=o0+ 1w

The Laplace transform of a function f(¢), defined for all real numbers ¢t > 0, is

where s is a complex number frequency parameter with real numbers ¢ and w:

Magnetic system

Ensemble in which both £ and M can fluctuate. In particular, we have Q(E, M)

(with Tp and Hp fixed).

Sp(Ep,Mp) Ee dSg Mg dSp

Peox e kg kg dEg kg dMp
dSg _ _Hp dSp _ 1 .
Since o = — 72 and g5 = oo
ﬁP@OCGXP[-,B(E@-HM@)], Tg —->T,Hg — H

The normalization function is:

AT, H N) =) e PHemHMe) = N =0EHAMEQ(R, M)
¢ E.M

that is the Gibbs partition function for magnetic systems.

(3.34)

(3.35)

(3.36)
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3.3.1 Saddle point approximation

The sum (3.30)) can be approximated by the maximum of the integrand (this is
fair for highly peaked functions):

Y exp|-BE — BPV + S(E,V,N) /kp] = ¢ P 6PV HS(E VN ks

E\V
dS(E*,V*,N) 1 dS(E*,V*,N) P
dE vy T’ dv eny T

)

where

this implies
—kpTInA(T,PN)~ E*+ PV*-TS

Hence, we define the Gibbs free energy as:

G(T,P,N) = —kgTIn A(T, P, N) (3.37)

3.4 Gran canonical ensemble

In this case N varies instead than V. Thus we have

Er — Ee, Ny — N
o e[ B )
SB(ET,NT) Ee dSp Ne dSp 1
~exp| ZBAETAT) BeCon e OB | forder < — )| (3.38
exp[ . is 4B s dNg + ( terms of order < v (3.38)
_ exp[—pEe + BuNe]
o(T,V, )

where

OT, V) =) Z B(Ee—pN) (3.39)

N
V, Nﬁxed

is the grancanonical partition function.

Remark. Remember that

ds 1 ds pu
D — =£ 3.40
dE T’ dN T (340)
The fugacity is defined as:
5 = BH (3.41)
and we rewrite -
OT, Vi)=Y 2N Y e (3.42)
N=0

C
V,Nfixed

In principle, if one is able to compute the partition function is able to compute
the thermodynamic quantitites.



Chapter 4

Statistical mechanics and phase
transitions

4.1 Statistical mechanics of phase transitions

From the microscopic degrees of freedom, one compute the partition function
in the appropriate ensemble, then the corresponding thermodynamic potential and
from it all the thermodynamic properties of the system as equilibrium phases and, if
present, phase transitions. Actually, until the 30 there were strong concerns about
the possibility that statistical mechanics could describe phase transitions.

C ~ J
o) L
(a) Region Q with boundary 9. (b) Magnetic system with

characteristic length L.

Figure 4.1

Let us consider a system withing a region € of volume V(£2) and boundary 02 of
area S(2) (Figure [4.1a]). Denoting by L a characteristic lenght of the system

V(Q) o< LY, S(Q) oc LT
where d is the spatial dimension.
Remark. Space ) can be either discrete or continuous.

Suppose that the system is finite. Formally, we can write
Ho=- knOp (4.1)
n

where

e k,: are the coupling constants. In general, but not always, they are intensive
thermodynamic variables.

e O,: is a linear, or higher order, combination of the dynamical microscopic
degrees of freedom (local operators in quantum statistical mechanics).
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e k,0,: must obey the symmetry of the system. It is important that in principle
the term satisfies the symmetry of the system. This is a master rule!

To fix the idea, let us consider two classical examples: the magnetic system and the
fluid system.

4.1.1 Magnetic system (canonical)

The degrees of freedom are the spins lying on a Bravais lattice S_;, with 1 <7 <
N(9), where the N(Q2) are the number of lattice sites (Figure [4.1b]). A configuration
is the orientation of the spin in each site € = {S1,...,Sn}. We have:

©1=) S (4.2a)
O2 = Z Si-S; (4.2b)
ij

We consider the trace operation, that is the sum over all possible values that each
degree of freedom can assume:

TTEZEZZ'”Z (4.3)
{€ si sz SN

where ) can also indicate an integration if values are continuous.
The canonic partition function is

Qo(T, {kn}) = Tr(e’m{@) (4.4)

4.1.2 Fluid system (gran canonical)

Consider N particles in a volume V, with number density p = N/V. The 2dN
degrees of freedom are

{€} = {(x1,P1)i=1,..N}

and
IS»_Q
O =) 27;1 + Ui (3) (4.5a)
1 o -
O2 =3 ;-U('Xi - %)) (4.5b)
1>]

The trace operation is

The gran canonical partition function is:

Fo = T&"(@‘ﬂ(g{ﬂ_“m) (4.7)
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For a generic partition function Qq (7T, {ky}), we can define the finite system free
energy as

Fq [T, {kn}] = —kpT'ln QQ(Tv {kn}) (4'8)

The relation with thermodynamic is trough the theromdynamic limit.
Since the free energy is an extensive function,

Fo x V(Q) ~ L%
In general, one can write
Fo[T, {ku}] = V() ST, {kn}] + S(Q) fs[T, {kn}] + O(L?) (4.9)

where fp[T, {ky}] is the bulk free energy density.

Definition 4: Bulk free energy density

We define the bulk free energy density as

ST k)] = lim oA Ul

V(Q)—oo V() (4.10)

if the limit exists (to prove for each system) and does not depend on €.

For a system defined on a lattice we have

L(Q) x NOY, V(Q) x N(Q)

fb[T7{kn}] = FN[T7{kn}]

im —
N(Q)—oo N(Q)
To get information on surface property of the system, let us calculate

FIT (k)] =l Fo[T, {kn}] - (VQ ()ﬂ)fb[T, {kn}]

(4.11)

4.1.3 Thermodynamic limit with additional constraints

For a fluid we cannot simply take the limit V() — oo by keeping N fixed,
otherwise we will always get a infiinite system with zero density. One has to take
also the limit N () — oo such that:

N(Q)

V(Q)

p = const

In general, is not so easy to prove the existence of the limit and it depends on the
range of the particle-particle interactions.

4.1.4 Statistical mechanics and phase transitions

Since all the thermodynamic information of a system can be obtained by the
partition function, in principle, also the ones concerning the existence and nature of
the phase transition must be contained in Z (or (). On the other hand, we know
from thermodynamic that phase transitions are characterized by singularities in the
derivation of F. Also Z must display these singularities.

On the other hand, Z is a sum of exponentials

Zo = Tr (6*5%) (4.12)
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the exponentials are analytic functions everywhere (they converge), hence Zg is an-
alytic for ) finite!

The question is: where do singularities come from? It is only in the thermodynamic
limit that singularities in F' and hence points describing phase transitions can arise!

For summarizing, there is no way out of this for producing singularities. The
singularities will develop in the thermodynamic limits. For reaching singularities, we
have to reach so precision in thermodynamic that we are not able to go exactly into
the critical point. How can we relate singularities, geometrically, in the behaviour of
the system?

4.2 Critical point and correlations of fluctuations

From thermodynamics, we know that, at the critical point, some response func-
tions may diverge (see Section . Now, we show that this is a consequence of the
onset of microscopic fluctuactions that are spatially correlated over long distances.
To see this, let us compute the response of a ferromagnetic in presence of an external
magnetic field H. The Gibbs partition function of a generic magnetic system is as

equation ((3.36)):
Zaivps[Ts {kn}] = Tr(e—ﬂ(ﬂ'f((f)—HM(G))> = S e BEHIHMO(p, M)
M.E

Remark. The term (—H M) is the work done by the system against the external field
H to mantain a given magnetization M.

(M) = g;;f;)’ - ZlG H[M(e)e—wf(@)—HM(@))] (4.13)
Xr = 851\}]@ = {Zi Te [ M2 (@)e AN Z% ke [M(e)eﬁ“HfHMHZ}
(4.14)
Hence,
Xr = kBlT(<M2> — (M)?) (4.15)

The thermodynamic response function xr in statistical mechanics is related to the
variance of the magnetization.

We can relate the above expression with the correlation of the microscopic by
performing a coarse-graining of the system, where the magnetization M (C) can be
computed as an integral

M) = /dgfm(f’) (4.16)
Hence,

kpTyr — / aF s [{m(Em()) — m(@) (m(r))] (4.17)

Let us assume the translational symmetry:

. (4.18)

(m(¥)) =m homogeneous
<m(f")m(17)> = G(¥—r') two-point correlation function

Instead, let us consider the connected correlation function, i.e. the correlation function
of the fluctuations dm = m — (m):

—

<m(f~’)m(ﬁ)>c = <(m(f") - <m(f")))<m(r’) - <m(r’)>>> —GE-7)—m? (4.19)
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Given the translational invariance, one can centre the system such that its centre of
mass coincides with the origin
I_"C M = f‘b =0

N /df/dﬁ (G — £o) — m?]

The integration over r gives the volume V() of the system:

ksTxr = V(Q) / dF  (m(F)m(Fo)), (4:20)
—— —_———
response correlation function

function of the fluctuations

of the local magnetization

The equation (4.20)) is called the fluctuation-dissipation relation.
How G.(T) behaves? In general, one has

Go(F) ~ e ITl/¢ (4.21)

meaning that for || > ¢ the fluctuations are uncorrelated, where & is the correlation
length. The correlation length is related to the correlation function. In general, it is
finite but, if you approach T, it diverges. In fact, at the critical point this correlation
will expand in the whole space and reaches the size of all the system, in other words,
it goes to infinity (§ — o0). When ¢ will diverge, there will not be anymore the
exponential and the integral cannot be keeped finite.

Let g be the value of G, for |¥] < &:

keTxr < Vg€’
where there is an inequality because we are understimating the integral (Figure [4.2]).

G

§ |71
Figure 4.2: Plot of the two-point correlation function, G.

Rearranging the terms, we obtain

kgTxr <
v <

3 (4.22)

Hence, if yp diverges at the critical point it implies & — oco.
In particular, one can see that for H =0 and T' — Tci:

EL(T,H=0) ~ |t|™* (4.23)

where v, = v_ = v is the correlation length critical exponent.
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Remark. It does not derive from thermodynamic considerations.

Scaling ([4.23)) is often used as the most general definition of a critical point.
One can also show that at T'= T, (i.e. t =0)

1

GC(T)NM

(4.24)

where 7 is the correlation critical exponent.

Remark. The formula is a power law decay instead than exponential.

4.3 Finite size effects and phase transitions

Actually, the thermodynamic limit is a mathematical trick and in real systems it
is never reached. Is it then physically relevant?

If we had instruments with infinite precision each change of the physical properties
of a system would occur within a finite range, therefore we would observe a smooth
crossover instead than a singularity. In this respect, the notion of correlation length
¢ is extremely important.

To illustrate this point, let us consider the gas-liquid system in proximity of its
critical point (1" ~ T, ). If we approach T, from the gas phase, there will be fluctu-
ations of p with respect to pg, Ap = p — pg, due to the presence of denser droplets
(liquid) in the continuum gas phase. These droplets will have different diameters, but
the average size would be &, where it is the typical size of the liquid droplets. Clearly
¢ = &[T] and, in proximity of the critical point & 20 [t]7".

On the other hand, in a finite system, £ cannot diverge since is bounded above,
¢ < L, where L is the linear system size.

As T — T, where & should be larger than the system size, the behaviour of the
system should deviate from the one expected by the theory that is obtained in the
limit L — oco. How far the real system would be from the critical point ¢ = 0 where
singularities develop? Let us try to give an estimate of this deviation.

Let us consider a system of size L = 1 cm and

L= (T—T)/T.,  €~&t™"

Let us assume that the lattice distance is & = 10 A. Hence,

—1/v —-1/v
t~ (é) ~ <10LA> ~ (10'0)1/¥ (4.25)

In the next chapters, we will see that v < 1 and close to 1/2, hence:

t~ (10")72 =107

Therefore we have t ~ 10720 as a distance from Tp.
This estimate suggests that the experimental instrument that measures tempera-
ture must have a precision of 10720 to see deviations from the results obtained in the

thermodynamic limit.
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4.4 Numerical simulations and phase transitions

In this case, the size L of the simulated system is few multiples of £y and the finite-
size effects of the simulated data can strongly affect the location and the scaling laws
of the phase transition under numerical investigation. Finite size scaling analysis of
the numerical data is needed.

Cv

Figure 4.3: (T.,Cy) plot at different N.

We can find the critical point by doing Montecarlo simulation. Supposing a Mon-
tecarlo simulation of a Ising model, for which there is no an analytic solution and
compute the energy. Try to extrapolate for example the position of the peak as N
increases. If we start to see the behaviour as in Figure something is happening.
There are two approaches we can use.

The first approach is studying the system by looking for all the details. An example
could be a protein, that interact with other proteins; in this case we can look at all
the electrons (or atoms). Nevertheless, even if we thought at the simple protein that
exists, there would be a lot of degrees of freedom.

For doing a simulation, if we are interested in long time behaviour and in large scale
behaviour, details are not important. What it is important are symmetries, ranges
of interaction. Therefore, we can forget about all the details. We can introduce
the effective potentials as Van der Waals or Lenard Jones potential and studying
collective effects. This is the second approach.
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Chapter 5

Role of the models 1n statistical
mechanics

5.1 Role of the models

Which is the role of models in statistical mechanics? There are two possible
approaches:

1. The model must describe the real system in a very detailed way. The maximum
number of details and parameters to be tuned are included. The pro is the closer
to the real specific system (faithfull description). The drawback is that the
model is so complicated that no analytical solution is possible. Moreover, even
numerically, these models can be studied for very short times and small sizes.
An example is the simulation of the folding dynamics that can be performed
for few nanoseconds. On the other hand, the introduction of many details are
often not crucial if one is interested in large scale properties.

2. Try to introduce (coarse-graining approach) the most simple model that satis-
fies few essential properties of the real system such as its symmetries, dimen-
sionality, range of interactions etc. Since most of the microscopic details are
integrated, these models cannot describe the full physics of a specific system but
they can reproduce its main features. Moreover, these models can be studied
numerically and, to some extent, also analytically (exact solution).

It is the latter approach that we shall take here. Let us start by introducing
what is, perhaps, the most paradigmatic model in the statistical mechanics of phase
transition, the Ising model.

5.2 The Ising model

Suggested by Lenz to Ising for his PHD thesis (1925), it is supposed to describe
a magnetic system that undergoes a transition between a paramagnetic and a ferro-
magnetic phase. In d = 1 the model was solved exactly by Ising. Unfortunately, he
found that for T' > 0 the model does not display a phase transition.

The wrong conclusion was that this model was not able to describe a phase tran-
sition. In fact, it turns out that, for d > 1, the model does display a paramagnetic-
ferromagnetic phase transition.

Let us first discuss some general feature of the model for any dimension d.
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5.2.1 d-dimensional Ising model

For hypercubic lattice with given N(€2) sites {i};—, . n(q) and linear size L(),
we have

N(Q) =L

The microscopic degrees of freedom are the spins S;, defined at each i-esim lattice
site. Each spin can assume the values S; = +1, that means that at each site the
possible values are the spin up or down. For a lattice with N(Q2) spins, there are
2N () possible configurations.

Remark. Since we do not consider the spin as a vector, this is a model for a strongly
anysotropic ferromagnet (along a given direction).

The minimal model that can try to capture the interaction between the spin is the
following. Suppose to have also an external magnetic field H; (it values depends on
the site ¢). One can consider interactions between spins whose strength are described
by functions J;j, kijk, . . .. For instance, there is a coupling that derives from electrons
coupling

Jij = f(Iri —rj])

The physical origin is the overlap between the electronic orbitals of the neighbouring
atoms forming the Bravais lattice. Remember that a term as ), .S; is not correlated,
while we need an interaction for describing the model.

A general Hamiltonian of the model can be written as:

o({Si}) ZJ”SS ZHS > 88k + ..

ijk

Standard Ising model one keeps only the two-body interactions:

N
a({S:}) :—fZsts > H;S, (5.1)
=1

where the first term represents a two body interaction that is a quadratic term, while
the second term is a one body interaction. We have put the minus because we want
to minimize the energy, but it depends on the sign of J.

For this model, the sum over all configurations on trace is given by

T2, 2 2 =D

=41 So= Sy=+1  {S}

Our problem is to find the partition function with N sites, which depends on T and
in principle depends on the configuration given (it is fixed both for H and J!). Hence,
the canonical partition function is given by

Zo(T, {H;},{J;j}) = Tre~ Plsh (5.2)
and the corresponding free-energy,
Fo(T,{H;},{Jij}) = —kBTInZg (5.3)

The bulk limiting free energy is:

AT AHLY, () = Jim . Fo (54)
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How do we know that the above limit does exist? It must be proven. The surface
is not important in the bulk limit. Note that we are assuming that the interaction
between the spin is a short range force, it is not as the size of the system.

For this model it is possible to show that the limit exists if

> 1yl < o0 (5.5)
J#i

Remark. In general what determines the existence of the limit of these spin models
are the dimension d and the range of the spins interactions.

For example it is possible to show that, if
Jyj = Al — 5|7 (5.6)
so it is a long range interaction, the limit exists when
o>d

Remark. If the interaction is dipolar, since it decades as 1/r3, for the case d = 3 the
limit does not exists. However, it is still possible to prove the existence of the limit
for this case if one assumes that not all dipoles are fully aligned.

Assuming that the thermodynamic limit exists, we now look at some additional
rigorous results on the limiting free energy and its derivatives.

5.2.2 Mathematical properties of the Ising model with nearest neigh-
bours interactions

For simplicity, let us consider the case in which the external magnetic field is
homogeneous, i.e. H; = H, and the spin-spin interaction is only between spins that
are nearest-neighbours (n.n.) on the lattice:

Ty = J if i and' J are n.n. (5.7)
0 otherwise
Now, the model is very simple:
N(©) N(Q)
—Ho({SH=J > SiS;+HY S (5.8)
(i) i

where the notation (ij) means a double sum over i and j, with the constraint that i
and j are nearest-neighbours.
Since H is uniform, the average magnetization per spin is

. V@
(m) = N Q) ; (Si) (5.9)

where (...) means average over the chosen ensemble.

Remark. For J = 0, (5.8) is the Hamiltonian of a paramagnet. The only influence
ordering the spins is the field H. They do not interact, there are no cooperative
effects and hence no phase transition.
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N(Q)

Z<S> —Tr ZS@EHQ({S}] —Tr ZSexp BJZSS —i—ﬁHZS

it is easy to show that:

1 0Fg
where
Fo(T, J,H) = —kgTn Zy(T, J, H) (5.11)

Now, let us consider the properties of the limiting free-energy
fo= lim —Fop= lim —(—kzTlnZy) (5.12)
b_NgnooN Q_NE)IIOON (£ SR '

It is possible to prove the following properties:
1. fp <O.
2. fo(T,J, H) is a continuous function of T,J and H.

3. The right and left derivatives of f,(T,J, H) exist and are equal almost every-

where.
4. The molar entropy s = —% > 0 almost everywhere.
D. afb is a monotonic non increasing function of 7. That is (89272021’ < 0. This implies
that . o
b
en=T(22) =_7([Z22) >
" <8T>H <8T2>H -
6. % is a monotonic non increasing function of H. That is
2
P <
0H? —

This implies that
oM 02 fy
=) == >
w (), = (o), =

Remark. The above properties have been postulated in thermodynamics, but here
they have been rigorously proved for the Ising model using statistical mechanics.

Proof of property (4). Almost everywhere, we have to prove that

_ O
S = BiT_O

Let us consider a finite system

OFq 1 Tr(Hge Fe)
——— = kpln(Tre #®) 4 kT
5T pln(Tre )+ kB FpT2  Tr(c—7%m)
Tr(BHqe PHa
= kg |InZg + Ga )| = —kpT Tr(pq In pg)
ZQ todo
where
P =

Z0
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is the probability distribution.
Since pg < 1 it implies In pg < 0 and so — Tr(pq) In pq is positive. Then, let us

divide by N(€2) and take the thermodynamic limit:
. 1 0Fq . 1
N = — — = > >
A}gnoo N BT kBT]\}linoo N Tr(polnpg)=Ts>0 = s>0
Sa
|

All the other properties listed before (except (1)) are consequences of the convezity
property of fp.
Theorem 1 !

fo(T, J, H) is an upper convex (i.e. concave) function of H.

Proof. The proof is based on the Hélder inequality for two sequences {gx}, {hi}:

Definition 5: Holder inequality

Given {gx}, {hx} with gg, hx > 0,Vk and two non negative real numbers aq, ag
such that a1 + ag = 1, the following inequality holds

> (gk)™ (h)™ < (ng) (Z hk) (5.13)
k k

k

Now, consider the partition function:

Zo(H) = Tr | exp (,BH Z Si> exp 5JZ SiSj || =Tr
i (i5)
G(S)

exp (51{ Z si> G(S)

It implies that

Zo(Hyioq + Hyag) = Tr (exp{ﬁalHl Z S; + BasHy Z Si}G(S)>

On the other hand, since a1 + ag = 1:

G(S) = G(S)™G(S)*

Zo(Hyay + Haan) = Tr [(eﬁfh S Sig(9)) o (PH2 T SZ’G(S))O‘Z’]
If we now apply the Holder inequality we get
Zo(Hia1 + Haas) < (Tr(eﬁHl b SiG(S)>al> (Tr (e% b SiG(S))OQ)
— Zo(H1)™ Za(Hs)*

If we now take the logs and multiply by —kgT both sides, we have
. 1 .o e
— > = _ _“
]\}E\noo NkBTanQ(Hlal + HQOJQ) = ]\}E\noo NkBTanQ(Hl) ]\}gnoo NkBTIIIZQ(HQ)
It implies
fo(Hiar + Hyaz) > oy fo(Hy) + az fo(H2)

That is a concave function of H [1 [ |

LA real-valued function f on an interval is said to be concave if, for any = and y in the interval
and for any a € [0,1], f(1 —a)z+ay) > (1 — a)f(z) + af(y).
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5.2.3 Ising model and Z? symmetry.

The symmetry of the system in sense of the Hamiltonian is: we can invert the value
of the S and the Hamiltonian does not change. It is valid when H = 0, otherwise it
is not true. Let us see the Z2 symmetry and the following interesting relation:

Lemma 2 |

V function ® of the configuration {S;}, the following relation holds:

Yo e{sh= > e({-s)) (5.14)

{Si:jil} {SiZil}

this is true for all function of the spin.

Now, we consider the Hamiltonian of the Ising model:

N(Q) N(Q)
~Ho=J )Y SiS;+HY S
(i) i

Clearly,
H(H, J,{Si}) = Ha(—H, J,{=5i}) (5.15)
This is a spontaneous broken symmetry.
Hence,
Zo(—H,J,T)= > exp[-BHa(—H,J,{S:})] = > exp[-BHa(—H, J,{-Si})]
{S;=+1} 1% {S;=+1}
= > exp[-pHa(H, J,{S:})] = Zo(H, J,T)
(.19 {S;==%1}
(5.16)
Taking —kpT In, we got:
Fo(T,J,H) = Fo(T,J,—H) (5.17)

If we take the thermodynamic limit limpy_s o %, we have
= fo(T,J,H) = fo(T, J,—H) (5.18)

and it means that the free energy density is an even function of H!

Remark. From the finite-size relation , one can show that a finite-size Ising

model does not display a transition to a ferromagnetic phase (for all dimension d).

Indeed,

OF(H)  O0F(-H) OF(—H)
OH - 9(H) — 9(—H)

N(QM(H) = — =-NQM(-H) (5.19)
Therefore:
M(H)=-M(-H), VYH (5.20)

If H =0, we have M(0) = —M(0), that is valid if and only if M (0) = 0!

The magnetization of a finite system is, at H = 0, always zero. This is simply
consequence of the symmetry argument shown above. We have not a phase transition.

Hence, it is only in the thermodynamic limit, where the symmetry is spontaneously
broken, that the model displays a transition.

For resuming, although the Hamiltonian is invariant with respect to the transfor-
mation H — —H,{S;} — {—S;}, the thermodynamic state is not. This situation is
called spontaneous symmetry breaking.
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5.3 Lattice gas model

Even if we had not seen any transition, the Ising model is interesting because we
can use this model to solve other problems that seems different but are not. In fact,
the importance of the Ising model relies also on the fact that it can be mapped into
other discrete systems. Despite its simplicity, the Ising model is widely applicable
because it describes any interacting two-state system. One of these applications is
the lattice gas model, where a gas is put in a lattice.

What is a lattice gas model in more details? The archetypal lattice gas is a model
where each lattice site can either be occupied by an atom or vacant. Let us consider a
d-dimensional lattice with coordination number z and lattice spacing a, divided into
cells, as in Figure . Let us suppose that each cell is either empty or occupied by
a single particle (this is more true if a ~ A).

® O O
® O

Ol e
® O

Figure 5.1: d-dimensional lattice with lattice spacing a.

O
O
O

ORNORK
e O @ ©

The n; is the occupation of the i-esim cell and it is:

0 if empty
n; =
1 if occupied

We have:
N.
No=> n (5.21)
=1

where N, is the number of the lattice cells. In particular, N. > Ngq.
The Hamiltonian of the model is

N, N,
. . 1 .
j‘CQ = Z Ul(z)ni + 5 Z Ug(l,j)nﬂlj + O(nm]nk) (5.22)
=1 iJ
where Uy is for instance an external field, while Us is a many body interaction.
Since we want to work in the gran-canonical ensemble,

Ne

1 .
Ho — uNo = > _(Uxti i+ g > Us(i, j)ning + ...
i=1 ij

and we will put U; = 0 for convenience.
A formal relation with the Ising model can be obtained by choosing

1
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The one body term becomes:
SO0 = w3+ 8) = 5 SO0 —p) + 3 ST -0 (524)

while the two bodies term is equal to:
1. & 1 1
5 Z Ua (i, 5) [ (1+S5)(1+ Sj)} = g2 Z UQ(i7j)5i+§ Z U2(i7j)5i5j+§ Z Us(i, )
ij ij i
Let us consider only short-range interactions, i.e.

. U i,j are n.n.
Us(i,5) =
2(0:7) { 0  otherwise

It implies

c

U.
ZUN][ (1+8)(1 +Sj)} fo225+ 2255+ —UszN. (5.25)
(i7)

Remark. Note that the > ,. becomes 23 _;, where z is the coordination number of
neighbours.

Remember that, for simplicity, we put U; = 0. We can rewrite:

Ne

Ho—puNo=Eg—HY Si—J> SS; (5.26)

i=1 (i)

where
1 z
EO = *QHNC + gUQNC (527&)
O (5.27b)
PR '

_J= % (5.27¢)

and remember that z is the coordination number of neighbours. J is a nearest
neighbour interaction which favours neighbouring sites being occupied.
The last equation implies that, in the gran canonical ensemble, we have:

Z1G = Trpny (e PHammla)y = o=Flozy 0 (H, J, ) (5.28)

We have seen that the Ising model is something more general than the magnetization
transition. In the next section, we show how to pass from the partition Z of a fluid,
in the continuum, to the Zr g of the lattice gas model.

5.4 Fluid system in a region (2

We can consider the system with periodic boundary condition, or within a box,
or confined by an external one-body potential.
The Hamiltonian for N particles in d-dimension is

N

9{9—2[2 + Uy (7 ] ZU2 +—ZU3 ¥, 15, 11, (5.29)

=1 1753 i#jF#k
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In the gran-canonical ensemble, we have:

Zo = Tr(e™Pa=i)) Z = / H d I;;U(i T (cPta=n)) (5.30)

and the gran-canonical potential is
WQ(T,M, Ul,UQ,...) = —k}BTanQ (531)

Remark. Even if wq(...) contains an infinite sum, it is not singular if € is finite!

Indeed, if U, is an hard-core repulsion, each particle has a finite volume and,
within a finite 2, only N4, particles can fit in

Nmaz

:>NZOZ

In the thermodynamic limit, it corresponds to

. waQ
T U ,Ug,...) = 1
wy(T, p, Ur, Us, .. ) am ®
with the constraint
p= lim ﬂ = const
V,N—oo V()
Remember also that
dwp(T,pu) = —odT — pdp = —P (5.32)
Now
Zv=3 1 H{/ A'B e m}cm ) (5.33)
N=0 i=1 -
where
N —
Qx(T) = [ [[asie @ (5.34)
=1

o hd ~ AT
where 1
ANT) = ——— 5.35
(T) 2v/mmkgT ( )
Hence,
00 1 6’8/’L N
Zq = — | .
Q szjo N <Ad(T)) QN (5.36)

5.4.1 From the continuous to the lattice gas model

Let us divide € in discrete cells of size a. If a is approximate a repulsive range
between particles, we have that the probability that there is more than one particle
sits in a cell is < 1. The potentials of the continuous model depend on {rij}.

Consider the occupation numbers n, = n4/(rj). We have:

N
S ne = N = /Qddfz 50 — F) = /Qddf'p(f’) (5.37)
« i=1
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where
plE) =D _d(ri — 1) (5.38)

Moreover,

PAOEDS /Q AR U, (F)S(5 — F) = /Q AE U, (£)p(E) (5.39)

We have U({ri}) = U({na}) :

Qn o / Hddrl =
{na}t
Indeed, for each configuration specified by the set {n,} there are N! possible configu-

rations of {rj}. This is because the particles can exchange position between occupied
cells. Hence, more precisely,

/

N
Qx o [[a%s =M@ Y
=1

{n.=0,1}

Remark. The symbol Z, means that the sum has the constraint that the total number
of particles is fixed to N, that is ) n, = N.

Therefore,
Qn x N(a Z e AUUna}) (5.40)
{na}
and we can rewrite the equation ([5.36) as
N e \" = a0 VT = e "
-2 wlam) @S| ) | 2 o0
N=0 N=0 {na}

where Z/ = > _{n,} With the constraint >, no = N.

Remark. In general it is difficult to perform sum with constraints. Fortunately, we
are considering the gran-canonical ensemble. Indeed, we can write

Zz.fnoc - Z fnoc Z f(na)"'+ Z f(noc):Zf(na)
N=0{naq} {na} {na} {na} {na}
> o Ma=0 > Na=1 Do Ma=00

with no restriction.

Remark. In the final sum all the 2V possible microscopic states are inclued (consid-
ering U; = 0)
Eventually, we haveﬂ

C Z exp|—f <— — —log — > Zna + BU, Z Nnang + . (5.42)
{na}

= Zg = Tre P0-iN) — 7, (1) (5.43)

where a
A= 1LG = fiphys + dkpT log = (5.44)

2pr = o0t o eﬂ”(%)d = ePH exp(dln(%))



Chapter 6

Some exactly solvable models of
phase transitions

6.1 1-dim Ising model

In this section, we arrive at the exact solution of the one dimensional Ising model.
There are two techniques for solving the model:

1. the recursive method;

2. the transfer matrix method.

6.1.1 Recursive method

Case with H = 0 and free boundary conditions

1 I PP
N

Figure 6.1: One dimensional Bravais Lattice.

Let us consider a Bravais lattice in the one dimensional case, that is just a one
dimensional lattice, as in Figure
The canonical partition function of such a system is:

KNl

= > E: }: exp BJ §:£%$+1 (6.1)

S1==£1 S>=

The two body interaction is the sum in all the neighbours that in that case are (i —1)
and (i + 1), but we have only to consider the one after, because the one behind is yet
taken by the behind site.

We want to solve this partition function. If we consider free boundary condition,
the N does not have a N-+1, almost for the moment. Let us define

K=p3J, h=pBH (6.2)

Making explicit the sum in the exponential:

Z Z Z eK(SlserSzSng---JrSN,lSN)

=41 So= Sy==%1

61
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What does happen if we just add another spin at the end Sy41 7 Which is the
partition function with that new spin? We obtain:

ZN+1(K): Z Z Z Z eK(Sls2+SQS3+"'+SN—ISN) eKSNSNJrl
Sy==%1

SN41==%1 S1=%1 S>==+1

On the other hand, this sum is just involving this term:

Z eKONSNt1 — KON | o= KSN — 9 cosh(K Sy) = 2 cosh(K)
Sny1==%1

where the last equivalence derive from the fact that cosh is an even function and it
does not depend on +1. Therefore,

Zn+1(K) = (2cosh(K))Zn(K) and Zn(K) = (2cosh(K))Zy-1(K)
By performing a backward iteration,
Zn(K) = Zy(2cosh(K))N 1
Since Z1 = ) g 1, 1 =2, we have
Zn(T) = 2(2cosh(K))N~! (6.3)
The free energy is
Fn(K)=—kpTlnZn(K) = —kpTIn2 — kgT (N — 1) In (2 cosh(K)) (6.4)

and taking the thermodynamic limit it becomes

fo(T) = Jim %FN(K) = —kgTIn (2 cosh(kBJT>) (6.5)

As one can see (Figure |6.2) f3(T") is an analytic function of 7| so we have no phase
transition at T # 0.

-2x10%+
-4 x10%+
-6x10%+

-8x10% -

-1x10% = -
0 20 40 60 80 100

T

Figure 6.2: Free energy function in thermodynamic limit for the one dimensional Ising
model, for kg = 1.38 x 1023, J = 1.

Now, let us compute the magnetization (the average over the spin (S5;)) for a
generic site j (assume again that S; = +1). This can be done in many ways. Here,
we choose one that consider another way to compute Z for the 1 — dim Ising model.
This method can be useful for other calculations. It is based on the following identity:

exp[KS;Sit1] = cosh(K)+S;S;+1sinh(K) = cosh(K)[1+5;S;+1 tanh(K)] (6.6)

(proof)
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Proof of identity . Remind that

X —X X —X
e’ +e X e’ —e
coshsz, sinhg = ———

Hence,

e®” = coshz +sinhz

In our case,
ekSiSit1 — cosh(K S;S;+1) + sinh(KS;S;4+1) = cosh K + S;S;4+1 sinh K

where the last step was obtained considering that cosh is an even function, while sinh
is an odd one. |

Using identity , we obtain
N-1 N-1
= Z exp [K Z SiSiH] [cosh(K)(1 + S;S;+1 tanh(K))]
{s} =1 {s} =1
by rearranging,
N—1
Zn(K) = (cosh )N T] (1 + ;811 tanh K) (6.7)

{8} i=1

If we now expand the products, we get terms of the following form:

S" (tanh K)M Sy, iy, SiSiays -+ Sigg Siggy =0 (6.8)
Si.=%1
e=1,....M

where 471 ..., is a set of M sites of the lattice.

Remark. The terms above, when summed over {S} are zero, except the term with
M = 0 that is equal to 1 and, when summed over {S}, gives 2V.

Therefore:
Zn(K) = 2V (cosh K)V !

that coincides with the result obtained before.
If we now compute the average (S;), the procedure is similar but now there will
be terms as with the addiction of an S;:

(tanh K)M S, i, .1 86y Sin.y - - SinsSingar S (6.9)

that, when one sums over {S} are all zero, included the term with M = 0 that now
is equal to S; and ) Sj=t1 = 0. Hence, we have the result

(Sj)=0 Vj (6.10)

The magnetization is always zero Vj # oo!
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Figure 6.3: One dimensional lattice ring: Ising model with periodic boundary conditions.

Case with H # 0 and periodic boundary conditions

Consider the spins sitting on a 1D lattice ring as in Figure The periodic
boundary conditions are:
Sny1 =51

We have:
— BHa({S}) KZSSZHJthS (6.11)

where
K=p3J, h=pH

The 1 — dim Ising model with this setup can be solved in several ways. Here we will
use the method of the transfer matrix. This is a quite general technique that we will

Lecture 7. discuss within the Ising model.

Wednesday 30"

October, 2019. 6.1.2 Transfer Matrix method

Compiled:

Wednesday 5" Given the Hamiltonian 1 Hwe can write the corresponding partition function

February, 2020. in the following symmetric form:

Z Z Z {Kslsﬁ swsﬂ [6KS253+%(S2+53)] [eKstl+g(sN+sl)]
=41 So= Sn==1

We want to write the partition function in a form similarly to > j M;; Pjj.. Note that,
in the previous form Zy can be written as a product of matrices

Z Z Hexp [KS Siv1+ h(s - SZH)]
==+1

Z Z (S1 T[S2) (S2| T|93) ... (Sn|T[51)
=41 N=
where T is a 2 x 2 matrix defined as

S

(S| T|S") =exp [KSS’ + g(s + S’)] (6.13)

Remark. Note that the labels of the matrix corresponds to the values of S;. Hence,
its dimension depends on the number of possible values a spin S; can assume. It
can also depends on how many spins are involved in the interacting terms that are
present in the Hamiltonian (kLL Z SiSi+1Si+QSrL'+3).

!The choice of boundary conditions becomes irrelevant in the thermodynamic limit, N — co.
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For the Ising model, we have S; = +1 and nearest neighbour interaction implies
that we have two values and that T is a 2 X 2 matrix whose components are

(+1| T |+1) = exp[K + h] (6.14a)
(+1]T|=1) = (=1 T |+1) = exp|—K] (6.14D)
(—=1|T|—-1) = exp[K — h] (6.14c)
The explicit representation is
eK-i—h e~ K
T= (eK eKh> (6.15)

Let us introduce some useful notations and relations using the bra-ket formalism:

=), )= ()

<S§+)‘ — (1%,0); <S§*)‘ — (0, 1%); (6.16b)

The identity relation is:

DN/ g 10
521|&> (51 = 5N+ [sO (5] =1 - <0 1) o1

By using the identity property, we can rewrite the partition function as
Zy(K h) = > oo Y (S1T|S2) (Sol T1S5) ... [Si) (Sil T[Sisa) ...
Si=+1  Sy=+1

- Z (S| TV |S1) = Te[TV]
Si==+1

(6.18)

this is exactly the trace of the matrix, which is most usefully expressed in terms of the
eigenvalues. Being T symmetric, we can diagonalize it by an unitary transformation
as

Tp=PlTP (6.19)
with PP~1 = 1. Hence,
Tr[TV] = Tr|TTT...T| = Tt[PP~'TPP~!'TP...P~'TPP ]
N
= Tr[PTYP™!] = Te[TYP'P]
ciclyc property
of the trace
= Tr[Tp)]
where N
(A0 N_ (A0
Tp = ( 0 A> = TN = < 0 AJ_\,) (6.20)

with Ay are the eigenvalues with Ay > A_.

Remark. P is the similitude matrix whose columns are given by the eigenvectors of
At
We finally have:

Zn (K, h) = Te[TR] = AN + Y (6.21)

Remark. As mentioned previously the dimension of the transfer matrix T and hence
the number of eigenvalues {A} depend both on the possible values of S; and on the
number of sites involved in terms of the Hamiltonian (range of interaction).
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Example 15

For example, consider the Ising (S; = +1) with n. n. and next n. n. interactions.
The Hamiltonian is:

H=FK Z SiSit1 + ka2 Z SiSi+15i+25i+3

Because of the second term, now there are 2* = 16 possible configurations that
can be described by using a 4 x 4 transfer matrix that we can write formally as

(SiSiy1| T |Sir2S5i43)

Example 16

For example, suppose S; = +1,0, —1, therefore the spin can assume three dif-
ferent values. This is a deluted Ising model.

Now, let us consider the transfer matrix formalism in a more general setting.

6.2 General transfer matrix method

The aim of this section is to describe how transfer matrices can be used to solve
classical spin models. The idea is to write down the partition function in terms of
a matrix, the transfer matrix. The thermodynamic properties of the model are then
wholly described by the eigenspectrum of the matrix. In particular, the free energy
per spin in the thermodynamic limit depends only on the largest eigenvalue and the
correlation length only on the two largest eigenvalues through simple formulae.

Let T be a square matrix (n 4 2) x (n+ 2) that, for example, it is built if the spin
variables may assume (n+ 2) possible values. The k-esim value can be defined by the
bra-ket notation where the two vectors are given by a sequence of "0" and a single
"1" at the k-esim position.

Example 17

If k = 3 and there are (n + 2) possible values:

o O

<S§3)‘ — (0,0,1%,0,...,0)

n
©
\/
I
—

[« BRI

these are the bra-ket at the k-esim position.

Similarly to the 2 x 2 Ising case, it is easy to show the identity property

SIS (S =1, 1€ (n+2)x(n+2) (6.22)
S;

where now the sum is over (n + 2) values.

Let us consider the diagonal matriz S;, where the elements along the diagonal are
all the (n + 2) possible values of the i-esim spin (or of some of their combination if
longer interaction terms are considered)

Si=>_[8:)Si(Sil (6.23)
Si
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Example 18

Ising model n +2 =2

1 0 s o 0 0 s g
(1) (1 @) (0 1) — _
(o) 50+ () s@019= (% §)+ (0 s)= (o st)

Ising: S = 41,5@ = 1.

Remark. Note that in this case the matrix S; is equal to the Pauli matrix o, .

Remark. By construction (S;| and |S;) are the eigenvectors related to the eigenvalues
S; =8 s@ . §nt2)
Similarly. let (¢;| and |t;) be the eigenvectors related to the (n + 2) eigenvalues of
the transfer matrix T: {A;, A, A\1,...,  Ap} , with Ap > A > A > - > A,
Clearly,

n+2
T=PTpP ' = [t:) A (ti (6.24)
i=1
Indeed
n+2 n+2
Tltg) =D lta) X (tilty) = D 1t Xidij = Ay [t;) (6.25)
i=1 i=1
Given the set of A described above, the N particle partition function is given by
Zy =M+ A7+ AN (6.26)
i=1

6.2.1 The free energy
Now, let us consider the free energy
Fy = —kpTlog Zy
In particular, we are interested in the limit of the bulk free energy. Looking at the

thermodynamic limit N — oo we have

1 1
fo= lim —Fy= lim N(—kBT)log

N—oo N—oo

AV 4+ 0N+ ZA{V]
=1

by factorizing A4, we obtain

. —kpT N AW S Y
fo= Jim —2=log [A+<1+w+; N~

Since Ap > A_ > A > ...\,
A\ Y AN
<> 282, <> 200 i
At

The result is

fb = —kpT log )\+ (6.27)
The limiting bulk free-energy depends only on the largest eigenvalue of the transfer
matriz T! This is important since sometimes it is much simpler to compute only the

largest eigenvalue than the whole spectrum of T. Also an important theorem about
A+ exists.
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Theorem 2: Perron-Frobenius !

Let A be an x n matrix. If A is finite (n < oo) and A;; > 0,V1, 7, (Aij = Ai;(X)),
therefore its largest eigenvalue Ay has the following properties:

1. )\+ € RT
2. Ay # from {\;}i=1,.. n—1. It means there is no degeneracy.

3. A4 is a analytic function of the parameters of A.

Remark. Since in our case A <+ T, A4 is related to f;, from the theorem. This means
that f3 is an analytic function!

If the conditions of the Perron-Frobenius theorem are satisfied by T, the model
described by T cannot display a phase transition!

Remark. This is true for T > 0 since for 7" = 0 some T;; can be either 0 or oo violating
the hypothesis of the theorem.

Remark. If T has infinite dimension (see d > 1) the hypothesis of the theorem are
not valid anymore and f; can be non-analytic.
6.2.2 The correlation function

A second important quantity which is simply related to the eigenvalues of the
transfer matrix is the correlation length. To calculate this, we need the spin-spin
correlation function which serves as an example of how to obtain averages of products
of spins using transfer matrices.

Let us consider the two point correlation between two spins at distance R to
another. The fluctuation with respect to the average is:

Tr = (S1SR) — (S1) (SR) (6.28)

Since
I'r ~ exp[-R/{]
R—o0

we can define the correlation length £ as
) 1
¢! = lim |—=log|(S1Sr) — (S1) (SR)| (6.29)
R—o0 R

Now, let us compute the terms (S1Sg)y and (S1)y (Sr) N

Term (S1Sr) N
From the definition of average we obtain
1
(S1SR)y = —— > 818k exp[—BHN] (6.30)
Vs

Remark. The subscript N denotes that we are again considering a ring of N spins.
Zy is known from equation ((6.26)).

Writing this expression by using the transfer matrix formalism, one obtains

1
(S15R) Ny = 7 ZSl (S11T|S2) ... (Sr=1|T|Sr) Sk (SR| T |SR+1) ... (SN| T |S1)
{s}
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Summing over the free spins,

1
($15r)y = 7~ > 81 (S TR [SR) Sk (Sa| TN |Sy) (6.31)
51,SR

On the other hand, since
n+2

T=> [t (til
=1
we have
n+2

TR = ") AR () (6.32a)
=1

n—+2
TN =N ) AN (6.32D)
i=1

Hence,

n—+2

(Su| TR SR) = > (Sulta) A" (t:] Sr) (6.33a)
=1
n-—+2

(SrITN=FHL|S1) =3 (Srlty) A" (t]51) (6.33b)
j=1

and plugging these expressions in (6.31)) one gets

n+2 n+2
D SiSre” PN = N " 51y (Silta) A (tilSr) Sk D (Sklty) AF T (t5150)
{s} S1Sp  i=1 j=1

Since the term (t;|S1) is a scalar, it can be moved at the beginning of the product.
Remembering the notations

S1=> [5)5 (S (6.34a)
S1
Sk =Y_|Sr) Sr (Sl (6.34Db)
Sgr
one gets
> SiSre” N =ty Su fta) AT (1] Srlty) AN (6.35)
{s} ij
Lecture 8.
Since Zk )\,iV = Zy for k=+4,—,1,...,n, we have Wednesday 6th
November, 2019.
>3 (1 Sultay A (ti] Sg|ty) AN Compiled:
(S1SR) Ny = S AN Wednesday 5"
=1"k

February, 2020.
If we now multiply and divide by A, we get

> (1S [ty N/ X)) (] Srtz) (A /A )N R
22:1 ()\k/)‘Jr)N

Remark. In the thermodynamic limit N — oo, only the terms with j = 4+ and k = +
will survive in the sum. Remind that R is fixed.

<SlSR>N =
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R—1
(5155) = Jim_(S158) v ; (3) tlsilu tlsala)
Rembember that Ay > A_ > X\ > - > \y:

A\ \ A1
(515m) = {14181 64 (4] Srlte) + 3 (35) tealsul (wlseles)
ity N

Since one can prove

Jm (Sp)y = (E|Sifte) . lim (Sr)y = (t+|Srt+) (6.36)
we obtain
R—1
(S1SR) = (S1) (Sg) +Z( ) (t+|S1|t:) (] Sk |t4) (6.37)
£+

Example 19: Show relation ([6.36)
Let us prove (6.36)) by a method analogous to that followed above.

s, N:%Zslefﬁf}fw _ Zsl (S| TV |S1) = Z&Z (Sult) AN (t;]S1)

{s}

L N (4. N Zi /AN (til S |t)
- Z ZAZ il S ) Y1 AR/ AN

Taking the limit N — oc:

(S1) = Jim (S1)y = (t4]S1 |t4)

The correlation function follows immediately from (6.37)),

Te= (5180 - (5050 =3 (1) GlSile) @lsalts) (639
iy N
Remark. I'r depends only on the eigenvalues and eigenvectors of the transfer matrix

T and by the values of the spins S7 and Sg.

A much simpler formula is obtained for the correlation length (6.29). Taking the
limit R — oo the ratio (A_/A;) dominates the sum and hence

et = Jim {2t os(518) — (51) (S}
~ Jim {—Rl_ log [(L)R RIS TRES |t+>] }
——tog | (57| - i, o (el eI e
e

The important result is

e = _log <i+> (6.39)

It means that the correlation length does depend only on the ratio between the two
largest eigenvalues of the transfer matriz T.
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6.2.3 Results for the 1-dim Ising model

Let us now return to the example of the nearest neighbour Ising model in a mag-
netic field, to obtain explicit results for the bulk free energy f3, the correlation function
I' and the correlation length &.

Recall that the transfer matrix of such a system is given by

_ (exp(K +h) exp(—K)
= < exp(—K)  exp(K — h))

Now, let us calculate the eigenvalues:
IT— M| = (5T — N (eE -\ —e 2K =0

The two solutions are

At = e cosh(h) + \/€2K sinh?(h) 4 e—2K (6.40)

The free energy

The free energy is

—kpT
f,= lim Gl

N—o0

1 A\ Y
_ : - N A=
-t S (1 ()

= —kpTlog A;

log ZN(K, h)

and inserting the explicit expression of A, for the Ising model, we get

fo = —kpTlog (eK cosh h + \/€2K sinh?(h) + e_QK)
(6.41)

= —KkgT — kgTlog (cosh(h) + \/sinh2(h) + 6_4K>

Remark. Remember that K = 8J,h = H.

Exercise 2 !

Check that if h = 0 we get back the expression found previously with the
iterative method. What is the importance of boundary conditions?

Solution. If h = 0, we obtain

fo=—KkpT — kBTlog<1 -+ 621K) = —kBT(log K 5 lOg(l -+ e—ZK))

K K
= —k:BTlog(eK + e_K) = —kgT log <2€+2€>

= —kpTlog(2cosh K) = —kpT log| 2 cosh T
kT

The choice of boundary conditions becomes irrelevant in the thermodynamic
limit, N — oc.

Let us now consider the limits 7" — 0 and T — oo by keeping H fixed and J fixed.
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e Case: T -5 0= K — 00,h — .
e 4K Kio()
Vsinh? h "2 sinh(h)

We have
h

2
cosh h +sinh A ~ % ~ el

and
h—o0

fER® _KkpT — kgTloge" ~ —J —H const (6.43)
Therefore, as T — 0T, f goes to a constant that depends on J and H.

e Case: T'— 0o = K — 0,h — 0. In this case we suppose also that H and J
(fixed) are also finite.

—4K 1

Vsinh?h + e4K ~ V1

Since cosh h h30 1:

fB~—KkgT — kgTlog (1 + 1) ~—J—kgTIn2 (6.45)

Therefore, as T'— oo, the free energy goes linearly to zero, as in Figure [6.4]

)

T

Figure 6.4: Plot of the free energy f;, in function of the temperature 7. For T" — 0, the
free energy becomes constant, while for 7' — oo it goes linearly to zero.

The magnetization

This can be obtained by differentiating the negative of the free energy with respect
to the magnetic field H (or by using equation (6.36])):

ofy 1 dfy, 0

9% _ > 9 _ 9 2 4K
=37 T Oh — oh [log (Cosh(h) + 4/sinh“(h) +e ﬂ

The result is

sinh h + sinh h cosh h

Vi sinh? h4e—4K B sinh h (6 46)
coshh + /sinh? h + =45 \/sinh? h + e—4K '

m =
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e Case: T >0 fixed, H—> 0= h — 0.

sinhh ~ h ~ 0,
coshh ~ 1

In zero field h — 0, we have m — 0 for all T > 0. It means that there is no
spontaneous magnetization!

The magnetic susceptibility

_Om 1 Om
X =9H ~ kpT 0h
If we consider the case h < 1, it is convenient first expand the (6.46]) for h — 0 and

take the derivative to get xr.
Since sinh(h) ~ h + h? and cosh(h) ~ 1+ h?, we have

(6.48)

het h(1+ e*K)
m ~ ——
14 e2K

If we now derive with respect to h

_ L dmagi 1 (14%)
" kgT 0h  kpT (1+ e2K)

XT

e Case: T wo00o= K — 0.

The Curie’s Law for paramagnetic systems is:

1

o~ 6.49
XT (6.49)

e Case: T - 0= K — 0.
—2K

The Curie’s Law for paramagnetic systems is:

1 1
XT ~ — 2K ~ 762J/kBT (650)

kg kT

The correlation length

A hh — /sinh? h 4 e~4K
1= log <> —low | €8 sinh“ h + e (6.51)
At cosh h + \/sinh? h + e—4K
For h = 0, we have coshh — 1,sinh h — 0:
1—e 2K 1
-1
=—log | ———=| = -1
$ ©8 |:1+6_2K:| ©8 [cothK]
Therefore: .
for h =0 (6.52)

&= log (coth K)’
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e Case: T - 0= K — 0.

eK + e K K—o0

coth K = KoK ~ 142728 4 Kooy
It implies
¢ K3>1 1 N g
In (1 + 2e—2K) 2
Hence,
1
¢ TR0 ZeJ/ksT (6.53)

2
It diverges exponentially £ — co as T' — 0.

e Case: T woc0o= K — 0.

Kt K kool + K+ 8 +1-K+18 2428 142

cothK:eK_e—Kfl_i_K_’_KTz_l_i_K_KTQ K I
¢! = log (coth K) “<" ln% +1In (14 K?) ~ +o0
Therefore gK_—>>0 .
More precisely,
Y (1/K) —1—11n 1+ K2) i _ﬁ (6.54)

6.3 Classical Heisenberg model for d=1

Now, let us suppose to study something different from the Ising model. Indeed,
from a physicist’s point of view the Ising model is highly simplified, the obvious
objection being that the magnetic moment of a molecule is a vector pointing in any
direction, not just up or down. One can build this property, obtaining the classical
Heisenber model. We do not anymore assume spin that can assume values as -1 or
+1, but spin that can assume a continuous value. Unfortunately, this model has not
been solved in even two dimensions [8].

Let us take a d = 1 dimensional lattice. In the classical Heisenberg model, the
S;

= ~ 2
spins are unit length vectors S;, i.e. S; € R3, = 1 (continuous values on the unit

sphere). We have
Si = (57,57, 57)

with periodic boundary condition
Sn+1 =S

Assuming H = 0, the model is defined through the following Hamiltonian:
N
—BH{SH =KD S;-Sis1 (+>_h-8Sy) (6.55)
i=1 i

This model satisfies O(3) symmetry. In the transfer matrix formalism:

Zn(K) =3 e = 3 K ThiSiSi — my(TV) (6.56)
8} 8}



6.3. Classical Heisenberg model for d=1

75

where

s
T= Z It:) A (L]

T

§z‘+1> = 6K§"'§"+1
Similarly to the Ising case

and
Tp =P ITP

The problem is computing the eigenvalues \; of T
Formally, we should find

exp[Kgl-gg] - <§1’T’§2> = 3 )\i<§1

1€eigenvalues

ti> <ti S > = ZAifi(gl)f*(§2)

Remark. We start by noticing that the term e S182 g similar to the plane wave e’
that in scattering problems is usually expanded in spherical coordinates. Plane wave
can be expanded as a sum of spherical harmonics as

00 l
eI = ar >N (1) i(gr) Vi, (@) Yim (F)
=0 m=—

where

i ! T )
jilgr) = —(2) /0 sin(0)e'7 <) P, (cos(0)) Ao

are the spherical Bessel functions, while the Pj(cos(f)) are the Legendre polynomial
of order .

From a formal comparison we have

- . iq-r=igr
Sl <~ Sl, — — — — (657)
KSi-So=K|S1||S2| = K
multiplying by (—i) we can write
qr = —'LK‘ngSQ‘ = —iK (6.58)
In our case, we have § =S¢, = S,. Hence,
KS1§s _ 4772 Z K)Yp (S1)Yim(S2) = Y _Nifi(S1)f*(S2)  (6.59)
=0 m=-1 %

where

i = A (K) = 47 (i) 5y (—iK) (6.60)
Remark. Note that \; does not depend on m!
If [ = 0, the largest eigenvalue is:

in K
Ay = Mo(K) = drjo(—iK) = 4775“;(
and

h K inh K
P— )\1(K) = 47T’L]1(—’LK) =47 COS[{ _ SH}(Q
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Exercise 3 !

Given the largest eigenvalue A,

sin K

)\+:47T

find the bulk free energy density of the model and discuss its behaviour in the
limits of low (7" — 0) and high (7" — oo) temperatures.

Solution. The bulk free energy is

in K
fo = —kpTlog \; = —kpT log (4775”;( )

Remind that K = #J and consider the limits

e Case: T - 0= K — 0.

4 in K o J 1 J
fo= —?log (47rsm > B3 ——log <) = —log (K)

K K K K
Hence,
Jo K220
e Case: T 00= K — 0.
sin K "< K

= f, = —kgTlog <47r§> = —kpT log(4m)

In this case the free energy fj goes linearly with respect to the temperature.

How can we violate the hypothesis of the Perron-Frobenius theorem hoping to
find a phase transition also in a d = 1 model? One of the hypothesis of the Perron-
Frobenius theorem is the one in which A;; > 0 for all 7, j. Hence, one possibility is to
build a model in which its transfer matrix has same A;; that are equal to zero also
for T'# 0.

6.4 Zipper model

The Zipper model is an unusually simple and interesting member of the class of
one dimensional systems which exhibit a phase transition. It is a model introduced by
Kittel 9] to describe oligomers undergoing denaturation transition. Simplest model
of DNA thermal denaturation transition (no bubbles). Better model for the denatu-
ration of short oligomers.

The hypothesis are: the binding energy between two bases located at the end of
the molecule is smaller than the one for pairs away from the ends. The unbinding
starts and develops from the ends as a zipper.

In this denaturation transition we do not allow bubbles. Let us consider first the
single-ended zipper, i.e. a molecular zipper of N parallel links that can be opened only
from one end as in Figure [6.6] The single-ended zipper is simpler than any related
problem which has been treated, and it offers a good way to introduce a biophysics
example into a course of statistical mechanics.

If the first £ bonds (or links) are open (unbounded pairs) the energy to open the
k-+1 is 9. Note that if at least one of the previous k£ bond is closed the energy needed
to open the k+1 band is infinite! We specify further that the last link, k = N, cannot
be opened; this minor features serves only to distinguish one end from the other, and
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Figure 6.5: Sequential unzipping from the ends.

L

Figure 6.6: Open and closed links in a single-ended zipper.

we shall say that the zipper is open when N — 1 links are open.

We suppose that there are G orientations which each open link can assume: that
is, the open state of a link is G-fold degenerate, corresponding to the rotational
freedom of a link. Hence, once a bond is open it can orient itself in G different ways.
In other words, there is an entropy

So = kplog G (6.61)

associated to each open band. In the problem of DNA the empirical value of G may
be of the order of 10%.

Partition function

Let us suppose that the energy required to open the first k links is g. If k links
are open, the degeneracy is G¥, and the contribution of this configuration to the

partition function is
G e—keo/kBT

By summing over the possible values of k, the partition function is

N-1 N-1
ZN(T, G,Eo) — Z erfk:sg/kBT — Z ek(Sonz-:g)/kBT (662)
k=0 k=0

Let us call
y = Ge c0/ksT (6.63)

and simplify the previous expression

N-1
ZN = Z Xh =
k=0

We see immediately there is a single pole singularity.

1XN

1—x

(6.64)
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The free energy is

1 —XN
FN = —k:BTln ZN = —kBTln 1 (6.65)
- X

We can now compute some observables of interest. The correct procedure is to eval-
uate thermodynamic quantities for finite N and then to examine the limit N — oco.

Calculate average number of open links

The thermodynamic average number of open links is

Yk d Y x
My=N T =X IiZn=—
i XF dyx xV -1 x-1

The function is plotted in Figure We examine the behaviour of (k) yin the vicinity
of the point x. = 1 for which the denominators are equal to zero (pole).

(6.66)

Remark. In this model, we consider the average number of open links instead of the
magnetization.

<k>n

0 1 X

Figure 6.7: Thermodynamic average number of open links in a single-ended zipper of N
links.

In order to analyze what happens near 1, we expand x =1+ ¢:

[1—(1+e)N
log Zn(x) = log 1_((1_{_2)]
o [1— (1 +eN 4 YTz NV-PWV=2) 3 4 o(c4))
€
[ N(N -1 N(N —-1)(N -2
=log |N + (2 )5+ ( 6)( )52+...]
:logN—i—log[l—i—Nz_lg—f—(N_l)G(N_Q)EQ} (6.67)
N N22
zlogN+log[1+€+ < +]
2 6
g (NEL AL Y (Ne N AT
= log 5 5 5\ 5 5
Ne N2¢
=log N + —
og N + 5 + 21 +
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By doing the same for (k) = ;\vaxivl — ﬁ, one gets
N Ne N3g3

EKyy=—(14—— .. 6.68

=5 (14 % - e ) (6.68

this is true for N > 1, < 1.
At the transition point y. = 1, where ¢ = 0:

(k) ~ g

We can define the variation (slope per site) as a response function (the derivative
with respect to the parameter):

1d(k) N N3

N de 12 240
is a maximum at € = 0, and the slope at the transition point becomes infinite as
N — oo (linearly). The response function diverges linearly to N, this is a good signal
that we have a transition.

(6.69)

Transition temperature

The temperature T, corresponding to the pole x. = 1 is given by
Ge—=0/kpTe —

Hence,
€0

~ kplogG
Note that as G — 1, T, — 0. For G = 1 there is no solution at a finite temperature
and hence the model does not display a phase transition for any finite 7! This is
telling you that if G = 1 what is important it is the energy, you have no entropy as
disorder. At that point everything can happen.
There is a finite transition temperature if G > 1. One might perhaps argue that
the model is now not strictly one-dimensional, for the degeneracy G arises from the
rotational freedom of an open link.

(6.70)

Remark. Despite the model is 1-dim, for G > 1 there is a phase transition. This is
due to two contributions:

1. Existence of forbidden configuration (infinite energy). It is a necessary con-
dition, but not sufficient, for a phase transition in d = 1 with finite range
interactions.

2. A further requirement may be that the degeneracy of the excited state (G) of
a structural unit must be higher than the degeneracy of the ground Stateﬂ

Unwinding from both ends

When the zipper is allowed to unwind from both ends, there are k41 ways in which
a total of k links may be opened, so that the partition function for a double-ended
zipper of N links is

N-1
N(T,G,e0) = > _ (k+1)Grekeo/knT (6.71)
k=0

and to this should be added a term for the state of IV open links. This terminal term
for a simple zipper is GV exp(—Neo/kgT).

In the mean-field approximation no transition can occur if the degeneracy of the ground state
is higher than that of the excited state.
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6.4.1 Transfer matrix method for the Zipper model

The idea is: we want to map the Zipper model to an Ising model. The spin like
model consists on associating to each bond a spin such that S; = 0 if the i-esim bond
is closed , while S; = 1,..., G if the i-esim bond is open with G possible orientations.
Therefore,

e Case: S; # 0 open. We have two subcases:
— Si—1 open: S;_1 # 0= E(S; #0|S;—1 # 0) = ep.
— S;_1 closed: S;_1 =0= E(SZ #* 0|Si_1 = 0) =e0+ Wy
e Case: S; =0 closed. We have E(S; = 0) = 0 irrespective of S;_;.

Hence, considering all these cases, the energy results
E(S;,Si—1) = (g0 + Vods,_,0)(1 = ds,0) (6.72)

The boundary condition is Sy = 0 (always closed). The full Hamiltonian of the
model can be written as (it could be also a function of delta, but it is not a problem):

N-1

Hy =c0(1—65,0) + > (€0 + Vods,_,,0)(1 — 65,0) (6.73)
=2

The Kittel’s version is obtained by assuming V) = oc.
The partition function is

Zy =Y _exp(—fHy)
{s}

In order to implement the transfer matrix formalism we rewrite Zy as follows

N—2
ZN = 267650(17651’0) H e Peo(1=0s,,1.0) [1 + (6—5\/0 —1)6s,0(1 = 6s,.,,0)| (6.74)
(s} =1

Let us consider the Kittel model, the condition V) = oo implies exp(—3Vp) = 0.
Hence, we can define the transfer matrix as

T={(S|T|9) =tgs} (6.75)
where
t,g = e P00 — §g0(1 — bg10)] (6.76)
or in matrix form
[1 0 ...... 0]
1 a ...... a
T=1|: : : , with a = e~ F%0
_1 a ...... a|

The first think to notice is that the constraint that the bond S;4; cannot be open if
bond S; is closed (S; = 0) yields the null entries in the first row of T. This violates
the hypothesis of the Perron-Frobenius theorem!

The matrix T has three different eigenvalues

/\1 = Ga, /\2 = 1, /\3 =0 (6.77)
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The partition function can be written as

1
N |l
Zy = (L,a,...,a) TV 2| . (6.78)
1
Moreover, we have
0 1—Ga
1
M —=Vi=1| ], Ao — Vo =
1 1
and we can then write
1
a a(l—Ga)—1 N 1 .
= v
: 1-Ga ' 1-Ga ’
a
1 —Ga . 1
= v v
| 1-Ga ' "1-Ga '’
1
Therefore,
1—(Ga)N 11— (Ge Peo)N 1 -
Zn = = = —Ar + A 6.80
N 1—-Ga 1 — GeBeo 1—Ge‘550( 1+ AY) ( )

Since in the thermodynamic limit only the contribution of the largest eigenvalue
matters for f, we have
fb = —kBTlIl max()q, )\2)

Remark. Given that the A; and Ay are positive, analytic function of 7' (A} = Ga, Ay =
1). In order to have a phase transition (i.e. non analiticity of f;) the two eigenvalues
must cross for a given value of 7. It is true if and only if:

€0

=1 e =] & T, =
Ga < Ge & NTYe

(6.81)

that agree with previous calculation (see Eq.(6.70))).

6.5 Transfer matrix for 2 — dim Ising

The two-dimensional Ising model for a system of interacting spins on a square
lattice is one of the very few nontrivial many-body problems that is exactly soluble
and shows a phase transition [6]. The exact solution in the absence of an external
magnetic field (H = 0) was first given almost eighty years ago in a famous paper by
Onsager [5], using the theory of Lie algebras. In particular, from Onsager’s solution we
can see that already in two dimensions an Ising model can exhibit phase transitions,
showing a non null spontaneous magnetization for temperatures low enough.

Let us therefore consider a two-dimensional Ising model, defined on a lattice made
of N rows and M columns, as in Figure We apply periodic boundary conditions
to the system in both directions (geometrically, this can be thought of as defining the
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‘ m +|1

(nym)

3

2

n=1

m=1 2 3 m=M

Figure 6.8: 2-dimensional Ising lattice of NV rows and M columns.

model on a torus), and we consider only nearest neighbour interactions. The spin in
a site is identified by Ssite = Sy

We consider a set of spin arranged on a square lattice, interacting only with nearest
neighbors and with a magnetic field H # 0. The reduced Hamiltonian of the system
will be:

—BHa({S}) KZSS +th

N M
K Z Z (SmnSmt 1+ SmaSmatt) + 1YY S

n=1m=1 n=1m=1

This can be rewritten as follows:

M
- ﬁj{Q {S} = Z Nmaﬂm-ﬁ-l] + E[:U’m]] (6'82)
m=1
where
N N
Elpim, h] = K SmnSmnt1 + 2> Smm (6.83a)
n=1 n=1
N
Elpim, pnt1,8) = K SpnSmt1m (6.83b)
n=1

the first equation is the one body interaction, while the second equation represents
the interaction between nearest neighbours columns (two body interaction).

Moreover, i is a m dimensional vector; in particular, each u,, represents the set
of N spins along column m:

Hm = {Sm,h Sm,27 cee 7Sm,N} (684)

We can write a transfer matrix between columns, permitting to transfer along the
m. To make it simpler, suppose h = 0 (so the energy does not depend on h):

(| T [pms1) = explk(E[pmn, ftm+1] + Elpm])] (6.85)

Now, we have to diagonalize.

Remark. In the 2x2 transfer matrix in the 2-dim we have two possible values. Now,
we have to do the same in principle, but we have to do for all of the (|6.84]).
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Remark. T is a matrix of dimension 2V x 2V, hence, in the thermodynamic limit is
an infinite matrix (violation of Perron-Frobenius).

According to the formalism
Zn(K, h) = Tr(TY)

To find the eigenvalues of T given by is highly non trivial. The big problem it
is that in the thermodynamic limit is that the dimension of the transfer matrix goes
to infinity, then it is difficult to be diagonalized. This was first achieved by Onsanger
in 1944, as said, for the case H = 0 and in the N — oo limit. Onsanger has shown
that the free energy of the system is given by

T [* 1
fo(T) = —kpTlog (2 cosh(25J)) — Zi log [2 (1 +4/1—¢g? Sin2(<l>)>] do
T Jo
(6.86)
where
B 2
~ cosh(2/3J) coth(28.J)
and also that the magnetization is:
i —4 1/8
o [1—sinh™*(28J)] T <T, (6.87)
0 T>1T,

where T is the temperature given by the condition

2J
2 tanh? =1
tan (kBTc>

which yields the numeric result:

= T, ~ 2,264 /kp # 0

hence, we have a phase transition at a critical temperature T, different from 0!
Onsager also showed that the critical exponents of this model are:

1 7

ga vT=

a=0, p= 1

where a = 0 because the specific heat diverges logarithmically for T ~ T,:

wsfu(e- 1)

It means that the specific heat displays at the transition a logarithmic divergence (no
power law!).
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Chapter 7

The role of dimension, symmetry
and range of interactions in phase
transitions

Which is the role of the dimension in phase transition? Consider d, the dimension
of the system. For the Ising model, we have seen that in d = 1 there is no phase
transition, while the Onsanger solution tell us that for d = 2 there is a paramagnetic-
ferromagnetic transition for 7. > 0. Therefore, the dimension seems a crucial param-
eter! Since in general analytic solutions are not available, is there a simple argument
to establish the existence of a phase transition? In the case of a para-ferro transition,
may we establish whether a phase with long range order exists and is stable within a
range of T' > 07

7.1 Energy-entropy argument

We need an argument that can tell us which kind of system has a phase transition.
The idea is to use the entropy energy argument. Indeed, our systems are ruled by a
free energy and the previous states are found by making derivative. We have energy
and entropy: low energy state can be stable with respect to thermal fluctuations, but
the fluctuations will destroy the long range order. This idea can be generalized.

Let us consider:

dF = dU —T dS (7.1)
~—~ ~—~
energy entropy

We expect that:
e T > 1: entropy should dominates.
e T < 1: energy should dominates.

Question: there is a temperature different to zero in which this is compatible?

7.1.1 1-dim Ising

Let us study the stability of the states with minimum energy to fluctuations for
T # 0, for a system of size N.

We already know that, for T' = 0, two ground states exist, either all spins up or
all spins down. For instance, suppose that we have the ground state with all the spin
up; the energy of the state is

Eq=-JN (7.2)

and it is the same for the other configuration.
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Now, let us consider T' # 0, there could be a given number of elementary ex-
citations of the kind spin up/down. What happens if we swap one or more spins?
These are defects with respect to the ground state and they are also called domain
walls. This is in the one dimensional case, but is valid also in many dimensional.
Therefore, which is the variation in energy AFE with respect to the ground state? For
each excitation there is an energy penalty AE = 2J, indeed, if we suppose that we
have only one swap, we have

Eg=—-JN, E*=—-J(N-1)+J = AFE=2J
For a finite concentration z of domain walls, we can write M = Nz, giving
AFEy =2MJ (7.3)

Now, let us compute the change in entropy. The entropy of the ground state can
be computed immediately: this is zero because it is the logarithm of the number of
configurations, but in this case we have only one configuration, namely S¢ =In1 = 0.
Hence, the difference between the entropy of the ground state and the entropy of the
new state is just the entropy of the new state. Therefore, we want to estimate the
entropy of the states with M domain walls. The number of possible ways to insert
M domains in N positions, namely the number of configurations, is

= (2)-(2)

Sar = ki log (J\AD (7.5)

We have:

the difference is

N
AS =Sy —Sg =Sy =kpln <:cN>

Let us calulate

AF =Fy — Fg=AFE-TAS

N

=2MJ — kgTIn (M)
N

=2xNJ — kgTIn (xN)

= N{2zJ + kpT[zlnz+ (1 —z)In(1 —2)]}
where we have used the Stirling approximation
InN!'=NInN - N

Since the equilibrium states are obtained by the minimum of F, we can minimize
with respect to . We are interested in the free energy in the bulk, hence, firstly we
normalize and then we derive for finding the minimum

AFy OAfy

A =
Tox N’ oz

0 (7.6)
this gives

ag{QxJﬂ— kgTlzlnz+ (1 —z)In(l —2)]} =2J +kpT[lnz+1—In(1l —z) — 1]
x
=2J +kpT[lnz —In(1—2x)]=0
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hence,

T 2J T
1 _ o _ T —2J/kgT
nl—x kT :>1—az €

and finally the results is
1

It means that V1" # 0 exist a finite concentration z of domain walls. The ground
state is unstable V1" > 0. Indeed, if you have a finite density of z, no long range order
exist for T" > 0. From , we can see that as T — 0, we have x — 0 as expected.
Now, let us try to do the same for d dimensions.

7.1.2 d-dim Ising

What is a domain wall in d dimensions? The domain walls is an hypersurface of
size L1
AFE « 2JL4! (7.8)

Computing the entropy it is a very difficult problem. Indeed, the entropy of a fluc-
tuating hypersurface is difficult to estimate. For a single domain wall, we can say

S>kglnlL (7.9)

where L is the number of ways to place a straight wall within a system of linear size
L. The AS is just S because the entropy of the ground state is again zero.

Remark. If we underestimate S, we obtain
AF =2JL% ' — kpTIn L (7.10)

it means that now energy can win if the temperature is different from zero. Therefore,
for d = 2, or greater (d > 1), that long range order can survive thermal fluctuations
and the system could present an ordered phase!

Peierls argument

The Peierls argument [10] is a mathematically rigorous and intuitive method to
show the presence of a non-vanishing spontaneous magnetization in some lattice mod-
els. This argument is typically explained for the d = 2 Ising model in a way which
cannot be easily generalized to higher dimension. The idea is trying to perturb the
system using an external magnetic field as perturbation (it is very small h). In that
way, we are breaking explicitly the symmetry, but then, taking the limit A — 0 and
switching off the magnetic field, we see the stability.

We know that for finite systems, from the Z? symmetry, it follows

(m)y =0

This is true for finite systems, however, in the thermodynamical limit N — oo, if
d > 2 the magnetization (m)_ vanishes only in the high temperature paramagnetic
phase. In the low temperature ferromagnetic phase, the value of (m)_ is not well
defined and depends on how the thermodynamical limit is performed. In this case
the Z2? symmetry is said to be spontaneously broken.

The breaking of a symmetry can be thought as a form of thermodynamical instabil-
ity: the particular value acquired by (m)_ in the ferromagnetic phase is determined
by small perturbations.
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A conventional way to uniquely define (m)_ in the broken phase (where it is called
spontaneous magnetization) is to use an infinitesimal magnetic field:

(m)o = lim_lim (m)} (7.11)
where it is crucial to perform the thermodynamical limit before switching off the
magnetic field A — 07. The instability manifests itself in that using h — 0~ would
change the sign of (m)_.

A different approach to expose the instability is the use of appropriate boundary
conditions: we can for example, if we want (m)_ > 0, impose in all the sites ¢ on the
lattice boundary (i € 9) the condition S; = +1, as in Figure

+ o+ o+ o+ + o+ 4
+ +
i +
+ o+ o+ + 4+ *

Figure 7.1: System with boundary condition with all the spins in the surface up.

In the paramagnetic phase the effect of boundary conditions does not survive the
thermodynamical limit, while in the ferromagnetic phase their effect is analogous to
that of the infinitesimal magnetic field.

This is the boundary condition chosen by Pierls to establish the existence of a
T, # 0 for the d = 2 Ising model. Let us gives just a qualitative presentation of the
(rigorous) result.

Let N4, N_ be the number of spin up and down respectively. Clearly,

N=Ny+N_
On a finite lattice the mean value of the magnetization can be written in the form

iy = D00 ()

In order to show that (m)_, > 0 (remember that we are considering boundary condi-
tions with spin up at 99), it is sufficient to show that for every N we have

<NN>< %—5 (7.12)

with € > 0 and N-independent. Indeed, if (7.12)) holds
(m)y >2 VYN (7.13)

The Peierls argument is a simple geometrical construction that can be used to prove
this bound. The outcome of the Peierls argument for the model in d dimensions is
an estimate of the form

< fp(z) (7.14)

where z is defined by
x = 9e 48 (7.15)
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and fp is a continuous function of = (independent on N) and such that

lim fp(z) =0

x—0

In particular, for small enough 7" we have the bound

(v 1
— < - —¢
N 2
which ensures that (m)_, > 2¢ and the Z? symmetry is spontaneously broken. More
precisely, for d = 2, one has
(N.) 22 2—x

N S3a—a2 (7.16)

where z = 9e~%/8 < 1.

Remark. Note that above bound gives also a lower bound on the critical temperature

As long as WTJ < % — ¢, the system is in the ferromagnetic phase. The critical value

z. = z(B.) must be outside the interval [0, x; /2] where x1/5 is the smallest positive

solution of the equation
z?2 2—2 1

36 (1—xz)2 2

From the solution x5 and the condition z. > /2, one has
JBe < J/81/2

where Jf3; /5 = %log 9/x1 /9. Hence, T, > T o.

Exercise 4 !

The following equation gives 1 o
z® + 162> — 36z + 18 =0

Flnd T1/2 o

Solution. This equation has three real solutions:
Tl = —18.05, o = 0.79, xIr3 = 1.26
The smallest positive solutions is z1/5 = x2, hence

J
kBT /2

4J
kB log 9/.%‘1/2

1
:Zlog9/x1/2 :>T1/2:
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7.2 Role of the symmetry

Interacting systems can be classified with respect to their global symmetry group.
Let us illustrate some examples.

Example 20: Ising model

J{Ising = — Z Ji]’O’iO’j (717)

1<j
where o; € {—1,1}. The symmetry group of this Hamiltonian is Z2, which has
two elements {1,7}. We have

1: identity, no;=—0;, n°=1

Example 21: Potts model

The Potts model, a generalization of the Ising model, is a model of interacting
spins on a crystalline lattice. The Hamiltonian is

iH:q—POttS = - Z Jijdai,oj (718)
1<j
where 0; € [1,2,3,...,q]. Hy—potts is invariant under the permutation group of

the sequence {1,2,3,...,q}. There are ¢! elements, for example {2,1,3,...,q}.
The symmetry group is denoted by Sj,.

Remark. The difference between a Z, and S, symmetry is that an Hamiltonian has
symmetry Z, if it is invariant with respect to cyclic permutationsﬂ

(1 2 ... gq—-1 ¢
”_<2 3 ... ¢ 1) (7.19)

and its powers 1 withl =0, ...,g—1. Both models satisfy a discrete global symmetry.

Now, we jump into the case in which we consider continuous symmetries.

~

PR NN <~ ~ o -~ N
/ \ / \ /
/ v ! \ v 7 /\\
L 1 | 1
\\ \ I\\
/ /

1
! \

\ \ \
// ~ // ~ 7

L -~ = L

/

-

Figure 7.2: Spin can assume all values around the circles.

Example 22: XY model

This is a spin model that is invariant with respect to the continuous global
symmetry 6; — 6; + «. Indeed, the Hamiltonian of this model is

Hxy =—>  Ji;Si-S; (7.20)

1<j

'In mathematics, and in particular in group theory, a cyclic permutation (or cycle) is a permu-
tation of the elements of some set X which maps the elements of some subset S of X to each other
in a cyclic fashion, while fixing (that is, mapping to themselves) all other elements of X. If S has k
elements, the cycle is called a k-cycle. Cycles are often denoted by the list of their elements enclosed
with parentheses, in the order to which they are permuted.
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where S; is a 2D spin vector

§i = (sz" Syi)

—

that can assume values on the unit circle ( ’SZ‘ = 1). Suppose that spins are

sitting in hyper dimensional and can rotate along circles. They can assume all
the value as in Figure [7.2]

The simplest way to parametrize the Hamiltonian is by the angle. Denoting by
0; the direction angle of spins §i, the Hamiltonian can be rewritten as

:HXY = — Z Jij COS(@Z‘ — 0]') (7.21)
1<j
with 6; € [0, 27].

Remark. The interaction term cos(6; — 0;) can be written also as

1
522+ 2,7}

where Z; = exp(if;).
The model is invariant under the global transformation

Z; — e Z; (7.22)

The phase exp(ia)) form a group under multiplication known as U(1) that is
equivalent to O(2). Indeed, the interaction term can be written also as
Q.- 0,

where Q; = (cos ;,sin ;).

Remark. In n-dimensions € has n components € = {Q Q% ..., 0"} and the
corresponding Hamiltonian is

H==> Jy-Q (7.23)

It is symmetric with respect to the global symmetry group O(n).

Which are the domain walls for continuous symmetries? Which are the implica-

tions for the stability of the ordered phase?

7.3 Continuous symmetries and phase transitions

When the symmetry is continuous the domain walls interpolate smoothly between

two ordered regions (see Figure [7.3)). The energy term that in Ising is proportional

to 2JL4 ! how does it change here?

Let us consider the XY model and suppose that the variation of the direction
between two nearest neighbours sites is very small, i.e. (6; —0;) < 1 for ¢, j nearest
neighbours. Now, we can dilute the energy, in other words we weak the energy term.

Let us do a Taylor expansion of the interaction term

1

cos(0; — 0;) ~ 1~ 5(0; — 0,)* = ; (1 — %(ei — ej)2> (7.24)
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/ / f1e,. “

L

Figure 7.3: For continuous symmetry the domain walls interpolate smoothly between two
ordered regions.

The Hamiltonian can be written as
1
H ~ —JZ <1 - 50— ej)2> (7.25)
(i)
The ([7.24)) corresponds to the discrete differential operator where 6; —6; = 9,6, hence
J [ 2
9= Eo+ 5 | dF(V0) (7.26)

—_—
E=Stifness energy

where Eg = 2JN is the energy corresponding to the case in which all the spins are
oriented along a given direction.

Definition 6: Stifness energy

The Stifness energy is defined as
J - 9
E = 7 dr (Vo) (7.27)

where 0(r) is the angle of a local rotation around an axis and J is the spin
rigidity. For an ordered phase 6(r) = 6.

Let us now imagine a domain wall where 6(r) rotates by 27 (or 2mm) by using
the entire length of the system (see again Figure [7.3)):

. 2mnx
o(r) = 7

where n is the total number of 27 turn of 6 in L.

Remark. Note that there is no variation along the other d — 1 dimensions, therefore
we just doing over one dimension.

We consider only the term E (Stifness energy) of the Hamiltonian

2 2
g— L /de & (2NN T paa /de 2N on2p? yLd-2
2 0 d.f L 2 0 L

(7.28)

Remark. Unlike the Ising model where E ~ L1 here E ~ L% 2! Hence, if S >
kpIn L for a single domain wall, S should dominate if d < 2, the ordered phase is
always unstable and no phase transition is expected for 7" # 0!
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Definition 7: Lower critical dimension !

The Lower Critical dimension d, is the dimension at which (and below which)
the system does not display a ordered phase (there is no long range order). In
other words if d < d., we have T, = 0.

From what we have found before we can say that
e For discrete global symmetries: d. = 1.

e For continuous global symmetries: d. = 2 (Merming-Wagner theorem)ﬂ

Example 23: XY model transition

The XY model in d = 2 is rather special. While the Mermin—Wagner theo-
rem prevents any spontaneous symmetry breaking on a global scale, ordering
transitions of Kosterlitz-Thouless-type may be allowed. This is the case for the
XY model where the continuous (internal) O(2) symmetry on a spatial lattice
of dimension d < 2, remains zero for any finite temperature 7' # 0 (it do not
display an ordered phase).

Remark. This transition does not imply the spontaneous breaking of the O(2)
symmetry!

However, the theorem does not prevent the existence of a phase transition in
the sense of a diverging correlation length £. To this end, the model has two
phases:

e a conventional disordered phase at high temperature with dominating ex-
ponential decay of the correlation function G(r) ~ exp(—r/§) for r/& > 1;

e a low-temperature phase with quasi-long-range order where G(r) decays
according to some power law, which depends on the temperature, for "suffi-
ciently large", but finite distance r (a < r < £ with a the lattice spacing).

The transition from the high-temperature disordered phase with the exponential
correlation to this low-temperature quasi-ordered phase is a Kosterlitz—Thouless
transition. It is a phase transition of infinite order.

In the d = 2 XY model, vortices are topologically stable configurations. It is
found that the high-temperature disordered phase with exponential correlation
decay is a result of the formation of vortices. Vortex generation becomes thermo-
dynamically favorable at the critical temperature Tx7 of the KT transition. At
temperatures below this, vortex generation has a power law correlation (hence,
there is no long range order for T' < Tkr).

Many systems with KT transitions involve the dissociation of bound anti-parallel
vortex pairs, called vortex—antivortex pairs, into unbound vortices rather than
vortex generation. In these systems, thermal generation of vortices produces an
even number of vortices of opposite sign. Bound vortex—antivortex pairs have
lower energies than free vortices, but have lower entropy as well.

In order to minimize free energy, F' = E — T'S, the system undergoes a tran-
sition at a critical temperature, Tx7. Below Tk there are only bound vor-
tex—antivortex pairs. Above Tk, there are free vortices.

2In statistical mechanics, the Mermin-Wagner theorem states that continuous symmetries cannot
be spontaneously broken at finite temperature in systems with sufficiently short-range interactions
in dimensions d < 2. Intuitively, this means that long-range fluctuations can be created with little
energy cost and since they increase the entropy they are favored.
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7.4 Role of the interaction range

So far we have considered models where the interactions were short range. How
things change if long range are considered instead? How does the symmetry broken
depends on the range of interactions?

One can show, for example, that if

J
Ji=—"—— 1<a<?2 7.29
(%) ’I—.»Z_I—;j‘a7 _Oé_ ( )
phase with long range order is stable for 0 < T' < T also for d = 1!

Remark. If a > 2 4 ¢ we get back the physics found for short range interactions. If
a < 1 the thermodynamic limit does not exist.

A limiting case of long range interaction is the infinite range case where all the
spins interact one to another with the same intensity independently on their distance.
No metric is involved (instead of previously where the definition of J of before is a
metric.). It can be solve exactly and later we will see why.

7.4.1 Ising model with infinite range

Let us consider the Hamiltonian
J,
— Hn({S}) = °§ S:S; +H§js (7.30)

with S; € [—1, +1].
Remark. The sum over 4, j is an unrestricted double sum.
The problem with the double sum is that

> 8iS; o O(N?)

/[:7.].
and the thermodynamic limit is ill-defined. To circumvent this problem Mark Kac
suggested to consider a strength

J
this is called the kac approximation. Hence,
—Hn({S}) = 2N255 +HZS (7.32)
with this choice we recover E ~ O(N).
The partition function is
Zy(T,J,H) = exp ﬁJZSiS-JrBHZSi (7.33)
{5} 2N i ’ i

Since there are no restrictions on the double sum, we can write

pos (e (3] (54)

Rewriting the partition function, we have:

2
N(T, J,H) = exp m(Zs) +h) S (7.34)

{s}



7.4. Role of the interaction range 95

Remark. Recall that we have defined K = 8J and h = SH.

In order to transform the quadratic term into a linear one we make use of the
integral identity known as the Hubbard—Stratonovich transformation (we can do it in

any dimension). Let
T = Z S;
%

The key identity in the Hubbard-Stratonovich method is simply an observation of the
result of a Gaussian integral. In the present case it takes the form

22 NK [T
oo =4[ eV HK gy ReK >0 (7.35)
2 J_

where y is a random field that follows a random distribution.

Proof of Hubbard-Stratonovich identity. To show the identity (7.35]) it is suf-
ficient to complete the square

NK > ooy — NK( x)2+K:U2
g Y TRWE T 2N

and then shifting the integral to one over z = (y — %)

Hence,
ka2 [T NE(y_z 2 (a) K22 | 2w
2N — 2 y_N) dy = e2N 4/ ——
e /_OO e y = e2N 4/ NE

where in (a) we have considered z = (y — %) , dz = dy and the integral

+o0
o2 s
/ e ¥ dz=,/—
oo «

By using (7.35)) in the partition function, we have

NK [*o°
Zn(K,h) =/ 277/ dy ez Y’ Ze(h+Ky) 2 % (7.36)

- {s}

Qy
where

N

Qy = Ze(hﬂ(y) TS o H Z exp|(h + Ky)Si] | = (2cosh(h + Ky))™
(S} i=1 \Si==1

(7.37)

Remark. y is called auxiliary field and is a fluctuating external field with Gaussian
distribution.

The partition function becomes

NK [*to° NK [t
ZN(K,h) =/ . / dy e_NTKyQ(2 cosh(h + Ky))N =4/ 5 / dy eNEIRY)

(7.38)

where K
L(K, h,y) =In[2cosh(h + Ky)] — 5;/2 (7.39)
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Remark. In the limit N — oo the integral can be computed exactly by the saddle
point method. We can replace the medium of the integral with the maximum of the
integrand, we say that all the information is coming only from a bit of information.
Replacing the all integral with the integrand computed where it is maximum is an
approximation and we are loosing information. It also depends on the form of the
function. For example, for a delta function it works better. In general:

+oo
f(z)dy — f(2)

where & = max, f(z).

Indeed as N — oo, since the integrand is exp(NL (K, h,y)), the integral is domi-
nated by the global maximum in y of the function L£(K, h,y):

NK
Z (K, ) "R [ ma [N
T Yy

Let ys be the value of y at which
L(K, h,ys) = max L(K, h,y)
Y

NK
Zn(K,h) "= |5 ehae) (7.40)

When we are able to compute the ys we can do this approximation and we can
compute the bound free energy as

hence,

1
fb(K, h) = lim N(_kBTlog ZN) = —k‘BTL(K,h,yS) (7.41)

N—oo

Example 24: How to compute y;

Looking for ys, we consider the condition of maximum ‘g—j =0
0L  sinh(h+ Ky)K

—= — Ky = s = tanh(h + Kys 42
dy cosh(h + Ky) y=0 =y anh(h + Kys) (742)

The last one is an implicit equation that can be solved graphically as a function
of K and h.

The magnetization in the N — oo limit is given by
_ (oFr\ _ lim iaanN(K,h)
~ \0H); N—xpBN OH
_ OL(K, h,ys) n O(log N)  2sinh(Ky, + h)
B Oh N 2cosh(Kys+ h)
= tanh(Kys + h)
Hence, showing that y, is determined by Eq.(7.42)) plays the role of an effective field

acting on each spin. Comparing Eq.(7.42) with the last result, gives us the self
consistency condition for m

m=vys = m = tanh(h + Km) (7.43)

Remark. We have solved analitically this problem. This is the usual “mean field”
result.
Remark. The a Hubbard-Stratonovich transformation is generally useful for trans-
forming an interacting problem to a sum or integration over non-interacting prob-
lems.



Chapter 8

Mean field theories of phase
transitions and variational mean

field

8.1 Mean field theories

Increasing the dimension of the systems, the effort to solve analitically the prob-
lems increase; indeed, we have seen that

e In d = 1: many (simple) models can be solved exactly using techniques such as
the transfer matrix method.

e In d = 2: few models can still be solved exactly (often with a lot of effort).

e In d = 3: almost no model can be exactly solved.

Hence, approximations are needed. The most important and most used one is the
mean field approximation. It has different names depending on the system considered:

e Magnetic systems: Weiss theory.
e Fluids systems: Van der Walls.

e Polymers: Flory’s theory.

The idea is trying to simplify the problem by neglecting the correlation between
the fluctuations of the order parameter. It is equivalent to a statistical independence
of the microscopic degrees of freedom.

8.1.1 Mean field for the Ising model (Weiss mean field)

Let us start from the generic Ising model
1
H{SH = —52%'51'5;' ~HY S (8.1)
ij i

where the double sum over ¢ and j have no restrictions, while H is homogeneous.
The partition function is

{s}
Since H is uniform, the magnetization per spin is
(Si) = () =m

97
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Let us now consider the identity
SiSj = (S; —m+m)(S; —m +m)
= (Si —m)(S; —m) +m? +m(S; —m) +m(S; —m)
Remark. The mean field approximation consists in neglecting the term
(Si =m)(S; —m) = (i — (5i))(S; — (S;))
that measures correlation between fluctuations.
Hence, using the mean field approximation, the above identity becomes
S;S; ~ m? +m(S; —m) +m(S; —m)
and 1 MF 1
3 > JijSiS; ~ 3 > Jij[-m® +m(S; + )]
0. 0.
Let us focus on the term
53 dym(S:+ 8) = 20m Y Iy (8.3)
i3 i,J

If we do not make any assumption on J;;, the mean field Hamiltonian is
Hur[{S}] = QZJ,] —mZJUS HZS (8.4)

and by calling

we get
Hur[{SY] = meZJ——ZJS HZS

Remark. Note the coefficient emphasmed in green (1 /2) is needed to avoid the double
counting of bonds.

Moreover, if we suppose that
Ji —J
we have

Hoprr[{SY] = =m2NJ — ( =T+ H) 3, (8.5)

Remark. In the standard Ising model, where
ZJZ]S S — ZJ”S S
(i5)
the term 2m Z<ij> Ji;S; of Eq.(8.3)) can be written as follows. Let
Z Jij = zjz
jen.n. of ¢

where z is the coordination number of the underlying lattice (for the hypercubic
lattice z = 2d). By assuming J; = J and inserting the 1/2 to avoid double counting,
we have that equation (8.3) becomes

N
1 -
2’171,2 JUSz = 2m§zJZ SZ (8.6)
i =1
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Hence, in this case the Hamiltonian is

N
Horr[{S}] = %mQsz —(mzf+ H)Y S (8.7)
o=l

The partition function becomes
ZN(T, H, J) = e NBI5m? 3 BUIzm+H) SN S
{S}

Y ﬂ exp(B(Jem + H)S,)

(s} i=1 (8.8)

< tinn (5 ea(3(iam < 1)s))

S==+1
NBJzZm? 7 N
= ¢ NBJZm (2cosh {ﬁ(sz + H)D
Remark. We are replacing the interaction of the J with a field close to the 5;. We
called Jzm = H,.ys, the mean field!

The free energy per spin is

Fn(T H,J) 1 j
sz(—kBTanN(T,HvJ»

N iV (8.9)
= §jzm2 — kpTIn [cosh(ﬁ(jzm + H))] — kpTIn2
Sometimes it is useful to use the dimensionless variables defined as
_F kT _ H
f=-N 9="B_ pg=-" (8.10)
NzJ zJ zJ
Hence,
L 1 _
f(m,H,0) = §m2—91n (2cosh (0~ (m + H))) (8.11)

In order to be a self-consistent, the last equation has to satisfy the thermodynamic
relation:

- _<<§1{I>T =m = tanh(ﬁ(j2m+H)>

Remark. The results of m is similar to the Ising with infinite range (Jz < J).

Now, let us consider the H = 0 case, we have
m = tanh(ﬁ(jzm)) (8.12)

and the graphical solution is shown in Figure (hyperbolic function). We can
distinguish three cases:

e Case 5j z > 1: there are three solutions, one at m = 0 and two symmetric at
m = £mg. Magnetization is # 0 (= |my|) for H = 0 (ordered phase). The two
solution are symmetric because they are related by the Z? symmetry.

e Case ﬁjz < 1: single solution at m = 0 (disordered or paramagnetic phase).

e Case 8Jz = 1: the three solutions coincide at m = 0 (critical point). The
critical temperature T, is given by

A~

zJ
kBTc

Remark. T, depends on z and hence on d!

Bedz=1=

o1 =2 Lo
kp



100 Chapter 8. Mean field theories of phase transitions and variational mean field

j62>1
JBz =1

JBz < 1

Figure 8.1: Graphical solution of equation m = tanh (ﬁ(jzm)) (case H =0).

8.1.2 Free-energy expansion for m ~ 0

The critical point is characterized by the order parameter that is zero. Now, we
want to expand the free energy around the critical point. Let us put H = 0:

f(m,0,T, j) = %jzm2 — kT In {cosh(ﬁjzm)] (8.13)

Define x = Bj zm =~ 0 and by expanding in Taylor series
2 4

cosh(:n):l—{—%—l—m—k...
~—~—

t~0

1
log(l—i—t):t—it2

Hence,
2?2zt 124 6 2?2 ot 6
log (cosh z) ~ ?—i—ﬂ—iz—i—O(m‘ ) = ?—E—i—O(:r )
This gives the result
7 A 5 B 4 6
f(m,0,T,J) ~ const + 7m + ik +0(m”) (8.14)
with
AEjZ:(l—ﬁjz) (8.15a)
J2)4
B = g2 ?’f) >0 (8.15b)

We have three cases:

e Case 8Jz > 1= A < 0: two stable symmetric minima at m = +mg (Figure
8.2). Coexistence between the two ordered phases.

e Case BJz < 1= A > 0: one minimum at m = 0 (Figure .
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e Case B.Jz =1= A =0: 3 minima coincide at m = 0 (Figure .

Remark. Note that in the computations we have just made we have never imposed a
particular value for the dimensionality of the system. This means that the results of
this approximation should be valid also for d = 1, but we know that in one dimension
the Ising model does not exhibit a phase transition. This is an expression of the
fact that in the one-dimensional case mean field theory is not a good approximation
(again, the dimensionality of the system is still too low).

—mo mo
, ;
\/ ! m
1 I
1 I

Figure 8.2: Plot of the free energy: case 8Jz > 1= A < 0.

m

Figure 8.3: Plot of the free energy: case 5jz <l=A>0.

Figure 8.4: Plot of the free energy: case fJz=1= A =0.

8.1.3 Mean field critical exponents

Let us consider the equation

A B
f(m,T,0) = const + §m2 + Zm4 + O(m®)
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with B > 0, so we do not need more term to find the minima of the solution. This
is called stabilization. What is most important is the coefficient A = Jz(1 — 8Jz),
that means that A can change sign.

B exponent

The B exponential observe the order parameter. Consider H = 0, t = T;—CT(‘ and
20" _48. The condition of equilibrium is
of

om

m

0

which implies

;‘i :Am0+Bm8: jz(l—,@jz)+Bm(2) mo =0

m=mgo

Jz .

Since at the critical point we have T, = i

 kpT.

0
T

(T — T.)mo + Bm
The solution are mg = 0 and
mo ~ (T, — T)'/? (8.16)

Hence, the mean field value is g = 1/2.

4 exponent

Now, let us concentrate in the § exponent. We are in the only case in which we

are in T = T, and we want to see how the magnetization decrease: H ~ m?.

Starting from the self-consistent equation, we have
m :tanh(ﬁ(jzm—l—H)) (8.17)

Inverting it
B(Jzm + H) = tanh~'m
On the other hand, for m ~ 0

3 5

tanh_lm:m+m7+m7+“_
3 5
Therefore, by substituting
m3 4 A m>
kT
~ k(T — T.ym + %mi”
AT =T, = g—;, we have
3
H~ k‘BTc% (8.18)

The mean field value is § = 3.
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a exponent

Consider the « exponent, for H = 0, cg ~ t7* and t = (T — T¢)/T.. Compute
the specific heat at H = 0. Consider first T' > T,, where mg = 0,

Jzm? — lln (2 cosh(ﬁ(jzm + H))) —kpT'In2

f(m7H): 2 3

If m =0, cosh0 =1 and
f=—-kpTIn2

it is called paramagnetic phase. Indeed,

2f
ey = —T<6T2> =0 (8.19)

The mean field value is @ = 0.

Remark. For T' < T, m = mqg # 0. This implies that cgr # 0, but still f = —kpTIn A
with A = const. We obtain oo = 0 also in this case.

~

Jz

— 44—
o 2,

(T - Tc)

7Y exponent

Now we consider the v exponent, for H = 0, x ~ t77. Starting again from

equation (8.17):
m = tanh(ﬂ(jzm + H))

and developing it around m ~ 0, as shown before we get

kgT
H =mkg(T —T,) + %m?’
om 1
TXT =9 T oH
m
Since g—fi ~ k(T —T,) + KgTm?, as m — 0
X~ (T =T (8.20)
The mean field value is v = 1.
Summary
The mean field critical exponents are
1
6:57 7:17 5:37 a=0 (821)

We can immediately note that these exponents are different from those found by
Onsager for the Ising model in two dimensions, so the mean field theory is giving us
wrong predictions. This is because mean field theories are good approximations only
if the system has a high enough dimensionality (and d = 2 is still too low for the
Ising model, see Coarse graining procedure for the Ising model).

Remark. In the mean field critical exponents the dimension d does not appear. T,
instead depends on the number of z of neirest neighbours and hence on the embedding
lattice (on the dimension)!
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Remark. (lesson) The v exponent define the divergence of the correlation lengths. In
order to do that, in principle we should compute the correlation function, but which
are the correlation we are talking about? The correlation or the fluctuation with to
respect the average? In the ferromagnetic we have infinite correlation lengths, but it
is not true, because instead of that we consider the variation correlated! Which is the
problem here? In mean field we were neglecting correlation between fluctuation. We
thought: let us compute neglecting correlation. How we can compute the correlation
function within the mean field theory with thermal fluctuations? We look at the
response of the system. Experimentally what can we do? It is a magnetic field, but
we cannot use homogeneous magnetic field. Another way to compute the correlation
function without looking at thermal fluctuation it is by considering a non homoge-
neous magnetic field. If we make a variation in H; in the system, what happened in
the H;? This is an important point.

8.2 Mean field variational method

The mean field variational method is a general approach to derive a mean field
theory. The method is valid for all 7" and is sufficiently flexible to deal with complex
systems. The method is similar to the one used in quantum mechanics, namely it is
based on the following inequality

Eq = <¢a| a ’wa> > Ey (8~22)

valid for all trial function .

Remark. Ey is the ground state energy.

Example 25

In many body problem we have Hartree and Hartree-Fock variational methods.

The closest bound to Fy is the one that is obtained by minimizing FE,, i.e.
(1ho| H [t0a) over |1}, where the |t),) are functions to be parametrized in some con-
venient way.

The method is based on the following inequalities

1. Let ® be a random variable (either discrete or continuous) and let f(®) be a
function of it.

For all function f of ®, the mean value with respect to a distribution function
p(®) is given by
(f(®)), = Tr(p(®)f(P)) (8.23)

If we consider the function
f(®) = exp[—AD] (8.24)

it is possible to show the inequality

<e_)‘q>>p > e_’\@%, Vp (8.25)

Proof of inequality (8.25). V® € R, ¢® > 1+ ®. Hence,
ef)@ _ ef)\(d))ef)\[fbf(@)] > e*/\<<1>)(1 _ A((I) o <(I>>)>
Taking the average of both sides, we get

() = (=M@ (@) P) = e
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2. The second inequality refers to the free energy. Let p(®) be a probability
distribution, i.e. such that

Tr(p(®)) =1, p(®)>0 VO (8.26)
Hence,

e PN = Zy = Trigy e BHHLH — Triqy pe P17 — <67,83{71np>p

From the inequality (8.25)),

e BFN <e—ﬁﬂf—lnp> > B0, ~(np),

p

Taking the logs one has
F < (H),+ kT (Inp), =Tr(pH) + kT Tr(plnp) = F, (8.27)

Whenever we are able to write the last equation by using a p, then we will
minimize it. This is the variational approach of statistical mechanics. The
question is: which is the p that minimizes?

The functional F), will reach its minimum value with respect to the variation of
p with the constraint Tr(p) = 1, when

_ 1 _

P=peg = ¢ 3 (8.28)
So far so good but not very useful, since we are back to the known result that the
distribution that best approximately the free energy of the canonical ensemble
is given by the Gibbs-Boltzmann distribution. To compute peq, we need some
approximation!

8.2.1 Mean field approximation for the variational approach

Let us now try to compute the Z by starting from the inequality (8.27). Up to now
everything is exact. The idea is to choose a functional form of p and then minimize
F, with respect to p. Note that p is the N—point probability density function (it is
a function of all the degrees of freedom):

p:p(®177(I)N)

it is a N—body problem, where ®,, is the random variables associated to the a—esim
degree of freedom. This is in general a very difficult distribution to deal with. This
is equivalent exactly at B .

Ya(r1,P1,..., TN, Py)

The mean-field approximation consists in factorising p into a product of 1—point
distribution function:

N N
MF
p(@1,...,0n) =~ []rM (@) =[] ra (8.29)
a=1 a=1

where we have used the short-hand notation p()(®,) — pq.

Remark. Approximation (8.29)) is equivalent to assume statistical independence be-
tween particles (or more generally between different degrees of freedom). The inde-
pendence of the degree of freedom is a very strong assumption!
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Example 26

Let us consider the spin model on a lattice; what is the ®,7 We have:
(I)a — Si

Hence, p = p(S1, 52,...,Sn) and (8.29) becomes

N

N
p'= 1oV S =[] e
=1

=1

With Eq.(8.29) and the condition Tr(p,) = 1, we compute the two averages in the
Eq.(8.27)) given the field. We have:

Trie}(plnp) = Tr (H Pa (Z In pa) ) ST (pg I pa) (8.30)

where Tr(®) means sum over all possible values of the random variable &, (with «
fixed and Tr(® p, = 1).
We end up that

Forr = <}C>P1\/IF + kT Z Tr() (PaIn pa) (8.31)

Remark. F

e = F({pa}) and we have to minimize it with respect to pq.

How can we parametrize p,? There are two approaches that are mostly used:
1. Parametrize p, = pM) (®,) by the average of ®,, with respect to pa, (®5), (in
general is the local order parameter):

po = pV (D) — (®a),,

This means that there are two constraints in the minimization procedure:

Pa

Tr(®) Po =1, Tr(®) (Pa®a) = <(I)a>

where the second is the self-consistent equation.

Remark. In this case the variational parameter coincides with the order param-

eter.
2. In the second approach is p, itself the variational parameter. F), . is mini-
mized by varying p,. It is a more general approach, that involves functional

minimization.

8.2.2 First approach: Bragg-Williams approximation

We apply this approach to the Ising model with non uniform magnetic field. The
Hamiltonian of such a system is

H{SH = —JZSS > HS, (8.32)

It means that
(pa — Sz =+1

and that the variational parameter becomes the order parameter

<<I)o<> — <Sz> =m;
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Remark. Note that this time H — H; (non-uniform), hence m; depends on the site
1.

We have to define a 1—particle probability density distribution p; = p(!)(S;) such
that

Trp;, =1
= o((S,) - i 8.33
pi =p"(Si) {Trpisi_mi (8.33)

Since we have to satisfy these two constraints, we need two free parameters. A linear
functional form is sufficient. Denoting by:

e q: statistical weight associated to the value S; = —1.

e b: statistical weight associated to all the remaining possible values of S; (for an
Ising only one value remains, i.e. S; = +1).

The simplest function form with two parameters is the linear function, namely
pi = p(S5) = all = ds,1) + b, (8.34)
Using the constraints

T (p;) =1 —a+b=1
D (pS;) =mi —a—b=m;

where a, b are the functions of the order parameter. In that case we have not to write
the functions for all the 7. For S; = 1 we have one value, for all the other values
another one. The results of the previous equation are:

_ 1-m,
{a g

_ 14m,
b= 2

Hence,
1—my 1+m;
pi = “(1—ds;1) + “0s;1 (8.35)
that in matrix form can be expressed as
(mi+1) 0
pi = 8 (1-my) (8.36)
2

Mean field energy term

Let us consider the average of the Hamiltonian

I G SLUED SUEYRREE) LRI S AL
(i) i (i) i

PMF
(8.37)

Since we have

N

PMF = H Pi

i=1

the term (5;5;), . will transform into
SiSi) prre = i parw (57 oy

Lecture 13.
Wednesday 27"
November, 2019.
Compiled:
Wednesday 5"
February, 2020.
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Moreover, for all function g of S; we can write

(9(S)) ppre = Te(g(S)pi) = D 9(Si)pi
S;==+1

14+ m; 1-my
= Z g(sz) |: 9 55«; 1+ 2 (1 - 551‘,1)

1—mi

9() + —5—9(=1)

Note that, if g(S;) = S;, we have g(1) = +1 and g(—1) = —1, hence

<Si>pIWF = M
as expected. Taken this into account, the Hamiltonian can be rewritten as
<J‘C>pMF = —JZ mimj — Z Himi (8.38)
(i) @

Remark. This has the form of the original Hamiltonian where S; had been replaced
by their statistical averages.

The entropy term is:

MF i
(np), . =Tr(plnp) = > T (p;Inp;)

= Z In + In
; 2 2 2 2
The total free energy in Eq.(8.27)) becomes:
FPMF - <j{>PMF +kpT <ln p>PMF
14+m; . 14+4m; 1—m;, 1—m;
:—szsz—ZHlml—FkBTZ[ 5 “1n 5 Z_|_ . ' 1n 5 z:|
(i5) ? 7
(8.40)
We now look for the values m; = m;, that minimizes F,,,,. (equilibrium phases):
aFPMF =0
om; m;=mg;

This gives:

0=—-J Z Tﬁj—HZ’—F

jEn.n.ofs

kT 1+ m;

In —
2 1— m;
To solve it, remember that

1. 1+=x
tanh™'(z) = -1
anh™ " (x) 50—

lz] <1

Hence,
kgTtanh™'(m;) =J > m;+ H
jE€n.n.ofi
which implies

m; = tanh (k‘BT)_l J Z m; + H;

jE€nmn.ofi
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We have again found the self-consistency equation for the magnetization that we have
already encountered in the Weiss mean field theory for the Ising model! This is again
a confirmation that all mean field theories are equivalent. Defining

2mi = E m;
jEn.n.of1

we get

this is the Bragg-William approximation.

e A

® B

(b) Triangular lattice is not bipartite.
(a) Square lattice is bipartite.

Figure 8.5: Ising anti-ferromagnet in an external field.

Example 27: Ising anti-ferromagnet in an external field

Let us consider the model
H= +JZSiSj_HZSi’ (8.42)
(i7) e

Note the + sign before J, this means that the interactions are anti-ferromagnetic.
Let us consider two cases:

o If H = 0 ferromagnetic and anti-ferromagnetic behave similarly when the
interactions are between nearest neighbours on a bipartite lattice, i.e. a
lattice that can be divided into two sublattices, say A and B, such that a
A site has only B neighbours and a B site only A ones.

Remark. FCC is not bipartite, while BCC it is. See Figure [8:5]
If the lattice is bipartite and J;; is non zero only when i and j belong to

different sublattices (they do not have to be only n.n.!), one can redefine
the spins such that

S —

{—i—Sj jeA
J

*Sj jEeB

Clearly, S;S; = —5;5;. It is like if the J;; have changed sign and we are
formally back to ferromagnetic model for the two sublattices:

H*= = J) S8 (8.43)
(i)

i.e. a ferromagnetic Ising.

e In presence of a magnetic field H, we need to reverse its sign when applied
to sites B.
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The thermodynamic of a ferromagnetic Ising model on a bipartite lattice
in a uniform magnetic field H is identical to the one of the Ising antifer-
romagnetic model in presence of the so called staggered field, i.e. Hy = H
and Hg = —H. The Hamiltonian is

FHS) =T Y S(ra)S(re)—H> S(ra)+HY S(rp), J>0,H >0

(rarp) TA rB
(8.44)
The average magnetization per spin is
1
m= i(m A+mp)

while

1
mgs = §(mA —mp)
is the staggered magnetization.

In order to use the variational density matrix method for this problem we
consider two independent variational parameters m 4 and m g for sublattice
A and B respectively. On each sublattice, the model is like the standard
Ising

p(S) = Heog, + Sngg

{p(j)(S) _ 14—%(5371 + 1_;'1‘4(55,—1

Remark. Note that, being H uniform, (S;) = m, i.e. does not depend on
i. Same for the 1—particle distribution functions pill)(S) and pg)(S).

By performing the calculation for the terms

<j-C>PMF = _JZ <SiSj>pMF - H Z <Si>PMF
(i)

i

(np),, . => T (p;np;)

as before, but remembering to partition the procedure into the two sub-
lattices A and B, one can show that the variational free energy is given
by

F(ma, J 1 1 1
M = Z—mAmB — §H(mA +mp) — ikBTs(mA) — ik‘BTs(mB)

N 2
(8.45)

where the entropy term is

o= [ (52 157 (57)]

By differentiating % with respect to my and mp, one gets

—= =0 = mp = — -
omy B zJ zJ 1—mgy

OF/N) =0 =>my = }{—kBTln<1+mB>
omp zJ zJ 1—mp

d(F/N) H _kpT (1 +mA>
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As before, since
1+

1—=x

1
tanh ™! (z) = % In
these self-consistent equations can be written as

ma = tanh(B8(H — zJmp
. (8.47)
mp =tanh(B( H — zJmy

The sites € A experience an internal field H pr = —zij from the B
neighbours and vice versa for the sites € B.

8.2.3 Second approach: Blume-Emery-Griffith model

We apply this approach to the so called Blume-Emery-Griffith model. This is a
spin model with vacancies that describes the phase diagram and the critical properties
of an interacting system displaying a tricritical point. Perhaps the most famous of
these systems is the He? — He? mixture undergoing a fluid-superfluid transition.

Remark. He* is a non radiative isotope with two protons and two neutrons. Roughly
1/4 of the universe matter is He?! From a quantum statistical point of view He? is a
boson.

A gas of He* undergoes a fluid-superfluid transition at T\ = 2.17K and P = P,.
It is known as A—transition since at 7" ~ T) the specific heat ¢(T") behaves as in
Figure the plot of the specific heat as a function of the temperature has a shape
that resembles a A. The A—transition is a genuine critical point (second order). For
T < Ty, He* is in the superfluid phase and it can be described by a two-fluids model
in which one component has zero viscosity and zero entropy.

C

: P
! A — shape melting
: curve SN
I
1 /
I
! A —line
I /
I
I Hej
: Hey;
I
I
1 2.17 T
T
(a) Plot of the specific heat ¢(T"). It has the )
shape of a \. (b) (P, T) phase diagram.
Figure 8.6

The BEG model is used to describe what happens when we add some He? to
the system constituted by He?; it does not consider quantum effects, but only the
"messing up" due to the He? impurities.

Remark. He? is a non-radioactive isotope with 2 protons and 1 neutron. From a
quantum statistical point of view is a fermion.

Experimentally when He? is added to He? the temperature of the fluid-superfluid
transition decreases. More specifically, if inserted in a system of He? it will "dilute"
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its bosonic property. Then, one expects that T decreases, as observed. Denoting by
x the concentration of He?, one observes

T)\ = T)\ (1‘)

with T (z) that decreases as x increases.

For small concentration of He? the mixture remains homogeneous, and the only
effect is the change of T\. However, when the concentration x of He? reaches the
critical value x4

ng

r>r=———~0.67
ns + nq

He? and He? separate into two phases (just like oil separates from water, the mixture
undergoes a separation between a phase rich and a phase poor of He3) and the A
transition becomes first-order (namely, discontinuous). The transition point (zy,T})
where the system shifts from a continuous A-transition to a discontinuous one is that
where the phase separation starts and is called tricritical point (i.e. it is a critical point
that separates a line of second order transition from a line of first order transition).
The BEG model was introduced to describe such a situation.

BEG Model

As we have anticipated, the BEG Model is a lattice gas model and so it is based
on an Ising-like Hamiltonian. In particular, it is the model of a diluted ferromagnetic
system. On the sites of this lattice we define a variable S; which can assume the
values —1,0 and +1: we decide that when an He* atom is present in a lattice site
then S; = +1, while when S; = 0 it means that the site is occupied by an He? atom.
We then define our order parameter to be

<SZ> = m;

In the Ising model <SZQ> can only be equal to 1, while in this case it can be either 0
or 1: we can thus interpret <5’12> as the concentration of He* atoms, and

r=1-— <S’Zz>
as the fraction of He®. We also define

A HHe3 — Hpet

to be the difference of the chemical potentials of He® and He*; since this parameter
is related to the number of He® and He* atoms, we expect that when

e = — 0 (namely, there is only He?), we have A — —oo.
e = — 1 (namely, there is only He?), we have A — +o0.

and the order parameter for the A—transition becomes

0 T>T,
<5z‘>={
m T <Ty

We consider the following Hamiltonian for the system:
N N
H=-J> 88 +A> S —AN (8.48)
(ig) i=1

Remark. N is the total number of lattice sites The AN term is a typical term for a
gas in gran canonical ensemble.
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Variational mean field approach to BEG

Since we want to apply the second variational method that we have seen, we write
the mean field probability density as:

PMF = Hpi = HP(Si)

and the free energy:

G(T,J,A) = (H), +ksT> Tr(p;lnp;) (8.49)

The mean value of the Hamiltonian is:
(0 = =T D_(5i8) +A Y (SF) — NA
(i5) i

and since (5;5;) = (S;) (5;) (it’s the fundamental hypothesis of mean field theories)
we get

(30, = —T>S () (S) + A (P~ NA
(i3) i

We have also
(S)) = (S)) = m

Therefore, the free energy of the system is:

G(T,J,A)yr = —%NJz(Trgi (piSi))? + NATrg, (piS?) — NA + NkpT Trg, (p;i In p;)
(8.50)
where z is the coordination number of the lattice.
We now must minimize this expression with respect to p;, with the constraint
Trg, (pi) = 1:
dG

=0
dpi

Let us consider each term

d (Tr(piS:))? = 2(Tr(piS:))S; = 2 (S;) S; = 2msS;

dpi
© (Te(pis?)) = 57
dpi i i
d (Tr(pilnp;)) =lnp; + 1
1, (lpilnpi)) =Inp;
then,
dG 9
dfp:—JszSi+NASi + NkgTlnp; + NkgT =0

Dividing by NkpT,
In p; = In pM(S;) = BJzmS; — BAS? — 1
which leads to
p0(S;) = %eﬂ(szSrAS% (8.52)

where we have reabsorbed e~ ! into the normalization constant A. The constant A
can be found by imposing the constraint Trg, pM(S;) =1, we find

A =1+ 2eP2 cosh(BzJm) (8.53)
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Example 28: How to compute A

By imposing the constraint Trg, p(1)(S;) = 1 (recall that S; = +1,0), we get

1 %(emzm(mw(m% 4 BGEIm(—D)=A(-1?) | eB(sz(O)fA(OF))

Hence, by rearranging

 — %(zefﬁﬁ cosh (BzJm) + 1) = A=1+2PA cosh(BzJm)

Given p(M(;) it is possible to show

(87) = Trs,(piS}) = 126—[% cosh(BzJm)

A
and A _gA
r=1— () = —2e Zosh(ﬁzjm) jx:%

Hence, substituting this expression of p; into GG, after some mathematical rearrange-
ment we get:
G(T,A,m,J)
N
In order to find the equilibrium state for any T and A, we must minimize this

expression of G(T, A, m, J) with respect to m. If we expand G for small values of m,
keeping in mind the Taylor expansions

- ng2 ~A—kpTlnA (8.54)

2 4 12
cosh(t) = 1+§+ﬂ’ In(l+t)=t-— 5
we get
T,A
G(T, A, J,m) = ag(T,A) + a(T, A)ym? + b(T, A)ym* + 6(7’)7716 (8.55)
where
ao(T,A) = —kpTIn(1 427 72) — A
_zJ -
CL(T7 A) - 2J (1 5kBT) 5 (856)
b(T,A) = &5 (B2J)3(1 - %)
co(T,A) >0
and the parameter ¢ is
efn

Note that unlike the Ising model in the Weiss approximation in this case both the
quadratic and the quartic terms, a and b, can change sign when the parameters
assume particular values. Let us also note that the order parameter of the system,
namely the concentration of He?, is:

1 1

T,A,J)=1-(S?) =" =
z(T,A,J) (S) A 1+ 2eBAcosh(BzJm)

Therefore, in the disordered phase (both He® and He* are present) we have m = 0
and the concentration of He® becomes:

1 1
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This way we can determine how the temperature of the A-transition depends on z;
in fact, the critical temperature will be the one that makes a change sign, so we can
determine it from the condition a = 0:

zJ zJ zJ

Since as we have just seen 1/ =1 — z, we have
Te(z) =Tc(0)(1 — ) (8.59)

where T,(0) = zJ/kp. The other transition (from the continuous A to the discontinu-
ous one) will occur when the quartic term b changes sign, and so we can determine the
critical value of x. at which it occurs from the condition b = 0. Hence, the tricritical
point is the one that satisfies the conditions

_ _ J
a(Tt, At) =0 = (575 = kZTt
b(T;, Ay) =0 o =3
and the value of the concentration of He® results
1 2

which is in astonishingly good agreement with the experimental result of x; ~ 0.67.

Exercise 5: Expansion of G for small values of m

Expand the free-energy per site

G z_

where A = 1 4 2¢ 52 cosh(Bz.Jm) for small values of m.

Solution. Let us define
x=pzJm, B= 2¢~ A

o 2 4
Since coshz ~ 14 % + 77, we can expans A as

[
A:1+Bcoshm:1+B<1—i—+>

2 24
Hence,
Bxz? Bz*
mA=mh(l1+B+ — 4+ —
n n( + B+ 5 + 24>
B B
~In|(1+B)(1 2 &
n{( * )< toa+p)” Tun+n” ﬂ
=In(1+B)+1In(1+1)
where
p=—B g2y B e
~ 2(1+ B) 24(1+ B)
Let us first consider the term
B 2¢—BA 2 1

1+B 142 P2 24¢fA " 5
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Since In(14+¢t) =t — %, we have

:>lnA—1n(1+B)+$—2—|— Lo x4_41 28
- 20 245 452 2452

If we remember that x = SzJm, we obtain

InA z_ o % B22JE\
—— 4= — A ~a(T, A —J -
5 +2Jm ao(T, )+(2J 55 )™
1 1 3,4 74, 4 L 256716, 6
—1—%—%5sz+2462§sz

Hence, the free energy G for small values of m is
G(T, A, J,m) = ag(T, A) + a(T, A)ym? + b(T, A)m* + (T, A)mS

where

2 5
CBAT 1 1\ B 5
I 86 \s 3 52\l 73
_B5Z6J6
ol B) = =15

8.2.4 Mean field again

Another way to introduce the variational approach and the mean field approxima-
tion often discussed starts from the general expression of the variational free energy
Fvar = <g—f>

+ kBT <1H pTR> (862)

PTR PTR

We have to choose a family of distribution. If one assumes that the family of trial
distribution is of the Gibbs-Boltzmann form

e~ BHrr ( )
= 8.63
PTR Zrn
with
Zrp = e PIrR — Z e PHTR({®:}) (8.64)
{®:}
then, since
Inprr = —BHrr —InZrg
we have o
—JITR
kT (ln pTR>pTR = kgT < kpT > + kT <* In ZTR>
BFrR
By rearranging,
ksT (Inprr),, . = (=Hrr) + Frg
Hence, the variational free energy becomes
Foor = <j{>,0TR = <}CTR>pTR + Frp = <9‘C = iHTR>PTR + Frg (8.65)
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Clearly, F' < F,qr and one has to look for the minima of Fy4, by varying prr. Within
this approach, the mean field approximation is still given by

N
1
P (@1, on) =[] k(@)
i=1
that in this case becomes
N 1
1 B bbb
HP(TJ)z(‘I)i) = ZMF° Pt (8.66)
i=1 TR
and
R = Z e B2ibi®i (8.67)

{o}

where b; are the variational parameters. The Hamiltonian is
Hrr=— Z b;®; (8.68)
i

If we consider again the Ising model (remind that it means ®; — S; = *1), the

Hamiltonian is
=-J) SiS;—H Z S;

(i5)
Hence, Eq.(8.65) becomes

Foar = (H —Hrr), .. + Frr

PTR

(i5) i ‘
= Frrp+ <—JZSiSj + Z(bz - H)Sz>
(i) ‘ PTR

= Frp — JZ (SiS;) pTR+Zb— AP

PTR

Since prr = Hf\il pi, we have
(9i83) prn = (9 prn (53} oo

Therefore,

var—FTR_JZ PTR PTR+Z PTR

Let us minimize the last equation, we consider the condition:

8Fvar _ .
o 0, Vi
which gives
aFW 9 (Si)
0= —=|-J g pTRer—H o,

JENN.T
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The variational parameters are equal to
bi=J Z PTR
JjEN.N.T

Let us calculate the average of the spin (S;),

ZS Bk Skbr — Hk Zsk Sieﬁskbk

_ Dg—t1 SiePSib ginh(8b;)

< i>PTR - ZTR

D=1 €75 cosh(Bby) anh{5t:)
Finally, the variational parameters are
bi=J >  tanh(sb;)+H (8.69)

jEN.N.T

Remark. The main step to understand is how to derive Fq, from a prgr. This is nice
to see a variation with respect to the real hamiltonian. Consider a bunch of data,
for instance a million of configuration, which is the distribution of the configuration?
Usually, we build up a model with a distribution that depends on parameters and
what we want to do is statistical inference. Starting from the model and the data we
have to obtain the real distribution.

Exercise 6 !

Consider again the antiferromagnetic Ising model

H{SH=-J ) S(Ea)S HZSrA —|—HZS

(FATB)
whith J > 0 and H > 0. Remember that

e r'4 denotes the site on the A sublattice.

e rp denotes the site on the B sublattice.
Let us find again the mean-field solution, but now using the variational ansatz
— (Hrr)

Remark. Since the problem can be splitted in two sublattices, it is convenient
to use

7L T = (04 + Frr=(H —Hrr),. + Frr

PTR PTR PTR

Hrp=—Hay S(ra)—Hp) S(rs)

TA

In particular:

e show that F),,, has the following expression:

Fyar :FTR(/BH/h /BHB) —4ANJ <SA>pTR <SB>pTR

1 1
B §NH(<SA>PTR - <SB>PTR> o §N<HA <SA>’)TR +Hp <SB>pTR>
where
(Sa)prp =matn
(Sg), . =mp—n
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with m = m4 + mp, and

ma = tanh(SH — 48Jmp)
mp = tanh(BH — 45Jm )

e Expand the free energy F,q. in powers of m of the form
Foar = A+ Bm? + em* + O(mﬁ)

and find the explicit expression of A, B and C' as a function of 7', H and
n.
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Chapter 9

Non ideal fluids: Mean field

theory, Van der Walls, Virial
expansion and Cluster expansion

9.1 Mean field theory for fluids

Ideal gases are exceedingly idealised systems and are not suited to describe the
behaviour of real systems: they always obey the same state equation and never
undergo phase transitions (for example they never condense). We must therefore
step a little further: using the "philosophy" of mean field theories we can make the
description of fluids a little bit more realistic. As we will see this will also lead to
the derivation of the Van der Waals equation, which better describes the behaviour
of real fluids (even if, as we will shortly see, it still has some problems).

In general, in a real gas all the atoms or molecules interact through a certain po-
tential ®({r;}) that will depend on the positions of all the particles. For a fluid system
of N particles with position vectors {r;};=1 . n, the configurational contribution to
the (grancanonical) partition function will therefore be:

N
Qn(T) = /v [] i e (PUEDHEL, e () (9.1)
=1

where ¢, 18 a one body external potential, but we do not consider it because is not
the aim of our problem. In general,

O{F}) =D Ua(Fi,Fj) + Y Us(¥i F,5,) + ...
i#j i
(where U, can be a generic n-body interaction potential). For simplicity, we do not
consider Us, that is the three body interaction. Let us suppose
Ua(ri, ) — Un(|7; — 1)
Therefore,
N
Qn(T) = / [ ;e Sews Va5
Vi=1

Now, we replace all this story with just a field, it is a sort of average of the interactions.
Doing the mean field assumption for Us, we obtain
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Generally 1)+ does not pose great problems while it is ® that makes Q) impos-
sible to compute exactly, forcing us to resort to approximations. In the framework of
mean field theories, we substitute the interaction potential ® with an effective single-
particle potential that acts on every particle in the same way. Hence, the mean field
approzimation consists in substituting the multi-body interaction potential ®({r;})
with an effective one body potential ®(r) withing which all the particles move:

o({r;}) = Z(I)MF(FZ') (9.2)

As said, for simplicity consider 1.+ = 0, hence mean field theories allow us to compute
QN as

N
ME(T) ~ [/V dDFe_B‘bMF(F)} (9.3)

Remark. The integral depends on the form of ®p;r(r). Of course, every particular
mean field theory will provide a different form of ®;p(r) which will lead to different
results.

If one assumes spatial isotropy, what it is important is not anymore the vector but
only the distance; hence, it is important just the integral over the modulus:

Ppr(T) = Pyr(|F]) = Pur(r)

9.2 Van der Waals equation

The Van der Waals equation can be obtained considering the atoms of a gas as
hard spheres. In this case, in fact, the mean field has the form:

o0 r <rg repulsion

Dyp(r) = { (9.4)

u<0 7r>rg attraction

as plotted in Figure 9.1}

Dyp

To

Figure 9.1: Plot of the potential ® s p(r).

The partition function becomes

N
NE(T) = [Viae™ 4+ (V = Ver)e
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where V., ~ TS’ is the volume not accessible by the particle. Finally, the result is
MF —gu|N
NE(T) = [(V = Ve ] (9.5)
The free energy is Fy = —kgT In @y, hence
FNF(T) = =NEpT[In (V — Ver) — Bu] (9.6)

Let us calculate the pressure

MF _
Py’ =

MF
_ 8FN . NkBT <5‘u> (9.7)
T

WV |y V-V \OV
Remark. In general, the deep u can go up and down depending on the V:u = u(V).

This is because u is the attractive well of the mean field potential and, for » > rg
must be proportional to the fluid density

u~—N/V

where the minus sign means attraction. On the other hand, also V., the volume not
accessible, must be proportional to N.

Hence, we have
Vez = bN

where b is the volume of a single particle. Inserting the last term in (9.7)), we obtain
the Van der Walls equation of state:

NkgT N2
PYEwW,T) = V—bN_a<V> (9.8)

9.2.1 Critical point of Van der Waals equation of state

Let us define the specific volume as

4 (9.9)

The behaviour of the Van der Waals isotherms is shown in Figure[0.2al As we can
see this changes with the temperature and resembles that of real isotherms; however,
Van der Waals isotherms are always analytic and have a non physical behaviour in
certain regions of (v, P) plane, called spinodal curves, if T' < T,: for some values of
v we have OP/0v > 0 which is physically impossible. This is a consequence of the
roughness of the approximation we have made, since it can be shown that it doesn’t
ensure that the equilibrium state of the system globally minimizes the Gibbs free
energy. As we will shortly see, however, this problem can be solved "by hand" with
Maxwell’s equal area rule, or Maxwell’s Construction. Overall, we have this effect
because it is a mean field, so the curve in Figure [9.24] it is replaced by the curve in
Figure Moreover, for T' < T, the equation P(v) = const has 3 distinct solutions.
For T' > T, only one solution € R.

Let us now see how to determine the critical point of a system obeying Van der
Waals equation.
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P flex P
isotherms
PC
Px |- -
I I
| |
1 1
I I
| |
v
vy, VG v
(a) Van der Waals isotherms are represented
in red in (v, P) diagram for different values of (b) Real isotherm in (v, P) diagram for T' <
T. T..
Figure 9.2

e First of all, from the representation of the isotherms we can see that the critical

point is a flex for the critical isotherm (i.e. the one with T = T,); in other
words, we can determine the critical point from the equations:

oP 0 o*pP

o Ov?
The second in particular means that there is a flex point. Let us pay attention
to it, indeed it is a standard way to find critical points. We obtain

=0

a 8a

kpT.

c=3b, Po= i, =
Ve = 3b 2702 27b

Another way to find the critical point consists in noticing that at T = T, the
3 solutions coincide. In fact, we can note that the equation P(v) = P = const
is cubic in v. Let us rewrite the Van der Waals equation

p_ v2kpT — a(v — b)

v2(v —b)
* kpT b
3 _ B 24 %, % _
v <b+ >1} + Fokd 0 (9.10)

For T > T, this equation has one real solution and two imaginary ones, and
for T' < T, three distinct real solutions; when 17" = T, the three solutions of
the equation coincide. This means that at the critical point T = T, this last
equation Eq. must be written in the form:

(v—2)>=0 = v> =302+ 302 —v2=0

Equating the coefficients with Eq.(9.10) we get:

ab a kT,
UEZFC7 31}2:?0, 3v. = b+ PCC
from which we have again:
a 8a
—3h. P.— _ kpT. = — 9.11
Ve =90 TeZome FBleT o, (9-11)

We have found a very interesting result: in fact, if we can measure a and b
at high temperatures then we are able to determine the critical point of the
System.
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This model has also an interesting property, since it predicts that:

P.v. 3 N
T 3 0.375

which is a universal number, independent of a and b and so of the particular
fluid considered. Experimentally this ratio is approximately 0.29 for Argon,
0.23 for water and 0.31 for He?. Therefore, even if it is very rough, this model
leads to reasonable conclusions.

9.2.2 Law of corresponding states

The universal value of the ratio g—”Tc suggests a deeper correspondence between
(&

different fluid systems. We can also rewrite Van der Waals equation in a dimen-
sionless form, rescaling the thermodynamic quantities of the system. In particular,
defining:

P 27° v T 27b
W:E— a s V:;C—%, T:i—kBTg (912)
Van der Waals equation becomes:
3
T+ 3 (Bv—1) =87 (9.13)

We have found another very interesting result: when rescaled by their critical ther-
modynamic properties (by P.,v. and T¢), all fluids obey the same state equation.
This is the law of corresponding states: this is a form of universality. The law of
corresponding states applies everywhere on the phase diagram. It can even be shown
that this law is a consequence of dimensional analysis, and is more general than what
might seem: experimentally the law of corresponding states is well satisfied also by
fluids which do not obey Van der Waals equation.

9.2.3 Region of coexistence and Maxwell’s equal area rule

In real fluids, for T' < T, (7 < 1), there is a first order liquid-gas transition with
coexistence between vapor and liquid phase and non analiticity of the thermodynamic
potential. In particular, a real isotherm for T' < T, is the one in Figure How
this is described by the mean-field (i.e. Van der Walls) theory? The Van der Walls
isotherm for T" < T, is given by the graphic in Figure The liquid phase goes
into a phase region that is not thermodinamycally stable. How can we remove the
non physical regions of the Van der Walls equation of state and describe coexistence?
The solution is the Maxwell (or equal area) construction!

Equal area or Maxwell construction

As we have previously anticipated, Maxwell’s equal area rule is a method to "man-
ually" remove the unphysical regions of Van der Waals isotherms.

From phase coexistence and general properties of phase transitions we know that
at the coexistence of two phases the chemical potentials and the pressures of the two
phases must be equal; furthermore, from thermodynamic potentials we also know
that the chemical potential is the Gibbs free energy per particle, namely G = uV,
and in general we have also:

dG = —SdT + VAP + pdN
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smooth curve — no singularity

‘g—g >0 non physical
region

UL vG v

Figure 9.3: Van der Waals isotherm for T' < T..

Now, differentiating G = pIV and subtracting this last equation we get:

S 1%
du=—24dT+ = dp
p=-ynd Tty

Therefore, since along an isotherm d7T" = 0, we will have:

,
dy = —dp
=N

At the coexistence we have also d Pcpe;: = 0, hence
dp=0
is the physical condition. Recall that for Van der Wall d P # 0! Hence, the physical

coexistence condition implies

2 p
= — w 1 L
0 / dlu’ /1’(2) H(l) Vande__r alls _ dPV
! N Pe

Looking also at the Figure[9.4] we see that this means that the horizontal segment of
the isotherm must be drawn so that the two regions have the same area (from which
the name of the method). The integral can be partitioned in two parts

P, Py P,
0—/ Vdar = VdP——/ dPV
PG PG T

Hence, the equal area condition gives the value of P, of the coexistence line!
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vL Uz vG v

Figure 9.4: Maxwell’s equal area rule: Van der Walls isotherm for T' < T..

9.2.4 Critical exponents of Van der Walls equation

Let us now study the behaviour of systems obeying Van der Waals equations near
the critical point, computing one of the critical exponents.

B exponent

Let us recall that the equation of state is

<7r+52>(3u—1):87'

where
P v T
T=—, V=—, T=—
P, Ve T,
Let us consider
t=r7-1=1L
T T. (9.14)
d=v-—-1= —”;C”C

indeed we want to analyze the deviation from the critical point. Close to the critical
point we have r ~ v ~1and t ~ ® ~ 0.

We now expand the equation of state with respect to t and @ in the neighbourhood
of the critical point:

3
— | 3(P+1)—-1)=8(t+1
(7 g ) B@+ D =D =8(t+ 1
By rearranging,
8(t+1) 3
2@4+1)—1 (1+P)2
Expanding for & ~ 0, since we have

=71 =

(1+(I))a:1+aq)+a(a_1)q>2+a(a_l)(a_Q)q)ii

21 3!
we obtain

27

T~ (1+1) <4—6<I>+9<I>2— 5

<I>3+--~>—(3—6<I>+9<I>2—12<I>3+--~)

3 27
~ 1+ 4t — 6Bt + 9P%t — =3 O3t 4 -

2 2
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Finally, the result is
3
T~ 14 4t — 6tD — 5<I>f”+()(75<1>2,c1>4) (9.15)

where the terms we have neglected are justified a posteriori (i.e. we will see that
® ~ tY/2; we could have not neglected them, but the result of the computation
doesn’t change).

The strategy we want to apply is the following: since we want to determine how
® changes with ¢, we can determine the relation between the densities ®, and @,
in the gaseous and liquid phase from Maxwell’s equal area rule. This way, from the
expression of m we can determine the pressures in the two phases and express them
in terms of ®, or ®;, and since m; = 7, at the coexistence we can obtain from this
equation the behaviour of ® in terms of t.

Hence, as said, in order to get the values of vg(P) and vz (P) at coexistence, we
use the Maxwell construction »

L
/ vdP =0
Pg

and since v = (® + 1)v. and dP = P.dw we have:
gas
/ (@ + 1)v.Podr = 0 (9.16)
lig
Let us consider T' < T, fixed (it is true if and only if ¢ < 0, but small), hence

m=m(v)=m(P)

From Eq.(9.15)) we have

drm ~ —6tdd — gqﬂ dd

Thus the result of the differential dP = P.dm is

dP=P. [—Gt dd — 2@2 d@}

Then, from equation ((9.16)) we have the integral

[}
/ ’ <I><—6t . gqﬂ) dd =0 (9.17)

Py

hence,
@2
t+
Y

(1)2
—302 + 307 [t + l} =0
9

Since ¢ is small we can neglect it, and so:
O =P} =y =+d

Remembering that:

Vg — U,

g c
o, =L —° =
Ve Ve

U — Ve

we see that the only acceptable solution is

O, = —P, (9.18)
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(since the volume of a gas is larger than that of a liquid). Therefore, substituting ®,
and p; = —pgy into the expression of 7 (Eq. (9.15)), we get

3
(I>g—>7rg:1+4t—6t(I>g—§<I>3

3
<I>l—>7rl:1+4t+6t<bg+§<bg

The two expression of 7 must be equal 7, = 7 since we are at the coexistence.
Solving with respect to ®, we get

3pg(4t + PS) =0

and excluding of course the case p, = 0, in the end:

(9.20)

. 1/2
Dy =2/t ~ (TC T)

T

which implies

B=z (9.21)

9.3 Theories of weakly interacting fluids

If the gas is not ideal but made by weakly interacting particles, it is possible to
follow a perturbative approach to compute the partition function of such systems. Let
us consider N particles in region 2 of volume V. Particles interact through a generic
two-body potential that depends only on the relative distance between the particles:

Us(T,T)) = ®(|F; — )

Hence,

— U{E) = % S0 (| — 1)) (9.22)
,J

Its Hamiltonian will be:
Ho({ih) = 30+ 3" a(lf - 1)) (9.23)
i=1 ij>i

and its partition function in the canonical ensamble:

Za(N,V,T) = 5w Qu(V,T) (9.21)

where

QN(V,T):/Vdf‘l/vdFQ---/VdFNexp[—BU({F})] (9.25)

Remark. Of course for ideal gases U = 0, and so

idea VN
ANV, T)=VN 5 zideal — NTAN

and the dependence on T is exclusively due to A = A(T') (i.e. kinetic energy).
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Now, suppose U # 0, but small! If we consider also the interaction terms we must
insert a correction x in the configurational contribution to the partition function.
We can say that our Qn(V,T) it would be the on of the ideal version times a new
function

Qn(V,T) ~ VNY(N,V,T) (9.26)

which (depending on the possible presence of attractive terms in the interaction po-
tential ® can in general be also a function of the temperature T'; furthermore the
correction depends strongly on the gas density: if it is low the particles will not "per-
ceive" the presence of the other ones and the ideal gas approximation is a good one,
while for high densities the particles will be closer to each other and corrections to
QN are necessary.

Remark. If ®@ is only repulsive, x does not depend on 7.

Let us note that inserting the correction y, the free energy of the system will be:
Fry = Fided _ pTIny (9.27)

As previously said, the correction x due to particle-particle interaction depends on
the particle density p of the fluid:

sma =U=0
{'0 g (9.28)

Phigh = U # 0 and not negligible

This suggests that the equation of state of a weakly interacting gas can be expanded
formally in powers of p. This is known as wvirial expansion.
In particular, for the ideal gas:

P

kgl "

For a non ideal gas, let us add the other terms of the expansion

o =+ BaT)P + BoT)p 4+ O(p") (9.29)
this is a virial expansion and it is one of the most used. The coefficient B are
called the wvirial coefficients. The Eq. was first introduced as a formula to fit
experimental data. Indeed, making a fit, you will obtain the virial coefficients. This is
what physicist have done for years. Then, mapping the coefficient with the real world
experiments, we can find some macroscopical parameters. The formula can be
also obtained rigorously from a perturbation approach to the partition function (as
we will see later). Now, the question is: which is the virial expansion of a Van der
Walls (i.e. mean field) gas?

9.3.1 Van der Walls and virial expansion

Let us see for example the virial expansion of the Van der Waals equation. From
Van der Waals equation we have:

P N  aN?
kgT ~ V —bN  kgTV?

Let us factorize the term (N/V),

P (NN( M) e (VY
kgT — \V v kpT \V
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Then, by expanding in power of (N/V') and defining p = N/V, we have

- = (2)+ () G (' ()

=p+ (b—&>p2+b2p3+b3p4+...
B

We can thus immediately identify the first virial coefficient:

B2 (T)VdW —b— kZT’ B;)/dW — b2

where in Bo(T)VW the first term is repulsive on excluded volume and the second
one is the attraction term. We note also that B;‘{ W is always positive.

Boyle’s temperature T

The Boyle’s temperature is the T at which the second coeflicient is zero:
By ™(Tp) =0

so we have removed the most important coefficient. The competiting effects of repul-
sion and attraction are cancelled out. In this case, the Van der Walls temperature
TVdW is
B a
TVdW —
B bk

to be compared with the critical temperature 7YV that is

vaw _ 8a
c 2763

We notice that 7V « ngW. It is clear that the Boyle’s temperature must be
much greater than the critical one.

Remark. Consider a polymer, the transition point called the 6 point is when the
second coefficient is zero, as the case described above, but it is interesting in polymer
kind of system (lesson).

9.3.2 Cluster expansion technique for weakly interacting gases

We now obtain the formal virial expansion by starting from the microscopic system
and performing a perturbation expansion of the Boltzmann weights for small values
of U. Let us start from the partition function

Qn = / dsy - - / dity e PUARD = / dr - - / dey e 2ig>i Pij (9.30)
14 \%4 \%4 14
where we have used the short notation
®;5 = ®(|r; — 1)

The idea is to find a "small quantity" in terms of which we can expand @Qp; this
quantity is the so called Mayer function.

Definition 8: Mayer function

The Mayer f-function is an auxiliary function that often appears in the series ex-
pansion of thermodynamic quantities related to classical many-particle systems.
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It is defined as .
F(IF]) = e P20 1 (9.31)

Remark. Note: if f®(r) < 1, we have f(r) < 1.

In fact, when the gas is ideal f(¥) = 0, and if the particles interact weakly ® is
small, and so is f(r). In particular, this expansion will work well for low densities
(namely |r; — 1| is large and so ®(|r; — rj|) — 0) or high temperatures (namely
B — 0): in both cases, in fact, e #®F=Til) — 1 and f(|¥; —T;|) — 0. Using the short
notations ®;; = ®(|r; — r}|) and f;; = f(|; — rj|) we have

= e et = [T 0+ £)

i \j>i

=14+ fi2)(A+ fiz) ... L+ fin) .- (L+ foz)(1 + faa) ... (L + fon) ...

i—1 =2
=1+ fio+ fiz + fizf13)(1 + fia) ... (1 + f23)

N
:1+ZZfij+ZZ fifr +O(f?)
i j>i =1k ISk j>i (i) (k)

fij = 6_/8(1)” -1

where

Higher order terms contain products of 3,4, ... f;; terms. For simplicity, let us con-
sider first only linear terms. Hence, the solution is given by considering only the
linear term. This is the cluster expansion.

As said, this first approximation is reasonable if either

1. pis small enough. It implies that |r; — rj| > 1 and hence ®;; < 1.

2. Sufficiently high T" such that ®(|r; —r;|)/kpT < 1. What is important it is
the ration between 5 and ®;;.

In either cases we have exp(—f8®;;) — 1 and f;; — 0. By keeping only linear terms,
the configurational contribution to the partition function will be

dFy .. dEy [ 14> fij+ ... :VN—FZ/dFl---/dFNfU
SV |4

i,j>1 i,j>1

:VN+VNZZ/‘/dFZ-dij¢j+...

7,7>1

axvr) = [

v

We are summing up over all configurations ¢j. Let us try to compute the double
integral, with the definition of a new variable ¥ = r; — -

/dI_“Z/ df‘} fz](’FZ—FJ|) transljtional/ df‘}/ de(F) :V/ de(|F|) = —QBQV
v v symmetry v v v
Hence,
1 -
By = _2/ dF f(|5]) (9.32)
14

From this we see precisely how the virial coefficient, which as we have already stated
can be experimentally measured, is related to the microscopic properties of the in-
teraction between the particles, represented by the Mayer function f. It can also be
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shown that all the virial coefficients can be expressed in terms of integrals of products
of Mayer functions: higher order coefficients involve the computation of increasingly
difficult integrals, which can however be visualized in terms of graphs.

What we have seen now is how the cluster expansion works in general. Let us
now apply it in order to find the virial expansion for real gases. From what we have
found, the configurational partition function of the system becomes:

Qn(V,T)=VN —VNTIBy(T) > 1+ ...
1,0 >1

The remaining sum is equal toN (/N — 1): in fact, for any of the N values that i can
assume, j can have N — 1 values. These are all the possible connections (bonds)
between pairs of particles (7, j) with 7 > i. Hence,

QnV,T)=VN —VNZIBy(T)N(N — 1) + ... (9.33)

and, considering that NV — 1 =~ N for large N, the complete partition function of the
system will be:

ZN(V,T) = (%) <1 - ]‘\TBQ(T) + .. > (9.34)

We recognise in this expression that (1 — BaN?/V + ---) is the correction x to the
ideal gas partition function that we have mentioned earlier; therefore, the free energy
of the system will be:

, N2

and its pressure:

P —_<8FN> _ NRT () NB, \ NkgT(1-%B,+XB,
N oV TN % _N7232 174 —N7232

Expanding the denominator for %Bg <1 p <K 1, one gets

NkgT N
Py ~ 1+—B .
N v < 4 % 2 + ) (9.36)

here we see the correction to the ideal gas.

Remark. The equation gives an important relation between experimentally
accessible observables as Py and microscopic quantities such as f(r) (and hence
®(r)) trough the estimate of By. Therefore, it is important computing By, because
one time we have this we have the expansion. Or if we wish, by doing the fit of data
at different temperature we obtain By from the experiment and we can see f;;.

The expansion in Eq. contains only low-order terms in the density N/V, so
strictly speaking it is valid only for low densities. To consider higher order terms in
the virial expansion we need to consider higher order products of the f;;. However,
we can use a "trick" in order to extend its range; in fact, remembering that the
McLaurin expansion (1 —x)~' =142z +..., from the Eq. we can write:

PV Byt —
NkgT =T P72 ~1-Byp
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and now re-expand (1 — Bap)~!, so that we can express all the virial coefficients in
terms of the first one:

1

-~ ~1+4B B)?p? + (Bo)3p® + ...
By + Bap + (B2)"p” + (B2)"p” +

Hence,

P
— = p+ Bap® + (B2)?p’ + (B2)’p* + ...
kT

Identifying the coefficients for each power we get, in the end:
By~ (B)?, Bi=(B2)’, ..., Bnm(B2)"

This is the approximation of higher order virial coefficients with powers of Bs.

Remark. One question at the exam can be: let us compute virial expansion of a gas
in a potential.

9.3.3 Computation of virial coefficients for some interaction poten-
tials ®

Let us now see this method in action by explicitly computing some coefficients Bo
for particular interaction potentials.

Hard sphere potential

The particles are interacting (it is not ideal!) and there is a size that is the range
of the potential. As a first trial, we use a hard sphere potential similar (see Figure
9.5)) to the one we have seen for the derivation of the Van der Waals equation:

O(r) = {;O : i Z (9.37)

(the difference with what we have seen in Van der Waals equation is that now the
potential is purely repulsive, and has no attractive component).

d

Figure 9.5: Plot of the hard sphere potential ®(r).

In this case,

- _Bd(r -1 r<o
f(®) =e 5‘1’0—1:{0 e (9.38)
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Therefore, from the definition of By and shifting to spherical coordinates:

L[ ag e L [ 2] 50 7 a2 3
BQ(T):_§ vdrf(‘r‘):—§47r ; drr {6 —1] =27 ; drr =370

2
= BIS(T) = gm3 (9.39)

this is the second virial coefficient for a hard sphere gas. As expected Bf S does not
depend on temperature (purely repulsive interaction). Finally, for hard spheres we
have:

2 4N
PV = Nk:BT(l + 37r03V) (9.40)

Note that the excluded volume interaction (hard sphere term) increases the product
PV with respect to the ideal gas.
Square wall potential
We now use a slight refinement of the previous potential:
+oo [P < ro

O(f)=q—c ro<I[t]<ro+9 (9.41)
0 || >rg+0

This can be seen as a hard sphere potential where the spheres have an attractive shell
of thickness . We thus have:

-1 ’f’ <70
@) =<ef—1 ro<|t|<rg+6 (9.42)
0 ’F| >7rg+0

so that:

By — _;/f(|f|)df: — /47rr2f(r)dr _

— _or UO (—r2)dr + /TOM (e 1) T2dr] _

To

rs ePe—1 < 2 ;
__277{_30"‘ 3 [(T0+5)3—T3]}—B§"—3ﬂ(eﬁ —1) [(ro +8)* — r§]

where B S is the first virial coefficient of the hard sphere potential we have previously
seen. Now, if the temperature is sufficiently high, namely Se < 1, we can approximate

ePe — 1 ~ fe, so that:
2 5\*
By = B — Zxperd <1 + ) -1 (9.43)
70

3

For the sake of simplicity, defining:

we will have, in the end:

PV
NkpT

2 me
=14+ Byp=1+ <B§S - 3k7;T7“3)\> p (9.44)

so in this case By actually depends on the temperature.
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Lennard-Jones potential

This potential is a quite realistic representation of the interatomic interactions. It
is defined as:
o 12 o\ 6
o= 45[() - (f) ] (9.45)
r r

which contains a long-range attractive term (the one proportional to 1/r% which
can be justified in terms of electric dipole fluctuations) and a short-range repulsive
one (proportional to 1/7'2, which comes from the overlap of the electron orbitals,
i.e.Pauli excluded principle). This potential is plotted in Figure The minimum
is in rmin = 21/9. We can play with the range of attraction by changing ¢ or by
changing the e.

Figure 9.6: Plot of the Lennard-Jones potential ®.

With this interaction potential, the first virial coefficient is:

By(T) = =27 /OOO 7 [e R [(%)127(%)6] —1|dr

which is not analytically computable. However, it can be simplified defining the

variables

r kT
T = —, T= -
o €

so that, integrating by parts [ f'g = fg— [ ¢’ f where f’ = 22g = exp[—()], we obtain

. o0 _4afa__ 1
By (T*) = 27r054/ x2< 12 6)6 T(z” zG) dz
0

3 T 212 gf
o0 4(_1 1
a2 )G 0
0 216 4
Now, we can expand the exponential and integrate term by term; this gives an ex-
pression of By as a power series of 1/7:

00 2n+1

Ba(r) = —24' > 41mr<2”4_ 1) <i> ' (9.46)

n

where T" is the Euler function and A’ is a constant. Note that the attractive part of
the Lennard-Jones potential has introduced in By a dependence on the temperature.
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9.3.4 Higher order terms in the cluster expansion

Let us consider again the formal expansion

H H(1+fz‘j) =1+§ fij + E fij e+
i \g>i i,5>1 i

7>

>k

k>i

(i) 7 (kL)

The problem with this expansion is that it groups terms quite different from one
another. Fro example the terms fi2fo3 and fi2f34. Indeed the first term correspond
to a diagram as in Figure [9.7a] while the second to two disconnected diagrams as in

Figure [9.7D]

1 3 1 3

(a) Diagram of fi2 fos. (b) Diagram of fi2 fss.

Figure 9.7

Another problem of the above expansion is that it does not recognize identical
clusters formed by different particles. For example the terms fio fo3 and fi2f14 con-
tribute in the same way to the partition function. It is then convenient to follow a
diagrammatic approach similar to the Feymann approach in the reciprocal space.

For the linear term f;; the only diagram is given by Figure 9

As we have seen this has multeplicity

N(N —1)
2
and the integral is of the form

/ frodFdi, =V / F(F)di = —2V B,

Figure 9.8

For the term f;;fi; we can have the case as in Figure
that has molteplicity
N(N —1) (N - 1)(N —3)1

2 2 2

and the integral is of the form

/ f12f34 dry Ay dr3 Ty

i.e. involving 4-particles

o o - = i i g, Figure 9.9
/f(|I‘1 — I‘2|)f(’1‘3 — I‘4|)dI‘1 dI‘Q dI‘3 dI‘4 =

2
=V? (/ f(F) df’) =4V*B3
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The next case if for instance as in Figure[0.10] This involves
3 particles. The multiplicity of this diagram is

N(N —1)(N —2)
31

X 3 j=k

The integral is of the form

2
/f12f23df‘1 dry drs ~ V(/ deO")) = i I

= /f(|f-1 — T|) f(|Fy — T3]) dFy dFp difs = (9.47) Figure 9.10

= V</ f(¥) df‘>2 =4V B2

Another interesting diagram is the one in Figure Its
molteplicity is
N(N - 1)(N —-2)

3! j=k
The associated integral involves 3 particles and it is of the
form
/ fi2f23f31 dr1 dra dr = ) Z
= / f(F1 = F2|) f (|72 — T5)) f(|T5 — F1[) dFy dF2 dFs Figure 9.11

= / FIry = wa|) f(IF2 — T3)) f (|75 — F1[) dFy AT dFas

On the other hand r13 = a3 — Fa1, which implies
f(IFs = 11]) = f(|F2s — T1)

Hence,
/f(lf12)f(lf23\)f(\f31!) dry drpg dr = / F(F12]) f(IT23]) f (|F23 — Fa1[) Aoy dog AT
Let us call this integral

/ f12f23f31 ATy ATy dFs = 31V (Bs — 2B3) (9.48)

The configurational partition function with the terms in Eq[9.47]and Eq[9.48 becomes

N-1) (N —1)(N — 2)(N — 3) “1)(N - 2)

N( N N(N
N N N 2 N 2
QN(V,T)=VN -V BtV e (4B3) +V e 4B2
N(N —1 N(N —1)(N —2)(N -3 N(N —1)(N -3
:VN<1+( % )BQ—‘r ( )(2v2 I )B§+ ( V)Q( )B3
(9.49)

Let us now face the problem in a slightly different ways. Let us remind that

v = 3 [T fud™s (9.50)

diagrams kl

where the sum is over all possible diagrams, i.e. all possible ways in which ones can
draw edges between pairs of points (k,[). For each such diagrams I have to product
between all edge and then integrate over the configurational space (N points).
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1 2
o o
® — 3 or or
o 4

1 diagram 2 diagram

Figure 9.12: Example of connected diagrams for i = 4 sites.

Let us now consider only connected diagrams for ¢ sites. In other words given ¢
points (7 particles) from a system of N points and I consider all the possible ways I
can connect these i points (an example is shown in Figure .

For each diagram we take the product [[,; fw and then integrate over the position
of the i points (i particles). For a fixed diagram:

/ I fudr...dr

kle diagram

Example 29: Diagram for ¢ = 4 sites

For example the diagram 1 in Figure [0.12] gives the contribution

/ f12f13f34 dry drp dr3 dry

The diagram 2 gives

/ f12f13 f23 f34 ATy ATy dT3 ATy

and so on.

Finally, we sum over all these connected diagrams of ¢ points:

Z/ I fudr...dr

connected lke diagram
diagrams

the results is what we call (i!V B;) and defines B;. Let us analyze what happens for
different values of ¢ points:

e case i = 1: clearly By = 1;

e case i = 2: just one edge, hence we have just one connected diagram. The
integral becomes:

/f12 dfl dI_"Q = -2V By

e case ¢ = 3: the connected diagrams are shown in Figure [9.13]
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2 2 2 2
/‘\ + i n i 4 i i
1 3 1 3 1 3 1 3

Figure 9.13: Connected diagrams for ¢ = 3 points.

Z / H frdrydry drz =

connected diagrams kle diagram
of ¢ = 3 points

— / Fra fas AF) dis s + / Frafra dE) dFy dF + / Frafos dF) dFs Ay

3V([ f(F)dr)?
+ / J12f23 f13 dry dr2 drs
31V (B3—2B2)
Hence,
> [l  fudfidadis = 3V(—2B,)? + 6V/(Bs — 2By)
connected diagrams kle diagram
of ¢ = 3 points
— 6V B; = 31V B;

Eventually, for the partition function we have to sum over all possible clusters.
One possible procedure is:

1. given the N points we can partition them into connected clusters. For all ¢
points we can make m; clusters of that size 7.

)

For each cluster of size ¢ we have a term (i!V B;). If there are m; of them we
have a weight (:!V B;)™:.

2. Now, we have to count in how many ways we can make the partition of NV in a
set of {m;} clusters. Clearly if we permute the label of the NV vertices we have
possible different clusters. In principle, this degenerancy is proportional to N!

On the other hand, if one changes the order of the labels within a cluster (in !
ways) this does not change the cluster and since there are m; clusters of size i
we have to divide by (i!)™i.

Moreover, since there are m; clusters one can swap them (in m;! ways). The

. N!
degenerancy is IR Therefore,

ovv,T) =Y ]I M(i!v&)mi (9.51)
{mi} i
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e O o

e O o

® o ® 9 ® 9
(a) Description (b) Description

Figure 9.14

Exercise 7: N =9 points
Consider the N =9 points in Figure

1. Partition these points into clusters, as in Figure [0.14h]

For this partition {m;} we have my = 1,my = 2,m; = 1. Now, the cluster
of size 4 can be connected in a given different ways (4!V By)!.

2. Compute the degenerancy of this case (More on Huang chapter 10).
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Chapter 10

Landau theory of phase transition
for homogeneous systems

10.1 Introduction to Landau theory

Landau theory is a phenomenological mean field theory of phase transitions that
aims at describing the occurence of phase transitions in a unitary framework (no spa-
tial variation of the order parameter). Landau theory is based on some assumptions,
which we now introduce:

1. Existence of an unfirom order parameter 1. Remember the definition of the
order parameter:

] T > T (disordered phase)
TY+0 T<7T

Well known examples are

(ordered phase)

n—m
n—PL — PG
2. There exists a function £ called Landau free energyﬂ which is an analytic
function of the coupling constants { K;} of the system and of the order parameter

B
L =L(n)

3. The form of £ must satisfy the underlying symmetry of the system.
4. The equilibrium states of the system are the global minima of £ with respect
to n.

We also assume that the thermodynamic properties of the system can be obtained
by differentiating £, just like we can do with thermodynamic potentialsﬂ

Note also that the general formulation of the Landau theory does not depend on
the dimensionality of the system (although we will see that once a system has been
chosen some details can depend on it).

Remark. Since £ is analytic it can be formally expanded in power of 7, for n ~ 0.

L(n) = ap + arn + agn” + azn’ + . .. (10.1)

1To be more precise, £ is the Landau free energy density; the "real" Landau free energy should
be L=VL.

2Strictly speaking, Landau free energy is not really a thermodynamic potential: the correct
interpretation of £ is that it is a coarse grained free energy (not the exact one).

143
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10.2 Landau theory for the Ising model

To make things more clear, let us now consider the Ising model without any exter-
nal field and see how we can determine the form of £ from the general assumptions
we have introduced. In this case 7 is a scalar (magnetization).

10.2.1 Costruction of £

First of all, since the equilibrium configurations of the system must be minima of
L 5
9L = ay +2an + 3azn* + - =0
on
where we have chosen to stop the expansion at the three order. Now, since this
equation must hold for all T and for T > T E] we have n = 0, we see that a; = 0.
Considering now the constraint on the symmetries of the system, in absence of
phase transitions for finite systems we have seen that the Ising model is invariant
under parity (Z? symmetry), i.e. its Hamiltonian is simultaneously even in H and
{Si}:
H(H,{Si}) = H(—H,{-5i})

Thus, in absence of external fields (H = 0) the Hamiltonian of the Ising model is
even; this means that also £ must be invariant under parity, namely an even function
of n:

L(=n) = L(n)

Therefore all the odd terms of the expansion are null:
agkt+1 = 0 VkeN

Finally, since we have assumed that £ is an analytic function of 1 then its expan-
sion cannot contain terms proportional to |n|.

In conclusion, the minimal expression for £(n) that describes the equilibrium phase
diagram of an Ising-like system is:

L(n) = ao(J, T) + az(J, T)n* + aa(J, T)y* + O(°) (10.2)

where the coefficients of the expansion ag,as,aq,... are functions of the physical
parameters, J and T. However, £ can be further simplified and we can also explicitly
show its dependence on the temperature. In fact, first of all we can note that ag is
the value of £ in the paramagnetic state (when T' > T, n = 0):

L(n=0)=ao

and so for simplicity we can set ap = 0 (it’s just a constant shift in the energy, what
matters is the free-energy difference).

Moreover, in order to have n =7 # 0 < oo for T < T (thermodynamic stability)
we should impose that the coefficient of the highest power of 7 is always positive. In
this case:

CL4(J, T) >0

Indeed if this condition is violated £ reaches it s absolute minimum for n — 4oo,
which makes no sense physically! The Landau free energy results

L£(n) =~ asgn?® + asn?, with ag >0 (10.3)

SFor T > T (critical point) we expect a paramagnetic phase.
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Finally, fixing J and expanding the coefficients as and a4 as a function of the

reduced temperature t= T (1n T near T), we obtain
ag ~ Qa = e Qg ~ e
2 2 T 2 ’ 4 4

in the expansion of a4 we have neglected any explicit dependence on 7' — T because
as we will see it will not dominate the behaviour of the thermodynamics near T.
Moreover, by choosing aj = 0 the sign of ay is determined by the one of ¢. In
particular, at 7' = T, one has as = 0.

We finally have that the form of the Landau free energy for the Ising model is
given by:

L= g tn® + %74 +0(n%) (10.4)

Remark. Does not matter the coefficient in green in front, so in the next part of the
course we will change it. If it is written in this way we have always a > 0. We have
also b > 0.

Note that, in presence of an external magnetic field h, one should consider the
Legendre transform of £ obtaining its Gibbs version:

a b

we have inserted a field coupled with the order parameter.

10.2.2 Equilibrium phases

Let us now see what does the Landau theory for the Ising model predict. First of
all, in the absence of external fields we have that the equilibrium states are determined
by:

0L

5, =0 =atn+ b = n(at +bn*) =0 (10.6)
U]
Hence, the minima are

- 0 t>0(G.e T>T)

R (10.7

and at T'= T the 3 solutions coincide!
Let us consider the two different cases:

e Caset >0 (T > T): the only global minimum of £ is the solution 77 = 0. The
second derivative of £ with respect to n is

9L
ﬁ = at + 3b772
n

which results > 0 for 7 = 0 and in the case ¢ > 0. It implies that n = 7 is a
global minima, as in Figure

e Caset <0 (T < T): there are 3 solutions, 7 = 0 and 7 = £,/ —%. Let us see
wheter they are minima or local maxima.

i

on? 7=0

=at <0 = 7 =0local maxima (no equilibrium)
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%L at
5 =at+ 3b <—> = —2at
on n=t /T b
since t < 0, we have —2at > 0 and hence 77 = &+ —%t are two minimal
at a’t?  a’t? a’t?
Lln=2y—F ]| =— =— <0
(” b ) % T 1b
Hence, the two minima have the same valueare related by the group symmetry
Z% (7 — —1j).
c C
T >T
T <T
-7 7
l(za) gandau free energy £ for ¢ > 0 with (b) Landau free energy £ for ¢t < 0 with
=4 h =0.

Figure 10.1

10.3 Ciritical exponents in Landau’s theory

Let us therefore see what critical exponents does the Landau theory for the Ising

model predict. Let us define ¢t = %

Exponent 8

This is immediately determined from what we have just seen: in fact, n ~ t? for
h=0,t— 0. Since t < 0, the minima of £ are

at 1
n — :I: _—— = —
K b f=3
as expected.
Exponent a
The specific heat at zero field of the system is Cy = —T%. In particular, we

have Cy ~ t=* for h =0, |t| — 0. As we have seen:

o if t>0: £(7=0)=0.

242

o ift <0 me:L<ﬁ::|: _%t) = e,

Hence,

. {o t>0
min — 2,2
—4r <0
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Therefore:

%L ok a? 2
(m__Tmﬂ__TmﬂC@ﬁdT_ﬂ>

We have
0 a? _ a? _
— | -——=T -T2 =——=(T-T
OT[ ek )] TRk )

0? 0 a® - a®
mv:aTPmﬂﬂT‘ﬂ}:

Hence, the specific heat at zero field results

{O T>T
CH =

2 —
QIC;LWT T<T

a

We have t — 0~ if and only if T — T, which implies cg — %—QT that is constant.
Hence, in both cases:

a=0

Exponent §

Let us remind that h ~ 7% at T = T. Considering now also an external field, the
state equation of the system will be given by the differentiation of £:

L
a—:atn+bn3—h:0
on

Hence, the condition of equilibrium is
h = atn + bn? (10.8)

This tells us that, for fixed h, the extreme points of £ are given by the values of 7

that satisfies Eq.((10.8]) (see Figure |10.2]).

L

> T <T, h>0

R h = slope
Figure 10.2: Plot of the Landau free energy for ¢ < 0 with an external field 2 > 0.
At the critical point T =T (t = 0) we have h ~ n3. Therefore:

0=3
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Exponent vy

Let us remind that x7 ~ ¢~7 for h = 0, |t| — 0. If we now differentiate the state
equation ((10.8)) with respect to h we get:

at% + 3bn2% =1
Since y = %, we have ,
X at £ 3b2
If we now set h = 0, then for:
e ¢t > (: we will have 7 = 0 and thus yr = é
o t < 0: we will have § = :I:(—%t)l/2 and thus xr = —ﬁ.

In both cases x7 ~ 1/t and thus:

Summary

In summary, the Landau theory for the Ising model gives the following (mean
field) values of the critical exponents

1
ﬁ:§, a=0, 6=3, ~=1 (10.9)

which, as we expected, are identical to those we have found within Weiss mean field
theory. Moreover, Landau theory does not depend on the system dimension d (as
expected since is a mean field theory) but only on its symmetries.

Remark. For a O(n) (vector) model the order parameter i becomes a vector field 77
with n compnents and

B a _, , b _ S I
La(i) = Gt + (7 i)? —h-ij+ O((n . n)“) (10.10)

10.4 First-order phase transitions in Landau theory

As we have seen, Landau theory is based on the assumption that the order pa-
rameter is small near the critical point, and we have seen in the example of the Ising
model how it can describe a continuous phase transition (in fact, for ¢ — 0 we have
n — 0). However, because of the symmetry properties of the Ising model we have
excluded any possible cubic term; what we now want to do is to consider a more
general form of £ which includes also a cubic term in 7 (in the case in which the
symmetry is not violated), and see that this leads to the occurrence of a first-order
phase transition. In fact, we want to generalize to include multicritical points, or
phase transitions. Let us remember that in the Ising model we have phase transition
derived by symmetry breaking, while now we have another type of phase transitions.

We have seen that since the order parameter is null for 7 > T the Landau free
energy cannot contain any linear term in 7. Let us therefore consider the simplest
Landau free energy that depends on a particular field:

b
L(n,t, h) = atn® — wn® + Zn‘l — hn (10.11)
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where t = TET* and w is an additional parameter that we fix to be positive, w > 0; as

in the previous case, we must have b > 0 so that n has finite values in the equilibrium
configurations. In addiction,

>0 T >T*

at = (T —T%)
2 <0 fT<T*

Remark. For w < 0 the results are the same, but in the n < 0 diagram.

The temperature T* is the one at which we have the continuous transition if
w = 0, but as we will see it doesn’t have great significance now. The equilibrium
configurations of the system, will be given by:

0L
a—nG:() = h = 2atn — 3wn® + by

In absence of external fields (h = 0), the equilibrium states becomes
h=0 = n(2at—3wn+bn*) =0
The solutions of this equation are

=0 disordered phase

{ni =5 <3w + \/m> ordered phases

]

(10.12)

Let us rewrite the ordered solutions as

1 2ai
e = %(Bwi\/M) :ci,/(;?—% (10.13)

with
3w
c=—
2b
However, these two last solutions are possible only if:
. o 2at T-T* ¢, T*-T*
Mt ER = c*——>0 <= t= < S=ttr= =
b 2 2a 2

Hence, we have
2

b
a

S0, since t** is positive, this will occur at temperatures higher than T*. Let us consider
different cases:

o If ¢t > t** (T > T*), then the system will be in the disordered phase and we
have 77+ ¢ R. The only real solution is 77 = 0 that is also the absolute minimum
of £. The plot is shown in Figure [10.3]

o Ift <¢** (T < T**), we have 3. = c+4/c? — % € R are both possible solutions.

One will be a local maximum and the other a local minimum.

— At T =T**, we have 7 = 7]} (flex point), as shown in Figure m

— For Ty < T < T, a new minimum appears at n = 74, but we will have
L(n4) > 0, so this is only a local minimum (since £(0) = 0): in this range
of temperatures the ordered phase is metastable. The plot is shown in

Figure [10.5
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T >T*

n

Figure 10.3: Landau free energy for ¢t > t** (T' > T™**). The point 7 = 0 is the absolute
minimum.

Figure 10.4: Landau free energy for t < t** (T = T**). The point 7 = 77 is a flex one.

metastable
phase

Figure 10.5: Landau free energy for ¢t < t** (T, < T < T**). The point 7 is a local
minimum.

— If we further decrease the temperature T, we will reach a temperature
T = T; for which £(774+) = 0 = £(0): at this point the ordered and
disordered phase coexist, so this is the temperature of a new transition!
The plot is shown in Figure T; is given by the coexistence condition

L(i+) = £(0)

that is the coexistence between the disordered and ordered phases. In fact,
in the plot of Figure we see that there are two minima in the same
line, this is a first order transition.

— Finally for T* < T < T}, 4+ becomes negative and so now n = 74 is the
global minimum of £: the ordered phase becomes stable and the disordered
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L
T = Tt
|
PARN
0 7 . 7

Figure 10.6: Landau free energy for ¢t < t** (T' = T;). The point 774 is a minimum. The
ordered and disordered phase coexist.

phase metastable, indeed now 7 = 0 is only a local minimum (see Figure
10.7)).

™ <T<T;

Figure 10.7: Landau free energy for t < t** (T* < T < T;). The point 7j; is the global
minimum.

— If now T' < T*, £ develops a new minimum for n < 0, but it is only a local
minimum (the asymmetry introduced by —wn? ensures that 7, is always
the global minimum). This means that also for 7' < T* the disordered
phase with 74 continues to be the stable one, and so no phase transition
occurs at T any more; this is what we meant when we said that T is not
a relevant temperature any more.

Therefore, we have seen that lowering the temperature of the system, the value
of n for which £ has a global minimum changes discontinuously from 1 = 0 to
f+: this is a first-order transition. All the results obtained are shown in Figure

10.8l

As we said, at T' = T; the system undergoes a first order transition. It is defined
by two conditions: it must be a minimum of £ and such that the value of £ in that
minimum is zero. Thus we can determine T} as follows:

oy =

9L _ () = 77(2at — 3wn + b772) extreme condition
L£(0) = L(ny) =0 =n%(at —wn + %772) coexistence condition
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L(n)
L(n)

(a) First-order transition. (b) Same transition for lower values of the
temperature.

Figure 10.8: The notation in this plot is different from the one used previously. Here

T=T*T"=T" and T** =T;.

Therefore, for n # 0:
N 2at — 3wn + bn? =0
at —wn + %nQ =0
Solving with respect to n and ¢, we get

77t=+27w>0
t_2’LU2
t— "ab

Since by the definition ¢ = (' — T™)/2, we have:

4w?
Ty =T+ — 10.14
i +— (10.14)
Remark. Let us note that T; > T™.

Since at T' = T} there is a first order transition does the system display latent
oL

heat? )
1 5 a (2w
2 = g =—— 22
or|, ~ 2"~ 2\ %

Hence, there is an entropy jump. The latent heat absorbed to go from the ordered
to the disordered phase is

S =

92 2
qg=-Tis= th (:) (10.15)

10.4.1 Phase stability and behaviour of xr

Finally, we can also determine the susceptibility of the system:
_On
XT = oh
In the presence of an external field, let us derive the equation of state with respect
to h:

8h< o —0) —ah(Qatn 3wn” + by’ = h)

Hence, since xyr = %,
x(2at — 6wn + 3bn?) =1

The result is )

= 2at — 6wn + 3bn?
We now make use of equation (10.16)) to compute the limit of stability of the phases
we have found.

XT (10.16)
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10.4.2 Computation of 7™*

As said, T = T** is the value below which the ordered phase becomes a metastable
state (local minima). In particular, since for 7' = T** the point 77— = 74 is a flex
point, we have the condition

9L
Z~
on?
thus:
0 oh
— (2atn — 6wn® +bn®> =h) =0 = 2at —6wn+3bn* = — =y =0
on on

Remember that at T'= T™* the two solutions 7+ coincide, hence from Eq.([10.13]) we

have
02_2at_0 o _ dw
- = 771—772—?6

1

Inserting in the expression with xy =~ = 0, we have

Xt =0 = 2at* — 6w, + 3b7

Hence,

e _ w? 1
~ 8ab 2
Remind that for T; < T < T™** the ordered phase 74 is metastable.

(T* —T%) (10.17)

10.4.3 Computation of T

The instability of the disordered phase n = 0 is when £ presents a flex point at
1 = 0. Therefore, from the condition

0%L
— =0
on? |-
we have 9k
X*1:2at—6wn+36n2:8—:0 =2at=0=1t=0
n
Hence, we have
=T=T" (10.18)

thus no phase transition occurs at 7™ any more. The plot of the Landau free energy
in the case T'= T™ is shown in Figure [10.9

10.5 Multicritical points in Landau theory

It is possible for a system to have more "disarranging parameters" than the only
temperature T'; let us call one such field A. In this case the phase diagram of the
system becomes richer, with coexistence and critical lines that intersect in points
called multicritical points; one of the most common examples of a multicritical point
is the tricritical point, which divides a first-order transition line from a second-order
one. An example of a system of the type we are considering is the Blume-Emery-
Griffiths model, which we have studied in Mean field theory for the Blume-Emery-
Griffiths model. In that case the additional "disarranging field" was the concentration
z of He3, and the tricritical point is the one we called (z¢, T}).

Such a phenomenology can be obtained within Landau theory also with terms dif-
ferent from a simple cubic one; in particular, we can have first order phase transitions
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T=T"

N/

Figure 10.9: Landau free energy for ¢ < ¢t** (T = T*). The point 7}, is the global minimum,
while the point 7 = 0 is a flex point.

even when the system is invariant under parity, like in the case of the Ising model.
In fact in that situation we required the coefficient of n* to be always positive, but if
this is not true then £ will be:

a(t,A) o  b(t,A) 4 ¢ ¢

277“‘ n+2n

— hy (10.19)

where a,b and ¢ are functions of two parameteres (7,A) and ¢ > 0 positive for
the stability of the system (otherwise, like in the case previously considered, the
minimization of £ leads n to infinity); A is the disordered field (in the BEG model
A was the % He® atoms).

Remark. To allow the coefficient of n* to change sign, we need the 1% term.

Let us study the phenomenology of A (A, is a critical value):

o If A < A.: as T decreases, a(T, A) decreases and, at T" = T,(A), becomes zero.
In this region b(T,A) > 0 and the system displays the standard (n*) critical
point. At T'= T, we have:

If a changes sign and b is kept positive (which can be done varying the values
of T'and A in a way such that a goes to zero faster than b, depending of course
on their explicit expressions) then a critical transition occurs since in this case
1 = 0 becomes a local maximum for £, and it develops two new global minima.
Therefore, the solution of the equation a(7,A) = 0 will give a line of critical
points in (7', A) plane.

o If A > A.: as T decreases, b(T, A) becomes zero before a(T, A). At T' =T we
have
a(Te, A) >0

T =T.(A) = {
b(T,,A) =0

Hence, if b becomes negative while a is still positive (which again can be done
varying 7" and A so that b vanishes faster than a) then something rather different
happens: in this case, one can show that as b approaches zero £ develops two
new symmetric local minima at 74 (similarly to the case analysed before, with
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the difference that now the situation is perfectly symmetric since £ is even) and
they will become the new global minima as £(7+) = 0, which happens when
b changes sign: this way the equilibrium value of the order parameter change
discontinuously from zero to a non-zero quantity so a first-order transition has
indeed happened.

In this case, we have
L=a 4+’ a>0

The equilibrium states are

0L
——= =2an+6cn° =0

on
n=20
,2,3,4

so, the solutions are

coexistence between 3 phases

Figure 10.10: Landau free energy for A > A.. There is coexistence between three phases,
in fact there are 3 global minima.

o Case A = Ay: the tricritical point is given by the values of A = Ay and T =T,
such that

a(Ay, Ty) = b(A, T;) =0

This means that when both a and b are null the system goes from exhibit-
ing a continuous critical transition to a discontinuous first-order one; in other
words, the tricritical point (T, A;) can be determined from the solution of the
equations a(T, A) = 0 and b(T, A) = 0.
At the tricritical point the system is described by the following Landau free-
energy:

Ly =en® — hy

The equation of state is

0L
-0 =h= 6cnd
an
The first-order transition with an even £ are shown in Figure [10.11

To conclude let us consider again a system with an Ising-like Landau free energy,
where ¢ > 0 and a, b are in general functions of the reduced temperature ¢ (and also
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7

L(n)

|4 N

Figure 10.11: First-order transition with an even C.

of the other "disarranging" parameter A, which we now neglect). The Landau free
energy is again
L=gn2+gn4+gn6—hn

We now want to show that we can understand how the phase diagram of the
system is in (a,b) space, i.e. that we can draw where the phase transition lines are
and so we are able to visually represents where the various phases of the system are
in (a,b) plane.

First of all, we can note that when a,b > 0 the only minimum of £ is 7 = 0, so
the system is in the paramagnetic phase. Furthermore if ¢ < 0 and b > 0 the system
is in the magnetic phase, and a second order transition has occurred; therefore we
can surely say that the half-line @ = 0,b > 0 is a second order transition line.

We must thus determine where the first order transition line lies in (a,b) space.
In order to do so, we first note that the extrema of £ are given by:

oL —b+ Vb?% — 4ac
O = — = b 2 4 = 72 =
on n(a+bn” +cn’) gxt 5
(and of course they exist only when the temperature is such that b — 4ac > 0) and
since: o2
L
— =471 - 2Vb? —dac
on |7+

we have that +7, are maxima while +7_ are minima. The first order transition
happens when £(£7+) = £(0) = 0, so:

a_o b _4 ¢ ¢ a b, c 4

- - -y =0 = —+4+- 1y =0
o gl T g > T3 Tl
Now, from the condition 9L/9n = 0 we can express 774+ as a function of ﬁ%r, and we
get 71 = —(a + bij2)/c. Substituting we get:

a

= —45

and substituting again in 72 = (—b + v/b? — 4ac)/(2¢) in the end we get:

ac
b= -4/~
3

so the first order transition line is a parabola in (a,b) plane (in particular it will lie
in the fourth quadrant). In the end the situation is as in Figure As we can see
the tricritical point of the system, being the point that divides the first-order from
the second-order transition line, is the origin (0,0) of the parameter space.
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Figure 10.12: Phase diagram of the system in (a, ) space.

10.6 Liquid crystals

We now proceed to study a particular physical system, liquid crystals, to which
we will apply Landau theory of phase transitions. As we will see the symmetries of
the system will allow the Landau free energy to include a cubic term in the order
parameter (which we will properly define), and so we will be able to describe the
first-order transition from an isotropic to a nematic phase (which we are now going
to introduce).

10.6.1 What are liquid crystals?

Liquid crystals phase (LC) can be seen as an intermediate phase between a liquid
and a solid: they are liquid like any other conventional fluid, but also have internal
orientetional order like solid crystals. This orientational order provides them par-
ticular anisotropic properties from an optical, electric and magnetic point of view.
The most common structural characteristics of the molecules that constitute liquid
crystals are the following;:

e They have an elongated, anisotrpic shape.
e Their axes can be considered rigid with good approximation.
e They have strong electric dipoles or easily polarizable groups.

Furthermore, it seems that the groups located at the extremities of a molecule are
not relevant for the formation of phases.

The vast majority of the interesting phenomenology of liquid crystals concerns
the geometry and dynamics of the preferred axis of orientation (ﬁ(f"), called director.
This is a 'two arrow vector’ that gives the local average alignment of the elementary
constituents. In this description the amplitude of ?Z(F) is irrelevant and one takes

ﬁ(f") such that is unitary (i.e. ‘g(f’) = 1). Since there is no head-tail symmetry

(apolar order), n=-n (i.e. —i—‘ﬁ(f‘) and —%)(F) are physically equivalent).
There is a plethora of possible liquid crystal phases; the most common are:

e Nematic: this phase is characterized by a very strong long-ranged orientational
order: the main axes of the molecules tend to orientate along a preferred di-
rection (see Figure , determined by the director. There is no long-ranged
translational order of the molecular centers of mass, even if a short-ranged one
can exist.
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Figure 10.13: Graphical representation of the nematic, smectic and cholesteric phases of
a liquid crystal.

From optical point of view the Nematic phase is birifrangent, i.e. they exhibit
two different refractive indexes: one parallel to the director n (called ordinary
refractive index) and one orthogonal to it (special refractive index). These
optical properties of the nematic phase are used to build devices like LCDs.

e Smectic: also in this phase the molecules are aligned along a preferred direc-
tion, but contrarily to the nematic one this phase has also a spatial periodic
order: the molecules are organised in layers. Furthermore, differently from ne-
matic phases, smectic liquid crystals have non-uniform density and are generally
more viscous.

e Cholesteric: It is similar to the nematic phase since it has a long-ranged
orientational order, but the direction of n changes regularly in space; the typical
configuration of a cholesteric liquid crystal has a director ﬁ(f”) that rotates
when ¥ varies along a particular direction: for example, in a three-dimensional
reference frame the molecules are orientated along the y direction in zy plane,
but this direction roteates if z changes.

The structure of a cholesteric liquid crystal is characterised by the spatial dis-
tance along the torsion axis, called pitch, after which the director has rotated
by an angle of 2. The pitch of the most common cholesteric liquid crystals is
of the order of several hundred nanometers, so comparable with the wavelength
of visible light; furthermore, it can also be very sensitive to changes in tempera-
ture, chemical composition, or external electromagnetic fields. Note also that a
nematic liquid crystal can be seen as a cholesteric one with infinite pitch; these
two phases in fact are not independent from each other, and there is no real
phase transition between them.

10.6.2 Definition of an order parameter for nematic liquid crystals

What we now want to do is to apply Landau theory to liquid crystals in order to
study the transition from an isotropic to a nematic phase (Figure ; therefore,
we must define an order parameter for such a system. This is absolutely not trivial,
and there are two ways to do it a microscopic and a macroscopic one. We will use a
macroscopic approach.
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Figure 10.14

Macroscopic approach

From a macroscopic point of view we have already stated that an important dif-
ference between the disordered and nematic phases consists in the response functions
when the liquid crystal is subjected to magnetic or electrical fields. Hence, a macro-
scopic definition of an order parameter for LC phase is based on the system response
when subject to fields. For instance, supposing that we have a liquid crystal sub-
ject to an external magnetic field ﬁ, the diamagnetic response of the system will be
measurable in terms of its magnetization 1\7[, and in particular:

M = yH (10.20)

where Y is the response function matrix, namely the magnetic susceptibility of the
system. In components we have:

Mo = xapHp (10.21)
where the inexes «, 8 stands for z,y, z. If H is static, then y is symmetric, i.e.
Xaf = XBa
In the isotropic phase x will also be diagonal, namely
XaB = X0ag

while in the nematic phase For a LC in the neumatic one has

xt 0 0
Xag=| 0 xr O (10.22)
0 0 XH

where, as before, we have supposed that the director n is parallel to the z direction.

Therefore we could build an order parameter in terms of the susceptibility y, and
this parameter will necessarily have a tensorial nature (since x itself is in general a
tensor), so it will not be a simple scalar like in the previous case. Since we want our
order parameter to vanish in the disordered phase, we can define it "removing" from
X its isotropic component. In other words, in components we can define:

1 _
Qap = A(Xaﬁ — 30 Tr >‘<> (10.23)
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where A is a constant. In this way @) is a good tensorial order parameter. In par-
ticular, the order parameter is a second rank traceless tensor. Let us note that its
definition is completely general, and in fact it is useful also to describe other kinds of
phases, not only the uniaxial nematic one.

It is possible to show that Q.3 can be written in terms of the local average
orientiational order of the elementary constituents, %(F) and the degree of local order
given by a scalar S(r). Hence, we can define

Qui(F) = S(F) (nal15(6) ~ 360 (10.20)

The advantage of this definition of the order parameter (which is the one we will use
in the following) is that it also takes into account the degree of orientation and the
mean direction. By definition ¢ is symmetric and tracelesﬂ, so in general way we
can write it as:
a1 g2 a3
Q=2 @ @& (10.25)
93 45 —q1—4qa

10.6.3 Landau-de Gennes theory for nematic liquid crystals

Since we now have a proper order parameter, we can formulate the Landau theory
for the phase transitions of nematic liquid crystals (also called Landau-de Gennes
theory). In particular we want to study the transition between the isotropic and
nematic phase, and we call T,,_; the temperature at which it occurs.

As we have already stated, the Landau free energy £ must be consistent with the
symmetries of the system, so in this case it must be invariant under rotations. Now,
since ) transforms as a tensor under rotations and £ must be a scalar, it will contain
terms of the form Tr QF’; to the fourth order we will have (the linear term is absent
because by definition @ is traceless, i.e. Tr(Q) = 0):

L= Lo+ %A(T) ™ + %B(T) QP + iC(T) [(Tr @)+ 594}

In reality this expression, and in particular the quartic term, can be simplified: in
fact it is a property (which we will not prove) of any n x n symmetric matrix that
TrQ* with s > n can be expressed as a polynomial of Tr QP with p < n, so in our
case any TrQ® with s > 4 can be expressed in terms of Tr Q? and Tr@Q?* (we are
automatically neglecting Tr Q since in our case it vanishes, but in general it must be
considered). Therefore, we can write the Landau free energy as:

1 = 1 = 1 =\ 2
L=Lo+ AT TrQ* + SB(T)Tr Q° + L C(T) (ﬂ Q2> (10.26)
or, in components:

8= Lo+ JAT)QusQse+ 3 BT QusQr @ + 1O Qus@aa® (1027

Remark. Since each 3 x 3 matrix satisfies the relation
- 1 —\2
Q= 5 (n )

the term proportional to C(T') can be written as $C(T) Tr Q4.

1A matrix whose trace is zero is said to be traceless.
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Let us note that since our order parameter is a tensor its invariance under rotations
does not exclude the possible existence of terms with odd powers of @) in £, in
particular the cubic one. -

For the most general case of a biazial nematic phase ) can be diagonalized giving

2s 0 0
1
Qo= |0 —3(S+mn) 0 (10.28)
0 0 —3(S =)

where we remind that S is the degree of local order. If n = 0 we have the standard
uniaxial nematic phase and the order parameter becomes

250 0
Qas=|0 —-38 0 (10.29)
0 0 -—3iS

Now, from the expression of () in the case of a uniaxial nematic liquid crystal

(Eq.(10.29)) we have:
= 2 = 2 = 2 4
QP =387 Q=8 (mQ?) =t

Hence, for uniaxial nematic liquid crystal the Landau free energy becomes

AT 2
L =L+ (3)52 + EB(T)SE’ +

am)

5 S (10.30)

so that, supposing that B and C do not depend on the temperature (i.e. B(T) = B
and C(T) = C), while A(T) ~ A(T — T*), we have:

L= Lo+ ?(T —T%)8% + 237353 + %54 (10.31)

This Landau free energy has exactly the same form of the one we studied in first-order
phase transitions in Landau theory (Eq.(10.11))), with the substitutions:
2 2 4
a=-A w=-—_-B, b=-C
9
Applying the results we have already found (Eq.(10.14])), we will have that the first-
order transitions between the isotropic and nematic phases occurs at the temperature:
4u? 2B?

Thoi =T +—=T"+

ba 2TAC (10:32)
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Chapter 11

Role of fluctuations in critical
phenomena: Ginzburg criterium,
Coarse-graining and
Ginzburg-Landau theory of phase
transitions

11.1 Importance of fluctuations: the Ginzburg criterium

As we have seen, the main assumption (and the most important problem) of mean
field theories is that the fluctuations of the order parameter are completely neglected
in the computation of the partition function Z; this approximation breaks down in
the neighbourhoods of critical points, where as we have seen in long range correlations
the correlation length becomes comparable with the size of the system:

¢ T

What we would now like to do is to include these fluctuations in a mean field theo-
retical framework; this will lead to the so called Ginzburg-Landau theory.

Overall, mean field is not a very good approximation in proximity of the critical
point, and the question is: how bad is the mean field approximation in proximity of
it? As a first approach we can try to estimate how big is the error we make in mean
field theories neglecting the fluctuations of the order parameter near a critical point,
so that we can understand under which conditions mean field theories are actually a
good approximations.

To make things explicit, let us use the Ising model as a base for our considerations.
We have seen in Weiss mean field theory for the Ising model that the Weiss mean
field theory for the Ising model is based on the assumption that

(5:5;) M5 (55) (S;)

i.e. that the spins are statistically independent; therefore, a possible estimate of the
error dor each pair of spin (.S;,Sj) made with this assumption can be:

1(Si5;) — (Si) (S)]

E;; = 11.1
N CAYES ey
The numerator of Fj; is, by definition, the two-point connected correlation function:

Ge(i, ) = (SiS5) — (Si) (S5) = ((Si = (90)) (S5 — (S;))) (11.2)

163
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Assuming translational invariance, we have
Ge(i,j) = Ge(|Ti — Tj]) = Ge(r)

In order to compute G.(r) we cannot assume omogeneity since (S;) = (S;) = m. It
implies that G. = 0 identically, and if we want to compute the error in the mean
field, is always zero. Therefore, in order to have non-null correlation functions we need
that the system exhibits some kind of inhomogeneity, not necessarily due to thermal
fluctuations. In fact, the connected correlation function G, describes not only the
spatial extension of the fluctuations of the order parameter, but also, through the
linear response theory, the way in which m varies in space in response to an external
inhomogeneous magnetic field. Within a mean field theory this is the only way to
compute G.! Let us see this explicitly. We know that from the partition function of
the Ising model in an inhomogeneous external field ﬁi, ie.

ZIH) = Trygy (70730 5% 180 (11.3)
we have the definition of the thermal average

Trigy (Siefﬁ(ﬁ]z(m SiSi—3; HZSZ)>

(S; _LBZ_ﬂflaan__(‘)F
v Z|H;] - BZOH; OH;  OH,
(11.4)
Similarly, one can show that
o\ BT ¥Z
and thus:
Gulinf) = B2 09°Z Bt oz\ (B! oz
AN = om0, Z 0H; )\ Z 0H; 116)
P 0%ln Z _ 782F({Hi}) '
OH;0H; OH;0H;
Therefore, the response in i due to a variation of H in j is
19, 0 10InZ 0 OF .

so G¢(i,7) can indeed be seen as a response function. The generating functions are:
e Z[H;|: generating function of G(3, j).
e In Z[H;] = —BF: generating function of G.(i, j).

M:Z<Sz‘)

If we now call:

we will have

oM 9(S;) .
o, Z o, ~ /BZZ;GC(Z,J)
If our system is invariant under translations and subject to a uniform field, then:
oM OM OH; .
DH e THJ- PH 5%:Gc(%])
and since xp = OM/OH we get:
xr =8 Geli,j) =B ((5iS;) = (Si) (S;)) (11.7)
1,J i3

which is a version of the fluctuation-dissipation theorem.
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11.1.1 Fluctuation-dissipation relation

The fluctuation—dissipation theorem (FDT), or fluctuation—dissipation relation
(FDR), is a powerful tool in statistical physics for predicting the behavior of sys-
tems that obey detailed balance. It is a general result of statistical thermodynamics
that quantifies the relation between the fluctuations in a system that obeys detailed
balance and the response of the system to applied perturbations.

More specifically, the fluctuation—dissipation theorem says that when there is a
process that dissipates energy, turning it into heat (e.g., friction), there is a reverse
process related to thermal fluctuations.

For instance, let us consider the Brownian motion: if an object is moving through
a fluid, it experiences drag (air resistance or fluid resistance). Drag dissipates kinetic
energy, turning it into heat. The corresponding fluctuation is Brownian motion. An
object in a fluid does not sit still, but rather moves around with a small and rapidly-
changing velocity, as molecules in the fluid bump into it. Brownian motion converts
heat energy into kinetic energy—the reverse of drag.

Now, let us consider the partition function with an homogeneous magnetic field
H, =H, Vi:

Zn = Trigy B Xy SiSiTH Y, Si

The magnetization is thus:

1 07
_§ : 2 : BI 3 iy SiSi+H 32, S N
M = ' (S TI“{S} Sie 9 ﬁZN 8

Similarly, we have

1 0°Zn
Recall that

1 1
S F=——ksThZ
N v rsTn

Hence, the magnetic supsceptibility is:

B 87m - 1 OF 8an

X =80 ~ aH " NOH T
92In 7 1 182 A%
NkBT[8H2 ] N om _Z2<3H>

2
ﬁ B2y (SiS;) — B (Z <S@->>
ij 7
=N Z Ge(i,7) = Z Ge(
=p Z GC(XI)
where we have defined X; = r; — r;. Therefore:

:xsz%ﬂTJ/d%Gﬁﬁ (11.8)
Q

this is the fluctuation dissipation relation.
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11.1.2 Computation of Eror

Let us now try to understand when the error F;; done in mean field theories is
negligible. Now, in general terms if we formulate a mean field theory for a system we
will make the error Ej; in the region where correlations are relevant, namely if |r] is
the distance between two points of the system the error is made for |f| < £, with &
the correlation length. The total relative error is the Er(r) integrated over the region
of radius |F| <&, i.e. where correlations are not negligible:

fIF\SE Ge(r)ddr
e (S0 (8 97

Eror = T (11.9)

where we have called d the dimensionality of our system. Supposing T' < T, so that
the order parameter 1 is non null, i.e. 7(r) =n # 0, we have:

(8:) (S5) = n’*

is uniform in the region |f| < £. Hence, our mean field theory will be a good approx-

imation if Eror < 1:
- 1D=
f\Fléi G.(¥)d"r

f\FISE n? dPr

known as Ginzburg criterion. If it is satisfied, then the mean field theory is a valid
approximation.

Eror ~ <1 (11.10)

11.1.3 Estimation of Epor as t — 0~

In order to express Eq.(11.10)) in a useful fashion, let us write it in terms of critical
exponents; using also the version we have just found of the fluctuation-dissipation
theorem (Eq.(11.8])) we get (supposing our system is continuous) that the numerator

of Eq.(11.10) can be approximated as

g}lcpuation
issipation
Ge(r)ddr K
IT<¢

kpTexr ~t 7

On the other hand, the denominator can be approximated as
/ n? Ay ~ £4)1]20 o (28-vd
|7]<¢

Therefore, the Ginzburg criterion can be reformulated as:

Eror =20 =28

and in the limit ¢ — 07 this is possible only if —y 4+ vd — 25 > 0, i.e.:

2
d> ’YJ; b_a (11.11)

This means that Ginzburg criterion allows us to determine the upper critical dimen-
sion d. of a system, namely the dimension above which mean field theories are good
approximations. Let us consider three different cases:

e Case d < d.: fluctuations are relevant and mean field is no a good approxima-
tion.

e Case d > d.: fluctuations are less important and mean field describes properly
the critical point.
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e Case d = d.: mean field critical exponents ok but strong correction to the
scaling expected. For a Ising-like systems (in the mean field) we have

2
v

In order to compute d. we need to compute v withing the mean field approxi-
mation. Let us note that since it depends on the critical exponents, the upper
critical dimension d. ultimately depends on the universality class of the system
considered; furthermore, in order to actually be able to compute d. we must
generalize Landau theory to systems with spatial inhomogeneities so that we
are able to compute the critical exponent v.

Remark. Remind that within the mean field theory the v exponent it is not
defined. In fact, the v exponent define the divergence of the correlation length,
but in the mean field we neglet correlation between fluctuations.

We have vjrp = 1/2, hence the upper critical dimension for the mean field is
d> 4.

11.2 Functional partition function and coarse graining

Since in proximity of the critical point the correlation length & diverges, there is
no point in which we can see small scales. It is convenient to rewrite the microscopic
partition function as an effective partition function obtained by integrating out the
degrees of freedom over regions of linear size [ > a but still [ < €. Indeed, a possible
way to overcome the limitations of mean field theories can be the following: we
could regard the profile of the order parameter m(r) to be the "degree of freedom"
of our system and compute the partition function as a functional integral; in other
words from the microscopic configuration of our system we can obtain m(r) with a
coarse graining procedure (we will immediately see what we mean by this) and then
determine Z as a trace over all the possible configurations of our system, i.e. over all
the possible forms of m/(r):

7 = Trgg) e IS = / Dl () S sy (11.12)
{S}

compatible with the
profile m(¥)

where we traced over all the possible microscopic configurations {S} compatible with
the order parameter profile m(r). Let us define the effective Hamiltonian Hcs¢:

Z e BIUSH — ¢—=BHerr(m(F)) (11.13)

{S}
compatible with the
profile m(¥)

How, in pratice, can we perform the coarse graining procedure and obtain Hcys?
We therefore must understand how to determine m(r); the idea of coarse graining
procedures is the following: for a given microscopic configuration {S} we average the
order parameter m(r) over sufficiently wide "blocks", i.e. portions of the system with
linear dimension [ much greater than its microscopic scale, which we call a (in the
case of the Ising model, for example, a can be taken as the lattice constant), but still
microscopic and in particular much smaller than the correlation length £, so that the
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order parameter is uniform in every block. In other words, coarse graining a system
means dividing it into cells of linear dimension [, with [ such that:

a<1<ET)<L (11.14)

(L being the linear dimension of our system) and averaging the order parameter m(r).
This way we can obtain an expression for m(r) (since [ is anyway microscopic with
respect to the size of the system, so we can regard r as a continuous variable).

Remark. Hence, we partition the configurations according to the magnetization pro-
file. For example, if we have a configuration with half spin up and half down, we
obtain a profile with 1 and -1.

11.3 Coarse graining procedure for the Ising model

To make things more clear, let us see how the coarse graining procedure works for
the Ising model. For instance, see the two dimensional system represented in Figure
where we have many spins in each square in which the system is divided.

e
/|

=

—

Figure 11.1: Two dimensional system divided into cells with a huge number of spins.

If we call m; = (S;) the local magnetization at the i-th and d the dimensionality
of the system, once we have choosen the linear dimension [, every "block" will have
volume [%; we replace what it is inside every block of the system centered in ¥, with
the coarse grained magnetization:

my(F) = ;71251 (11.15)

where N; = (1/a)? is the number of spins in each cell.

Remark. Since close to the critical point 7., we have that the correlation length
diverges £ > a, we can always choose [ < & but still [ > a such that the number NV,
is large enough. In this way, m(r) can be made to be a regular function of r.

Moreover, since it has been built as an average, m;(r) does not fluctuate much
on microscopic scales but varies smoothly in space. Of course, in general we need to
specify [ in order to determine m;, but the coarse graining procedure we are applying
will be useful only if the final results are independent of [ (at least in the spatial scales
considered).

Remark. In the reciprocal space (Fourier transform), the bound in Eq.(11.14)) implies
the following cut off on the wave vector q:

> A=1""

Hence, this theory cannot develop ultraviolet divergences!
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We now must express the partition function in terms of my(r):

7 — Z Z e BHUSH | = Z o BHepr[m(¥)]
my (F)

{S} my(F)
compatible with the
profile m(TF)

If m(T) is regular, the sum converges to a functional integral:
Zoy = / Dy (F)] e~ ess D) (11.16)
so we must compute H.r¢[m(r)]. First let us notice that Eq.(11.13)):

T o BHUSY — o= B%es s (m(E)

{s}
compatible with the
profile m(¥)

is proportional to the probability that the system displays a configuration with a

profile m;(r)

11.3.1 Computation of H.z¢[m(r)]

Since we now have a system made up of "blocks" this effective Hamiltonian will
be composed of two parts: a bulk component relative to the single blocks and an
interface component relative to the interaction between the blocks; let us consider
them individually.

e Bulk component: suppose that every block of volume ¢ is separate from the
rest of the system; inside every one of them the magnetization is uniform (since
the linear dimension of the blocks is much smaller than the correlation length
[ < &), so we can use Landau theory for uniform systems. In the case of the
Ising model, it led to the free energy:

b
L= atm? + Zm4

The total bulk energy is thus obtained summing over all the blocks:

BHEYE[m] = atm?(F) + gm4(F) (11.17)

-

r

Hence, the probability that the sistem displays a configuration with a profile
my(F) is proportional to

Pce”(ml(f")) ~ efﬁﬂfZ“;ﬁc’“(m(F)) —e” Yog atm? (F)+ 5mA (¥) (11.18)

e Interaction component: we now must take into account the fact that ad-
jacent blocks do interact. In particular, since as we have stated m does not
vary much on microscopic scales, the interaction between the blocks must be
such that strong variations of magnetization between neighbouring blocks is
energetically unfavourable. If we call i a vector of magnitude ! (|| = 1) that
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points from one block to a neighbouring one (see Figure , the most simple
analytic expression that we can guess for such a term can be a harmonic one:

— B =33 g(m(?+ i) —m(7))* + O((m(f’+ fi) — m(F))4> (11.19)
P

(the factor 1/2 multiplying &, just like the numeric factors multiplying @ and b,
have been inserted for future convenience). We can also think of this as a first
approximation of a general interaction between the blocks, namely as the first
terms of a Taylor expansion of the real interaction energy.

Figure 11.2: Two dimensional system divided into block. The vector /i points from one
block to a neighbouring one.

The total energy is thus obtained by summing the two terms. Now, since the
linear dimension of the blocks [ is much smaller than the characteristic length L of
the system we can treat r as a continuous variable and thus substitute the sum over

L1 1
L d=
g —>l—d dr

r with an integral:

(while the sum over fi remains a sum, since for every r there is only a finite number
of nearest neighbours). Therefore:

e Bulk component:
1 b
BHCFFIm] = 3 / (@tmz(ﬁ + 2m4(f)> d’¥ (11.20)

Thus, if we now define for the sake of simplicity:

S

Il
RST

S8

Il
=/ o

we will have:

b
BHLYFIm] = / <atm2(f") + 2m4(f’)) dir
e Interaction component:

1
t
— BHpp = d/

o~
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Keeping in mind that || = [, the interaction term can be rewritten in terms of
vm

1 oo IRCIVTE m(F + i) —m(®)\* 4.
za/zz(m“*“)—m(r)) ddr:zH/zz( z d'r
i i
];3 3m 2 d=
_2ld_2/zﬂ:<axu> dr
skl [k V2 a0
SIS /2<Vm) 4%

where we have called x,, the components of [i and we have rescaled the elastic
constant by 1472

k
[d—2
In this way the result is indipendent on [.

k=

e Total energy:

BHpslm] = / [ath(F) + gm‘*(f) + g(ﬁm(f)ﬂ A (11.22)

Therefore, the (functional) partition function of the system will be as in Eq.((11.16)):

Zap = /D[m(l—;)]e—ﬁﬂfeff[m(a] _ / D[m(f’)]eif [atmz(f‘)+gm4(f)+§(ﬁm(;)ﬂddf
(11.23)

Let us now make a couple of considerations:

o If m(r) = m (uniform system) the energy of the system has the same structure
of the one used in Landau theory.

e The term proportional to (Vm(F))? is completely new but we could have in-

troduced it intuitively to a Landau-like mean field functional, since the intro-
duction of spatial variations in the order parameter has an energetic cost which
must depend on how it varies in space, i.e. it depends on the gradient of m.
This term can be also added directly to the Landau theory by simply assuming
that, whe m — m(r) (one has to consider an additioned energy cost due to
small variation of m).

Why we take (6m)2 and not something else? The choise is first of all a con-
sequence of the isotropy of the system (all directions are equivalent). Since
the system is isotropic and Z2-invariant, we must use combinations of deriva-
tives that are invariant under rotations and parity, and, among all the possible
combinations, (Vm(F))? is the simplest one.

Remark. Let us consider the cases in which m — m (O(n) models); we have:

n d
(Vﬁ]’)Q = Z Z Oam;iOamy;
=1 a=1
Higher order terms are:
n d d
(V2rﬁ)2 = Z Z (0a0am;)(0p0gm;)
i=1 a=18=1

and
n o n d

rﬁ2(Vr_r’1)2 == Z Z Z mimiﬁamjaamj

i=1 j=1 a=1
In most cases it is sufficient to consider only the lowest order term.
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11.3.2 Magnetic non-homogeneous field

If there is also an external magnetic field

so that the partition function becomes:

Zan = [ Dim@)e ! Lt @it e Rl

which is a functional of m(F) and h(F). As usual, all the thermodynamics of the
system can be obtained from Zgj, provided that now we take functional derivatives
instead of usual derivatives. Moreover, the free energy functional is defined as

F[m,h] = /ddf" {ath(f") + gm4(1_") + 2 (Vm(¥))? — h(F)m(7) (11.25)

11.3.3 Functional derivatives

In the calculus of variations, a field of mathematical analysis, the functional deriva-
tive relates a change in a functional to a change in a function on which the functional
depends. Functionals are usually expressed in terms of an integral of functions, their
arguments, and their derivatives.

Definition 9: Functional derivative !

Given a manifold M representing (continuous/smooth) functions h (with certain
boundary conditions etc.), and a functional G defined as G : M — R. The
functional derivative of G[h|, denoted 0G/dh, is defined by

G G(h+¢e®)—G(h) [d

O (1) — 1 < ®
5h(x) (z)dx lim . dEG[h+€ ]]

e=0

where ® is an arbitrary function. In physics, it is common to use the Dirac
delta function §(z — y) in place of a generic test function ®(z), for yielding the
functional derivative at the point y:

5GIh(@)) _ . Glh@) + £b(z — y) — Glh(a)
5h(y) e—0 IS5
or, in many dimensions:
IG[h(T)] _ lim G[h(T) + e0(